
Optimized Query Planning of Continuous Aggregation
Queries in Dynamic Data Dissemination Networks

Rajeev Gupta
IBM India Research Lab

New Delhi, India
grajeev@in.ibm.com

Krithi Ramamritham

Indian Institute of Technology
Mumbai, India

 krithi@cse.iitb.ac.in

ABSTRACT
Continuous queries are used to monitor changes to time varying
data and to provide results useful for online decision making.
Typically a user desires to obtain the value of some aggregation
function over distributed data items, for example, to know (a) the
average of temperatures sensed by a set of sensors (b) the value of
index of mid-cap stocks. In these queries a client specifies a
coherency requirement as part of the query. In this paper we
present a low-cost, scalable technique to answer continuous
aggregation queries using a content distribution network of
dynamic data items. In such a network of data aggregators, each
data aggregator serves a set of data items at specific coherencies.
Just as various fragments of a dynamic web-page are served by
one or more nodes of a content distribution network, our
technique involves decomposing a client query into sub-queries
and executing sub-queries on judiciously chosen data aggregators
with their individual sub-query incoherency bounds. We provide a
technique of getting the optimal query plan (i.e., set of sub-
queries and their chosen data aggregators) which satisfies client
query’s coherency requirement with least cost, measured in terms
of the number of refresh messages sent from aggregators to the
client. For estimating query execution cost, we build a continuous
query cost model which can be used to estimate the number of
messages required to satisfy the client specified incoherency
bound. Performance results using real-world traces show that our
cost based query planning leads to queries being executed using
less than one third the number of messages required by existing
schemes.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web Based Services

General Terms
Algorithms, Management, Measurement, Performance, Design.

Keywords
Content distribution networks, Dynamic data, continuous
aggregation queries, data coherency, query dissemination cost.

1. INTRODUCTION
Many data intensive applications delivered over the Web suffer
from performance and scalability issues. Content distribution
networks (CDNs) solved the problem for static content using

caches at the edge nodes of the networks. CDNs continue to evolve
to serve more and more dynamic applications [1, 2]. A dynamically
generated web page is usually assembled using a number of static or
dynamically generated fragments. The static fragments are served
from the local caches whereas dynamic fragments are created either
by using the cached data or by fetching the data items from the
origin data sources. One important question for satisfying client
requests through a network of nodes is how to select the best
node(s) to satisfy the request. For static pages content requested,
proximity to the client and load on the nodes are the parameters
generally used to select the appropriate node [3, 4]. In dynamic
CDNs, while selecting the node(s) to satisfy the client request, the
central site (top-level CDN node) has to ensure that page/data served
meets client’s coherency requirements also. Techniques to
efficiently serve fast changing data items with guaranteed
incoherency bounds have been proposed in the literature [5, 6].
Such dynamic data dissemination networks can be used to
disseminate data such as stock quotes, temperature data from
sensors, traffic information, and network monitoring data. In this
paper we propose a method to efficiently answer aggregation queries
involving such data items.

In data dissemination schemes proposed in literature [5, 6], a
hierarchical network of data aggregators is employed such that
each data aggregator serves the data item at some guaranteed
incoherency bound. Incoherency of a data item at a given node is
defined as the difference in value of the data item at the data
source and the value at that node. Although CDNs use page-
purge [8] based coherency management, we assume that in
dynamic data dissemination networks, these messages carry the
new data values thereby an invalidation message becomes a
refresh message. For maintaining a certain incoherency bound, a
data aggregator gets data updates from the data source or some
higher level data aggregator so that the data incoherency is not
more than the data incoherency bound. In a hierarchical data
dissemination network a higher level aggregator guarantees a
tighter incoherency bound compared to a lower level aggregator.
Thus data refreshes are pushed from the data sources to the clients
through the network of aggregators. Dissemination networks for
various data items (possibly from different data sources) can be
overlaid over a single network of data aggregators as shown in
Figure 1. Thus, from a data dissemination capability point of
view, each data aggregator (DA) is characterized by a set of (si, ci)
pairs, where si is the data item which the DA can disseminate at an
incoherency bound ci.

Example 1: In a network of data aggregators managing data items
S1-S4, various aggregators can be characterized as-

D1: {(S1, 0.5), (S3, 0.2)}

D2: {(S1, 1.0), (S2, 0.1), (S4, 0.2)}

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to
classroom use and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

WWW 2007 / Track: Performance and Scalability Session: Scalable Systems for Dynamic Content

321

Aggregator D1 can serve values of S1 with an incoherency bound
greater than or equal to 0.5 whereas D2 can disseminate the same
data item at a looser incoherency bound of 1.0 or more. Usually,
client is interested in an aggregation of these dynamic data items
at a certain incoherency bound. These continuous queries are used
to monitor changes in dynamic data and provide results useful for
online decision making. For generating the result of a query, data
from multiple sources is required. As a result, the query has to be
evaluated either at data aggregators [9] or at the client. In this
paper we assume existence of data dissemination network of
multiple data items to answer a class of queries termed,
continuous incoherency bounded weighted aggregation queries,
which are formally defined next.

1.1 Continuous Incoherency-Bounded
Weighted Aggregation Queries
A continuous weighted aggregation query can be formally written
as:

q
i

ni

i
i

q
s wtstV

q

×�=
=

=
)()(

1
 (1)

Vs
q is the value of a client query q involving nq data items with the

weight of the ith data item being wq
i, 1�i� nq. si(t) is the value of

the ith data item at the data source at time t. Such a query
encompasses SQL aggregation operators SUM and AVG besides
general weighted aggregation queries such as portfolio queries,
involving aggregation of stock prices, weighted with number of
shares of stocks in the portfolio. Due to space limitations we are
not presenting execution schemes for other aggregation queries
such as MIN/MAX. Interested readers are referred to [10] for the
extended version of this paper.

