
Answering Bounded Continuous Search Queries
in the World Wide Web

Dirk Kukulenz
Institute of Information Systems

Ratzeburger Allee 160
23538 Luebeck, Germany

kukulenz@ifis.uniluebeck.de

Alexandros Ntoulas
∗

Microsoft Search Labs
1065 La Avenida

Mountain View, CA 94043, USA

antoulas@microsoft.com

ABSTRACT

Search queries applied to extract relevant information from the World

Wide Web over a period of time may be denoted as continuous

search queries. The improvement of continuous search queries may

concern not only the quality of retrieved results but also the fresh-

ness of results, i.e. the time between the availability of a respective

data object on the Web and the notification of a user by the search

engine. In some cases a user should be notified immediately since

the value of the respective information decreases quickly, as e.g.

news about companies that affect the value of respective stocks,

or sales offers for products that may no longer be available after a

short period of time.

In the document filtering literature, the optimization of such queries

is usually based on threshold classification. Documents above a

quality threshold are returned to a user. The threshold is tuned in or-

der to optimize the quality of retrieved results. The disadvantage of

such approaches is that the amount of information returned to a user

may hardly be controlled without further user-interaction. In this

paper, we consider the optimization of bounded continuous search

queries where only the estimated best k elements are returned to a

user. We present a new optimization method for bounded continu-

ous search queries based on the optimal stopping theory and com-

pare the new method to methods currently applied by Web search

systems. The new method provides results of significantly higher

quality for the cases where very fresh results have to be delivered.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search

and Retrieval—Search process, Selection process, Information fil-

tering; H.3.7 [Information Storage and Retrieval]: Digital Li-

braries—Dissemination

General Terms

Algorithms, Experimentation

Keywords

monitoring search, continuous queries, optimal stopping

∗Work performed while author was at UCLA Computer Science
Department.

Copyright is held by the International World Wide Web Conference Com
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 9781595936547/07/0005.

1. INTRODUCTION
The Web is a constantly updating source of information. A large

number of latest developments, events and commentaries are con-

stantly being posted on the Web in the form of blogs, news arti-

cles, usenet posts etc. In order to help the users avoid the tedious

task of periodically searching for updated information on the Web,

some of the search engines provide an “alert” service (e.g. Google

alerts [16] or Live alerts [26]). The main idea is to let the users cre-

ate profiles (e.g. by specifying a few query keywords) describing

the information for which they would like to receive updates. Af-

ter that, the search engines are continuously monitoring the newly

collected information from the Web and will alert the user (e.g.

through email) whenever there is new information that matches the

user’s profile