Let the value of ith data item, in Equation (1), known to the
client/DA be di(t). Then the data incoherency is given by |si(t)-
di(t)|. For a data item which needs to be disseminated at an
incoherency bound C the data refresh is sent to the client or lower
level DA, if the |si(t)-di(t)| is more than C. If user specified
incoherency bound for the query q is Cq, then the dissemination
network has to ensure that:

� ≤×−
=

qn

i

qq
iii Cwtdts

1
|))()((| (2)

Whenever data values at sources change such that query
incoherency bound is violated, the updated value(s) is
disseminated to the client. If the network of aggregators can
ensure that the ith data item has incoherency bound Ci then the
following condition ensures that the query incoherency bound Cq

is satisfied:

� ≤×
=

qn

i

qq
ii CwC

1
 (3)

A client specified query incoherency bound needs to be translated
into incoherency bounds for individual data items or sub-queries
such that Equation (3) is satisfied. It should be noted that
Equation (3) is sufficient condition for satisfying the query
incoherency bound but not the necessary. This way of translating
the query incoherency bound into the sub-query incoherency
bounds is required if data is transferred between various nodes
using only push based mechanism. Such a translation is not
required in either a pull based mechanism as shown in our earlier
paper [9] or combinations of push and pull. In this paper we

consider only push based data dissemination among servers, DAs
and clients. Next we present the summary of our approach
towards executing the continuous multi-data weighted additive
aggregation query with the objective of minimization of number
of refreshes from data aggregators to the client. Our technique can
be used for various popular applications where different clients
require aggregation of multiple data items at their individual
incoherency bounds. Monitoring stock portfolios is one such
popular application which we use for performance measurements.

1.2 Summary of Approach and Contributions
Consider a client query Q1=50 S1 + 200 S2 + 150 S3 with a
required incoherency bound of 80 (in a stock portfolio S1, S2, S3
can be different stocks and incoherency bound can be $80).We
want to execute this query over data aggregators given in
Example1 minimizing number of refreshes. There are various
options for the client to get the data items:

• The client may get the data items S1, S2 and S3 separately. The
query incoherency bounds can be divided among data items in
various ways while satisfying Equation 3. In this paper, we
show that getting data items independently is a costly option.
This strategy ignores facts that the client is interested only in
the aggregated value of the data items and various aggregators
can disseminate more than one data item.

• If a single DA can disseminate all three data items required to
answer the client query, the DA can construct a composite
data item corresponding to the client query (Sq=50 S1 + 200 S2
+ 150 S3) and disseminate the result to the client so that the
query incoherency bound is not violated. It is obvious that if
we get the query result from a single DA, the number of
refreshes will be minimum (as in this case data item updates
may cancel out each other, thereby keeping the query result
within the incoherency bound). As different data aggregators
disseminate different subsets of data items, no data aggregator
may have all the data items required to execute the client
query which is indeed the case in Example1. Further, even if
an aggregator can disseminate all the data items, it may not be
able to satisfy the query coherency requirements. In such
cases the query has to be executed with data from multiple
aggregators.

• Another option is to divide the query into a number of sub-
queries and get their values from individual DAs. In that case,
the client query result is obtained by combining the results of

Network of
data

aggregators

Clients

Sources

Figure 1: Data dissemination network for multiple
data items

WWW 2007 / Track: Performance and Scalability Session: Scalable Systems for Dynamic Content

322

more than one sub-query. For the DAs given in Example1, the
query Q1 can be divided in two alternative ways:

plan1: D1 {50 S1 + 150 S3}; D2 {S2}

plan2: D1 {S3}; D2 {50 S1, + 200 S2}

i.e., in plan1 result of sub-query 50 S1 + 150 S3 is
disseminated by D1 and that of S2 (or 200 S2) by D2. Combining
them at the client gives the query result.

• Selecting the optimal plan among various options is not-trivial.
As a thumb-rule, we should be selecting the plan with lesser
number of sub-queries. But that is not guaranteed to be the
plan with the least number of messages. Further, we should
select the sub-queries such that updates to various data items
appearing in a sub-query have more chances of canceling each
other as that will reduce the need for refresh to the client
(Equation 2). In the above example, if updates to S1 and S3 are
such that when S1 increases, S3 decreases, and vice-versa, then
selecting plan1 may be beneficial. We give an algorithm to
select the query plan based on these observations.

• While solving the above problem of selecting the optimal plan
we ensure that each data item for a client query is
disseminated by one and only one data aggregator. Although a
query can be divided in such a way that a single data item is
served by multiple DAs (e.g., 50 S1 + 200 S2 + 150 S3 is
divided into two sub-queries 50 S1 + 130 S2 and 70 S2 + 150
S3); but in doing so the same data item needs to be processed
at multiple aggregators, increasing the unnecessary processing
load. By dividing the client query into disjoint sub-queries we
ensure that a data item update is processed only once for each
query (For example, in case of paid data subscriptions it is not
prudent to get the same data item from the multiple sources).

• The query incoherency bound needs to be divided among sub-
query incoherency bounds such that, besides satisfying the
client coherency requirements, the chosen DA (where the sub-
query is to be executed) is capable of satisfying the allocated
sub-query incoherency bound. For example, in plan1
allocated incoherency bound to the sub-query 50S1 + 150S3
should be greater than 55 (=50*0.5+150*0.2) as that is the
tightest incoherency bound which the aggregator D1 can
satisfy. We prove that the number of refreshes depends on the
division of the query incoherency bounds among sub-query
incoherency bounds. Similar result was proved for data
incoherency bounds in [11].

Thus, what we need is a method of (a) optimally dividing client
query into sub-queries and (b) assigning incoherency bounds to
them; such that (c) selected sub-queries can be executed at chosen
DAs and (d) total query execution cost, in terms of number of
refreshes, is minimized. We prove that the problem of choosing
sub-queries while minimizing query execution cost is an NP-
hard problem. We give efficient approximation algorithms to
choose the set of sub-queries and their corresponding
incoherency bounds for a given client query. In contrast, all
related work in this area [11, 12] propose getting individual data
items from the aggregators which, as we show in this paper, leads
to large number of refreshes. For solving the above problem of
optimally dividing the client query into sub-queries, we first need
a method to estimate query execution cost for various alternative
options. A method for estimating the query execution cost is
another important contribution of this paper. As we divide the
client query into sub-queries such that each sub-query gets

executed at different aggregator nodes, the query execution cost
(i.e., number of refreshes) is the sum of the execution costs of its
constituent sub-queries. We model the sub-query execution cost
as a function of following parameters:

(a) Dissemination costs of the individual data items involved. The
data dissemination cost is dependent on data dynamics and
incoherency bound associated with the data. We model the data
dynamics using a data synopsis model, and the effect of the
incoherency bound using an incoherency bound model. These two
models are combined to get the estimate of the data dissemination
cost.

 (b) A correlation measure of data dynamics, quantifying the
chance that the updates of two data items will cancel each other
out such that a sub-query of their sum will incur less refreshes
than disseminating the individual data changes. We use cosine
similarity between data items for this purpose. This parameter is
widely used in information retrieval domain [20].

Through extensive simulations we show that:

• Our method of dividing query into sub-queries and executing
them at individual DAs requires less than one third of the
number of refreshes required in the existing schemes.

• For efficient execution, more dynamic data item should be part
of sub-query involving larger number of data items.

Our method of executing queries over dynamic data
dissemination network is practical since it can be implemented
using a mechanism similar to URL-rewriting [4] in CDNs. Just
like in a CDN, the client sends its query to the central site. For
getting appropriate aggregators (edge nodes) to answer the client
query (web page), the central site has to first determine which data
aggregators have the data items required for the client query. If
the client query can not be answered by a single data aggregator,
the query is divided into sub-queries (fragments) and each sub-
query is assigned to a single data aggregator. In case of a CDN,
web page’s division into fragments is a page design issue,
whereas, for continuous aggregation queries, this issue has to be
handled on per-query basis by considering data dissemination
capabilities of data aggregators as represented in Example 1.

1.3 Outline of the Paper
We give a formal mathematical definition of the query plan
selection problem in Section 2. Query cost model for a multi-data
incoherency bounded aggregation query is developed in Section
3. The query cost model uses the data dissemination model
presented in Section 3.1 and cosine similarity measure which is
explained in Section 3.2. In Section 4, we first prove that the
optimization problem presented in Section 2 is NP-hard then we
give approximate algorithms for the problem. In Section 5,
performance evaluation done using real-world traces is presented
to show that our sub-query based query evaluation scheme
executes the client query at less than one third cost compared to
other known schemes. Related work is presented in Section 6 and
the paper concludes in Section 7.

2. QUERY PLAN SELECTION PROBLEM
In this section, we give a formal definition of the optimization
problem described in the previous section. We are given a set D of
data aggregators, set S of data items and one-to-many mapping f:
D�(S, C) where C�� is a sub-set of real number representing
incoherency bounds for various data items (in the set S) at

WWW 2007 / Track: Performance and Scalability Session: Scalable Systems for Dynamic Content

323

aggregators in D. Each incoming client query q over the data
items set Sq � S has corresponding weights given as a set Wq.
Thus the query can be represented as set of tuples of �data_item,
weight�, i.e., q= {�sq, wq�} with the query incoherency bound Cq.
We need to perform the following two tasks such that the number
of refreshes to the client is minimum:

Task1: Divide the client query q= {�sq, wq�} into sub-queries qk=

{� q
k

q
k ws , �} so that � qk = q i.e., although different sub-queries

may be executed at different aggregators, combining their results
gives the value of the client query.

 Task2: Allocate each sub-query qk, with its incoherency bound

kC , to data aggregators.

While fulfilling the following conditions:

 Condition1: Query incoherency bound is satisfied, i.e.,

� ≤
k

q
k CC .

The sub-query qk should be assigned to a data aggregator di �D
iff:

Condition2: The chosen aggregator should have all the data items
appearing in the sub-query i.e. ∏∏ ⊆ S iS k dfq))(()(. Here �
indicates project operator in relational algebra.

Condition3: Data incoherency bounds at the selected data
aggregator ∏ ==))((()(ijssCj dfc q

k
σ should be such that

kk XC ≥ where sk
q(j) is the jth data item appearing in the sub-

query qk and Xk is the tightest incoherency bound the aggregator
can ensure for the given sub-query. Xk can be calculated as:

�= q
jjk wcX . Here � indicates select operator in relational

algebra.

3. QUERY COST MODEL
Before developing the query cost model we first summarize the
model to estimate the number of refreshes required to disseminate
a data item at certain incoherency bound. For simulation
experiments we use data items from sensor network and stock data
domains as explained in our previous work [9]. Stock traces of 45
stocks were obtained by periodically polling
http://finance.yahoo.com. Sensor network data used were
temperature and wind sensor data from Georges Bank Cruises
Albatross Shipboard [13]. Due to paucity of space we present
results using stock data only but similar results were obtained for
sensor data as well [14]. For detailed analysis and simulation
results, readers can refer to the extended version of the paper [10].

3.1 Data Dissemination Cost
Cost of disseminating a data item at a certain given incoherency
bound C can be estimated by combining two models:

• Incoherency bound model is used for estimating dependency of
data dissemination cost over the desired incoherency bound.
As per this model, we have shown in [10] that the number of
data refreshes is inversely proportional to the square of the
incoherency bound (1/C2). Similar result was earlier reported
in [5] where the data dynamics was modeled as a random-
walk process.

Data dissemination cost 1/C2 (4)

• Data Synopsis Model is used for estimating the effect of data
dynamics on number of data refreshes. We define a data
dynamics measure called, sumdiff, to obtain a synopsis of the
data for predicting the dissemination cost. The number of
update messages for a data item is likely to be higher if the
data item changes more in a given time window. Thus we
hypothesize that cost of data dissemination for a data item will
be proportional to sumdiff, defined as:

� −= −
i

iis ssR || 1 (5)

where si and si-1 are the sampled values of the data item at ith and
(i-1)th time instances (consecutive ticks). In [10] we corroborate
the above hypothesis using simulation over a large number of data
items. Pearson product moment correlation coefficient (PPMCC)
[19] values, used for quantifying linearity between data sumdiff
and number of refreshes required to maintain a fixed incoherency
bound, were found to be between 0.90 and 0.96 for various values
of incoherency bounds. Sumdiff value for a data item can be
calculated at the data source by taking running average of
difference between data values at the consecutive ticks. A data
aggregator can also estimate the sumdiff value by interpolating the
disseminated values.

Thus, the estimated dissemination cost for data item S,
disseminated with an incoherency bound C, is proportional to
Rs/C

2. Next we use this result for developing the query cost
model.

3.2 Query Dissemination Cost
Consider a case where a query consists of two data items P and Q
with weights wp and wq respectively; and we want to estimate its
dissemination cost. If data items are disseminated separately, the
query sumdiff will be:

|||| 11 −− � −+� −=+= iiqiipqqppdata qqwppwRwRwR (6)

Instead, if the aggregator uses the information that client is
interested in a query over P and Q (rather than their individual
values), it makes a composite data item wpp+wqq and
disseminates that data item then the query sumdiff will be:

� −− −+−= |)()(| 11 iiqiipquery qqwppwR
 (7)

Rquery is clearly less than or equal compared to Rdata. Thus we need
to estimate the sumdiff of an aggregation query (i.e., Rquery) given
the sumdiff values of individual data items (i.e., Rp and Rq). Only
data aggregators are in position to calculate Rquery as different data
items may be from different sources. We develop the query
dissemination model in two stages.

3.2.1 Quantifying correlation between dynamics of
data
From Equations (6) and (7) we can see that if two data items are
correlated such that if value of one data item increases, that of the
other data item also increases, then Rquery will be closer to Rdata
whereas if the data items are inversely correlated then Rquery will
be less compared to Rdata. Thus, intuitively, we can represent the
relationship between Rquery and sumdiff values of the individual
data items using a correlation measure associated with the pair of
data items. Specifically, if � is the correlation measure then Rquery

can be written as:

)2(22222
qqppqqppquery RwRwRwRwR ρ++∝ (8)

WWW 2007 / Track: Performance and Scalability Session: Scalable Systems for Dynamic Content

324

 The correlation measure is defined such that –1� �� +1, so, Rquery
will always be less than |wpRp+wqRq| (as explained earlier) and
always be more than |wpRp–wqRq|. The correlation measure � can
be interpreted as cosine similarity [20] between two streams
represented by data items P and Q. Cosine similarity is a widely
used measure in information retrieval domain where documents
are represented using a vector-space model and document
similarity is measured using cosine of angle between two
document representations. For data streams P and Q, � can be
calculated as:

� −� −

� −−=
−−

−−
2

1
2

1

11

)()(

))((

iiii

iiii

qqpp

qqppρ (9)

3.2.2 Query normalization
Suppose we want to compare the cost of two queries: a SUM
query involving two data items and an AVG query involving the
same data items. Let the query incoherency bound for the SUM
and the AVG queries be C1=2C and C2=C, respectively. From
Equation (8), sumdiff of the SUM query will be double that of the
AVG query (as the weight of each data item in the SUM query is
double of that in the AVG query). Hence, query evaluation cost (as
per Ri/Ci

2) of the SUM query will be half that of the AVG query (as
SUM query incoherency bound is double). But, intuitively,
disseminating the SUM of two data items, at double the
incoherency bound should require the same number of messages
as their AVG. Thus, there is a need to normalize query costs.
From a query execution cost point of view, a query with weights
wi and incoherency bound C is same as query with weights � wi
and incoherency bound �.C. So, while normalizing we need to
ensure that both, query weights and incoherency bounds, are
multiplied by the same factor. Normalized query sumdiff is given
by:

)2(

)2(
22

2222
2

qpqp

qqppqqpp
query

wwww

RwRwRwRw
R

ρ
ρ

++

++
= (10)

i.e., the value of the normalizing factor should be

qppp wwww ρ2/1 22 ++ . The value of the incoherency bound

has to be adjusted by the same factor. Normalization ensures that
queries with arbitrary values of weights can be compared for
execution cost estimates. From Equations (9 and 10) the value of
query sumdiff can be estimated at a data aggregator node if it has
all the required data items disseminated to it. An aggregator can
use interpolated values of data items to estimate � as it is not
(always) likely to have all the data updates. In the extended
version of the paper [10] we present an efficient method (using
[21]) to calculate � which can also be used when the
corresponding data items are not being disseminated by the same
data aggregator. Equation (10) can be extended to get query
sumdiff for any general weighted aggregation query given by
Equation (1) as:

� � �+

� �+�

=

= = ≠=

= ≠==
n

i

n

i

n

ijj
jiiji

n

i

n

ijj
jijiij

n

i
ii

Q
www

RRwwRw
R

1 1 ,1

2

1 ,11

22

2

2

2

ρ

ρ
 (11)

3.2.3 Validating the query cost model
To validate the query cost model we performed simulations by
constructing more than 50 weighted aggregation queries using the
stock data with each query consisting of 3-7 data items with data
weights uniformly distributed between 1 and 10. For each query
the number of refreshes was counted for various normalized
incoherency bounds between 0.01 and 0.5. Figure 2 shows that
the number of messages is proportional to the normalized query
sumdiff as calculated using Equation (11) if their normalized
incoherency bounds are same. In this case PPMCC value is found
to be 95%. Similarly, Figure 3 shows the dependence of the
number of refreshes on 1/C2 to prove that the relationship that
holds between them for single data item also holds for a query
with multiple data items. The query cost model can be used in
various applications of query assignment, load balancing, optimal
order of processing, etc. In the next section, we use this query cost
model for our query plan problem to optimally divide a client
query into sub-queries and execute it over a network of data
aggregators so that the number of refreshes can be minimized

4. EXCEUCTING QUERIES USING SUB-
QUERIES
For executing an incoherency bounded continuous query, a query
plan is required which includes the set of sub-queries, their
individual incoherency bounds and data aggregators which can
execute these sub-queries. We need to find the optimal query
execution plan which satisfies client coherency requirement with
the least number of refreshes. As explained in Section 1, what we
need is a mechanism to:

Task 1: Divide the aggregation query into sub-queries; and

Figure 2: Variation of query cost with query sumdiff

(Normalized C=0.3)

Figure 3: Number of refreshes for varying query

incoherency bounds

WWW 2007 / Track: Performance and Scalability Session: Scalable Systems for Dynamic Content

325

Task 2: Allocate the query incoherency bound among them.

 while satisfying the following conditions identified in Section 2:

condition 1. Query incoherency bound is satisfied.

condition 2. The chosen DA should be able to provide all
the data items appearing in the sub-query assigned to it.

condition 3. Data incoherency bounds at the chosen DA
should be such that the sub-query incoherency bound can
be satisfied at the chosen DA.

Objective : Number of refreshes should be minimized.

Let the client query be divided into N sub-queries {qk: 1�k�N};
with Rk being sumdiff of kth sub-query and Ck being incoherency
bound assigned to it. As given is Section 3, the dissemination cost
of a sub-query is estimated to be proportional to Rk/Ck

2. Thus
query cost estimate is given by:

�=
=

N

k
kk CRZ

1

2)/((12)

While allocating sub-query incoherency bounds we need to ensure
that the query coherency requirement C is satisfied (condition1);
i.e.,

� ≤
=

N

k
k CC

1
 (13)

For satisfying condition2, sub-queries should be such that all its
data items can be disseminated by the chosen DA. Let Xk be the
tightest incoherency bound (defined in Section 2) the chosen DA
can satisfy for qk. For the condition3, we have to ensure that Ck �
Xk for each sub-query qk and its assigned data aggregator. Z needs
to be minimized for minimizing the number of refreshes as per the
objective.

Before attempting the hard problem of optimizing Z, let us first
consider a simpler problem where values of Ck are given. In this
simpler problem we divide the client query into sub-queries to
minimize the estimated execution cost (Z) without considering the
optimal division of the query incoherency bound into sub-query
incoherency bounds. Besides working as a step towards a solution
for the whole problem this case can also be used where allocation
of incoherency bounds to sub-queries is done independent of the
data dynamics. For example, it may be pre-decided that
incoherency bounds for all data items will be the same. Thus, for a
given query and its incoherency bounds, the sub-query
incoherency bounds can be obtained. Next we prove that this
simpler version of the problem is NP-hard.

4.1 Finding Optimal Query Plan is NP-hard
For proving that the problem is NP-hard, we use reduction from
3-dimensional matching (3DM) problem. For a given client
query and DA, let us first define maximal sub-query as the largest
part of the query which can be disseminated by the DA (i.e., the
maximal sub-query has all the query data items which the DA can
disseminate at the required incoherency bound). For example, for
a client query 20S1 +25S2+35S3 with incoherency bound 80; let
the pre-decided incoherency bound for each data item be 1. For
the data aggregators D1 and D2 given in Example 1, the maximal
sub-query for D1 will be q1=20S1 +35S3, whereas for D2 it will be
q2=20 S1 + 25S2.

3DM Problem: Given three sets X, Y and Z, each with N
elements, and a set M � X � Y� Z, is there a subset M1�M such
that |M1|=N and no two elements of M1 agree in any coordinate?

We use a slightly different (decision) version of the optimization
problem to reduce the 3DM problem. To solve the 3DM problem
we reduce it to a SUM query of 3N items:

� The SUM query: � ++
=

N

i
iii zyx

1
)(for xi � X, yi � Y, zi � Z.

� We assume that all the data items have the same sumdiff
values of 1; cosine similarity between all the data items is 0;
and all data items are allocated an incoherency bound of 1.

� For each element (xi, yj, zk) � M, we assume the existence of
a data aggregator disseminating these three data items only.

� In the decision version of optimal plan problem we ask
whether there exists a query plan with query cost estimate
value N/3.

If a query plan with cost estimate value N/3 exists; it implies that
the query plan has N queries with 3 items each (that will lead to
query cost value of 1/3 per sub-query as per Equation (11)
whereas any other combination of sub-queries will lead to more
cost). Three data items from each chosen data aggregators form a
triplet for the set M1 which solves 3DM. Because of space
constraints we are not giving the complete proof of NP-
hardness of the original problem. In general, there is no known
approximate algorithm for such a problem. It should be noted that
performing Task1 for achieving the objective is NP-hard, so we
give two greedy heuristics in next two sub-sections; whereas
Task2 can be performed optimally with conditions1-3 while
achieving the objective. In our approach, we first try to perform
Task1, while satisfying as many conditions as possible, and then
optimally perform Task2 while satisfying all the conditions.

4.2 Minimum Cost Heuristic
Figure 4 shows the outline of greedy heuristics where different
criteria (�) can be used to select sub-queries. In this section we
describe the case where the estimate of query execution cost is
minimized in each step of the algorithm (min-cost) whereas in the
next section we present the case where gain due to executing a
query using sub-queries is maximized (max-gain).

4.2.1 Query Plan with Pre-decided Incoherency
Bound Allocation
For the given client query (q) and mapping between data
aggregators and the corresponding {data-item, data incoherency
bound} pairs (f: D�(S, C)) maximal sub-queries can be obtained
for each data aggregator. Let A be the set of such maximal sub-
queries. In this set, each query a � A can be disseminated by a
designated data aggregator at the assigned incoherency bound. For
each sub-query a � A, its Sumdiff Ra is calculated using Equation
11. Using the set A and sub-query sumdiffs, we use the algorithm
outlined in Figure 4 to get the set of sub-queries minimizing the
query cost. In this Figure each sub-query a � A is represented by
the set of data items covered by it. As we need to minimize the
query cost, a sub-query with minimum cost per data item is
chosen in each iteration of the algorithm i.e., criteria � 	
minimize (Ra/Ca

2|a|). All data items covered by the selected sub-
query are removed from all the remaining sub-queries in A before
performing the next iteration.

WWW 2007 / Track: Performance and Scalability Session: Scalable Systems for Dynamic Content

326

4.2.2 Optimizing query execution cost
Now we consider the overall problem to select the optimal set of
sub-queries while simultaneously dividing the query incoherency
bound among them. In this case we get the set of maximal queries
(A) without considering the minimum incoherency bounds that the
data aggregators can satisfy (i.e., condition3). In this algorithm we
first get the optimal set of sub-quires without considering the
condition3 and then allocate incoherency bound among them
using condition1 (Equation (13)) and condition3. Lagrange
multiplier scheme can be used to solve for incoherency bounds
(from Equations 12 & 13) so that Z is minimized:

�=
=

N

k
kkk RCRC

1

3/13/1)/((14)

i.e., without the constraints of condition3, sub-query incoherency

bounds should be allocated in proportion to 3/1
kR . Using

Equations (12) and (14) we get:

�=
=

N

k
kR

C
Z

1

3/1
3/2

3/1 1
 (15)

From Equation (15), it is clear that for minimizing the query
execution cost we should select the set of sub-queries so that

�
3/1

kR is minimized. We can do that by using criteria � 	

minimize (3/1
aR /|a|) in the algorithm described in Figure 4. Once

we get the optimal set of sub-queries we can use the Equation (13)
and condition3 (Ck � Xk) to optimally allocate the query
incoherency bound among them. This allocation problem can be
solved by various convex optimization techniques available in the
literature such as gradient descent method, barrier method etc. We
used gradient descent method (fmincon function in MATLAB) to
solve this non-linear optimization problem to get the values of
individual sub-query incoherency bounds. But this method of first
selecting sub-queries and then allocating the incoherency bounds
has a problem which is described next.

4.2.3 Satisfiability of Condition 3
In the solution described in the previous section, we select the set
of sub-queries (and corresponding DAs) and then allocate the
query incoherency bound among them using convex optimization
techniques. But the problem of incoherency bound allocation
among chosen DAs may not have any feasible solution. There
may be situations where, although the data dissemination network
is able to satisfy the query coherency requirements but once the

set of sub-queries (and corresponding DAs) is selected the
incoherency bound allocation is not possible.

Example 2: Consider a client query 50S1 + 200S2 + 150S3 with the
incoherency bound of 80 and data dissemination network
consisting of two aggregators D1 and D2 as given in Example 1.
There are (at-least) two possible query plans to answer the above
query:

Plan1: D1 (50S1 + 150 S3); D2 (S2)

Plan2: D1 (S3); D2 (50S1 + 200 S2)

In Section 4.2.2 we are selecting sub-queries having

minimum�
3/1

kR , thus based on data dynamics it is possible that
we select plan2 as the optimal plan. But from the data
incoherency bounds that aggregators D1 and D2 can ensure, we
see that it is not possible for plan2 to satisfy the client specified
incoherency bound as minimum incoherency bound that can be
satisfied by the selected aggregators (X=50*1 +200*0.1 +150*0.2
=100) is greater than the query incoherency bound (=80). Thus
although there exists a plan (plan1) which can satisfy the client
query incoherency bound, while minimizing the query execution
cost the above method cannot ensure that such a plan will be
selected.

What we need is a compromise between the query satisfiability
and performance. In Section 4.2.2 we are selecting the sub-queries
without considering the data incoherency bounds for the selected
data aggregators. We correct that by selecting sub-queries using

� +)(3/1
3/1

a

a
a

CR
X

R
α

as substitute objective function instead of

�
3/1

aR . The second term ensures that while selecting the optimal
plan we prefer the data aggregators having tighter data
incoherency bounds (lower values of Xa) thus higher chances of
satisfying the query. The tuning parameter (�) can used to balance
the objectives of minimizing query execution cost through sub-
queries selection and meeting the query coherency requirements.

We use 3/1/ aa CRX in the second term as, according to Equation
(14), optimal incoherency bound allocation is likely to be done

proportional to 3/1
aCR . In Section 5.2, we measure effects of the

tuning parameter � on the query satisfiability.

4.3 Maximum Gain Heuristic
In this section we present an algorithm which, instead of
minimizing the estimated query execution cost, maximizes the
estimated gains of executing client query using sub-queries. In
this algorithm, for each sub-query, we calculate the relative gain
of executing it by finding the sumdiff difference between cases
when each data item is obtained separately and when all the data
items are aggregated as a single sub-query. Thus, the relative gain
for a sub-query wpp+wqq can be written as:

1
)2(

)(
2222

−
++

+
=

qpqpqqpp

qqpp
query

RRwwRwRw

RwRw
G

ρ
 (16)

This algorithm can be implemented by using criteria � 	
maximize (Gquery/|a|) to get the set of sub-queries and
corresponding DAs. Then we use the convex optimization method
outlined in Section 4.2 to allocate incoherency bounds among
sub-queries. To tackle the query satisfiability issue the query gain
Equation (16) is modified to:

Result � �
while A � �
 choose a sub-query a� A with criteria �
 Result � Result � a
 A� A-{a}
 for each data element e � a
 for each b� A
 b� b-{e}
 if b = �
 A� A-{b}
 else
 calculate sumdiff for modified b
return Result

Figure 4: Greedy algorithm for query plan selection

WWW 2007 / Track: Performance and Scalability Session: Scalable Systems for Dynamic Content

327

 3/1
')(

query

qqpp
queryquery

CR

XwXw
GG

+
−=

α
 (17)

where Xp is minimum incoherency bound that can be satisfied for
the data item P; C is query incoherency bound and Rquery is the

query sumdiff (=)2(2222
qpqpqqpp RRwwRwRw ρ++). Reasons

for selecting the particular substitute objective function are same
as ones outlined in Section 4.2.3. In the next Section, through
performance results, we show that this algorithm performs better
than the min-cost heuristic.

5. PERFORMANCE EVALUATION
For performance evaluation we simulated the data dissemination
networks of 25 stock data items over 25 aggregator nodes such
that each aggregator can disseminate combinations of up to 10
data items with data incoherency bounds chosen uniformly
between $0.005 and 0.02. Then we created 500 portfolio queries
such that each query has up to 10 randomly (uniformly) selected
data items with weights varying between 2 and 10. These queries
were executed with incoherency bounds between 0.3 and 1.0 (i.e.,
0.03-0.1% of the query value). In the first set of experiments, we
kept the data incoherency bounds at the data aggregators very low
so that query satisfiability can be ensured.

5.1 Comparison of algorithms
For comparison with our algorithms, presented in the previous
section, we consider various other query plan options. Each query
can be executed by disseminating individual data items or by
getting sub-query values from DAs. Set of sub-queries can be
selected using sumdiff based approaches or any other random
selection. Sub-query (or data) incoherency bound can either be
pre-decided or optimally allocated. Various combinations of these
dimensions are covered in the following algorithms:

1. No sub-query, equal data incoherency bound (naïve): In this
algorithm, the client query is executed with each data item being
disseminated independent of other data items in the query.
Incoherency bound is divided equally among the data items. This
algorithm acts as a baseline algorithm.

2. No sub-query, optimal incoherency bound (optc): In this
algorithm also data items are disseminated separately but
incoherency bound is divided among data items so that total
number of refreshes can be minimized. This algorithm is similar
to the one presented in [11]. Here, the incoherency bound is
allocated dynamically using Equation (14).

3. Random sub-query selection (random): In this case, sub-
queries are generated by randomly selecting one data aggregators
and allocating it the maximal sub-query consisting of query data
items which the aggregator can disseminate. Then the process is
repeated for the remaining data items until the whole query is
covered. This algorithm is designed to see how the sub-query
selection based on query sumdiff (Section 4) works in comparison
to random selection of sub-queries.

4. Sub-query selection while minimizing sumdiff (min-cost):
This algorithm is described in Section 4.2.

5. Sub-query selection while maximizing gain (max-gain): This
algorithm is described in Section 4.3.

Figure 5 shows average number of refreshes required for query
incoherency bounds of $0.3, $0.5 and $0.8. The naïve algorithm
requires more than three times the number of messages compared
to min-cost and max-gain algorithms. For incoherency bound of
$0.8 each query requires 1024 messages if it is executed just by
optimizing incoherency bound (optc) compared to 255 when we
select the query plan using the max-gain algorithm. Further,
although the optimization problem is similar to the covering a set
of data items (query) using its sub-sets (sub-queries) for which the
greedy min-cost algorithm is considered to be most efficient [7],
we see that max-gain algorithm requires 20-25% less messages
compared to the min-cost approach. Reasons for max-gain
algorithm performing better than other algorithms are explored in
the next set of experiments. Although here we presented results
for stock traces (man-made data) similar results were obtained for
sensor traces (natural data) as well.

Figure 5: Performance evaluation of algorithms

5.2 Effect of Algorithmic Parameters
These set of experiments were performed to get an insight into
various characteristics of our sub-query selection method which
lead it to perform better compared to other options. We consider
effects of three parameters on sub-query selection and, in turn on
query performance: data dynamics, correlation between data
dynamics and query satisfiability parameter.

5.2.1 Effect of data dynamics
In this set of experiments, we wanted to see whether there is any
definite relationship between data dynamics and sub-query size in
which that data item appears. In this experiment with 10 data
items, 45 DAs were simulated such that each DA can disseminate
a different set of 2 data items. Then 100 queries were created each
with 3 data items. In the optimal query plan, each query will be
executed with two sub-queries: one consisting of 2 data items and
another with single data item (plan with three one item sub-
queries will be trivially inefficient). As the query has only 3 data
items, only 3 such query plans are possible. We simulated all
these options to get the best query plan. Figure 6 shows variation
of average sub-query size in which a particular data item appears
versus sumdiff value of the data item. We can see that if a data
item is more dynamic, in the optimal plan, it is more likely to be
part of larger sub-query. This is an important observation as it
indicates that for efficient query evaluation more dynamic data
items should be part of a larger sub-query. This phenomenon can
be explained by the fact that by executing a query as a
combination of sub-queries will always be more efficient
compared to getting the data items independently. By combining

WWW 2007 / Track: Performance and Scalability Session: Scalable Systems for Dynamic Content

328

more dynamic data items we are likely to gain more. For
comparison we also show the curve for the sub-query selection
based on max-gain algorithm. It can be seen that sub-query
selection using max-gain is approximately same as that selected
by the optimal solution. By using max-gain algorithm we achieve
our objective of disseminating more dynamic data items as part of
larger sub-queries. For the max-gain algorithm, similar results
were obtained for larger query sizes as well. In comparison, in the
min-cost algorithm most dynamic data item is more likely to be
disseminated as single item query. This happens because the
sumdiff value of a more dynamic data item will be high thus in
each step of the min-cost algorithm (Figure 4), there is less chance
of selecting a sub-query with more dynamic data item. Thus, it is
very likely that the highly dynamic data item will be disseminated
as a single item sub-query resulting in bad performance of the
client query. Still the min-cost algorithm performs better
compared to random algorithm as it tries to execute the query
with lesser number of sub-queries.

5.2.2 Effect of correlation between data dynamics
To measure the effects of correlation between data dynamics
(cosine similarity) on the query performance, we compared the
query performance with the case when all the data items are
assumed to be independent (i.e., �=0). For performing these
experiments we constructed 10 synthetic data traces so that values
of � for various data item pairs were distributed uniformly
between -1 and +1. Then 45 DAs were simulated so that each DA
can disseminate 2 data items. 100 queries were generated, each
with 4 data items. In this case, each query will get executed with 2
sub-queries of 2 data items each. Combination of sub-queries will
be decided based on correlation between data items (sumdiff
values of all the data items were the same). Table 1 compares the

results when cosine similarity is taken into account and when
cosine similarity is assumed to be 0 for all data item pairs. It can
be seen that by considering cosine similarity number of refreshes
reduce by approximately 12%. This result indicates that for sub-
query selection data dynamics may be more important factor than
the cosine similarity between the data items.

5.2.3 Effect of query satisfiability parameter
To simulate the situation where selected aggregators may not be
able to satisfy the query incoherency bounds, we modified the
simulation set up used in Section 5.1 to set the minimum data
incoherency bounds which DAs can satisfy to be between .015
and 0.04. Value of � was varied between 0-20. The case �=0
corresponds to the algorithm without dealing with the query
satisfiability. Figure 7 shows query execution cost and number of
unanswerable queries as the value of � is varied. As shown in the
figure as the value of � is increased, percentage of the unsatisfied
queries decreased for various values of query incoherency bounds.

Due to changed data incoherency bounds of DAs, we found that
20% of queries can not be satisfied even by the data aggregators
with tightest data incoherency bounds. Thus, while presenting the
results, we remove those queries. At the query incoherency bound
of $0.8, 40% are queries can not be satisfied by the optimally

selected data aggregators but as we increase the value of � to 10,
only 3% queries are unanswered. Such a value can be chosen to
balance the performance and satisfiability of queries. For
example, a dynamic CDN may aim at query satisfiability of 95%
for a given distribution of query incoherency bounds. If at any
time query satisfiability is below the target, value of � can be
increased whereas in case of over achieving the target, the value
of � can be decreased to improve the query performance.

5.2.4 Summary of performance results
Following features of the query planning algorithm improve
performance:

� Dividing the query into sub-queries and executing them at
specifically chosen data aggregators.

� Deciding the query plan using data sumdiff based mechanism
specifically by maximizing sub-query gains.

� Including more dynamic data as part of a larger sub-query.

We also showed that the max-gain algorithm is very close to the
optimal algorithm in selecting sub-queries based on data
dynamics.

6. RELATED WORK
Various mechanisms for efficiently maintaining incoherency
bounded aggregation queries over continuously changing data items
are proposed in the literature [11, 12, 16]. Our work distinguishes
itself by being sub-query based evaluation to minimize number of
refreshes. In [11], authors propose using data filters at the sources;
instead we assign incoherency bounds to sub-queries which reduce
the number of refreshes for query evaluation, as explained in Section

Figure 7: Effect of � on query satisfiability

Table1: Effect of correlation on number of refreshes
Incoherency

Bound
Avg. number of msgs
when � is considered

Avg. number of msgs
when � is assumed to be 0

0.5 2301 2559
0.8 1092 1215
1.0 754 846

Figure 6: Effect of data sumdiff on sub-query size

WWW 2007 / Track: Performance and Scalability Session: Scalable Systems for Dynamic Content

329

5. Further, we propose that more dynamic data items should be
executed as part of larger sub-query.

In [22], authors present technique of reorganizing a data
dissemination network when client requirements change. Instead,
we try to answer the client query using the existing network.
Reorganizing aggregators is a longer term activity whereas query
planning can be done for short as well as long running queries on
more dynamic basis.

Pull based data dissemination techniques, where clients or data
aggregators pull data items such that query requirements are met, are
described in [9,16]. For minimizing the number of pulls, both model
the individual data items and predict data values. In comparison, we
consider the situation where different sub-queries, involving
multiple data items, can be evaluated at different nodes. Further,
incoherency bound is applied over the sub-query rather than to
individual data items, leading to efficient evaluation of the query.
Spatial and temporal correlations between sensor data are used to
reduce data refresh instances in [17, 18]. We also consider
correlation in terms of cosine similarity between data items, but we
use it for dividing client query into sub-queries. Our work can be
extended by using temporal and spatial properties of data items for
predicting their correlation measures. A method of assigning clients
data queries to aggregators in a content distribution network is given
in [12]. We do for client queries consisting of multiple data items
what [12] does for client requiring individual data items.

7. CONCLUSIONS
This paper presents a cost based approach to minimize the number
of refreshes required to execute an incoherency bounded
continuous query. For optimal execution we divide the query into
sub-queries and evaluate each sub-query at a chosen aggregator.
Performance results show that by our method the query can be
executed using less than one third the messages required for
existing schemes. Further we showed that by executing queries
such that more dynamic data items are part of a larger sub-query
we can improve performance. Our method of query execution can
be implemented using schemes similar to that used in CDNs. Our
query cost model can also be used for other purposes such as load
balancing various aggregators, optimal query execution plan at an
aggregator node, etc. Using the cost model for other applications
and developing the cost model for more complex queries is our
future work.

Acknowledgement: We would like to thank Venkatesan
Chakravarthy and Vinayak Pandit for helpful discussion on
various algorithms.

8. REFERENCES
[1] A. Davis, J. Parikh and W. Weihl. Edge Computing:

Extending Enterprise Applications to the Edge of the
Internet. WWW 2004

[2] D. VanderMeer, A. Datta, K. Dutta, H. Thomas and K.
Ramamritham. Proxy-Based Acceleration of Dynamically
Generated Content on the World Wide Web. ACM
Transactions on Database Systems (TODS) Vol. 29, June
2004.

[3] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman and
B. Weihl. Globally Distributed Content Delivery, IEEE
Internet Computing Sept 2002.

[4] S. Rangarajan, S. Mukerjee and P. Rodriguez. User Specific
Request Redirection in a Content Delivery Network, 8th Intl.
Workshop on Web Content Caching and Distribution
(IWCW), 2003.

[5] S. Shah, K. Ramamritham, and P. Shenoy. Maintaining
Coherency of Dynamic Data in Cooperating Repositories.
VLDB 2002.

[6] Dynamai: Caching Technology for Dynmaic Content
Revealed. www.infoworld.com/articles.

[7] D. S. Hochbaum. Approximation algorithms for the set
covering and vertex cover problems. SIAM Journal on
Computing, vol. 11 (3), 1982.

[8] Zongming Fei. A Novel Approach to Managing Consistency
in Content Distribution. WCW 2001

[9] R. Gupta, A. Puri, and K. Ramamritham. Executing
Incoherency Bounded Continuous Queries at Web Data
Aggregators. WWW 2005.

[10] Optimized Execution of Continuous Queries, APS 2006,
www.cse.iitb.ac.in/~grajeev/APS06.PDF

[11] C. Olston, J. Jiang, and J. Widom. Adaptive Filter for
Continuous Queries over Distributed Data Streams.
SIGMOD 2003.

[12] S. Shah, K. Ramamritham, and C. Ravishankar. Client
Assignment in Content Dissemination Networks for Dynamic
Data. VLDB 2005.

[13] NEFSC Scientific Computer System
http://sole.wh.whoi.edu/~jmanning//cruise/serve1.cgi

[14] Query cost model validation for sensor data.
www.cse.iitb.ac.in/~ravivj/BTP06.pdf.

[15] D. S. Hochbaum. Approximation algorithms for the set
covering and vertex cover problems. SIAM Journal on
Computing, vol. 11 (3), 1982.

[16] S. Zhu and C. Ravishankar. Stochastic Consistency and
Scalable Pull-Based Caching for Erratic Data Sources.
VLDB 2004.

[17] D. Chu, A. Deshpande, J. Hellerstein, W. Hong.
Approximate Data Collection in Sensor Networks using
Probabilistic Models. ICDE 2006.

[18] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein,
and W. Hong. Model-Driven Data Acquisition in Sensor
Networks. VLDB, 2004.

[19] Pearson Product moment correlation coefficient.
http://www.nyx.net/~tmacfarl/STAT_TUT/correlat.ssi /

[20] Lam, W. and Ho, C.Y. Using a Generalized Instance Set for
Automatic Text Categorization. SIGIR, 1998.

[21] G. Cormode and M. Garofalakis. Sketching Streams through
the Net: Distributed Approximate Query Tracking. VLDB
2005.

[22] S. Agrawal, K. Ramamritham and S. Shah. Construction of a
Temporal Coherency Preserving Dynamic Data
Dissemination Network. RTSS 2004.

WWW 2007 / Track: Performance and Scalability Session: Scalable Systems for Dynamic Content

330

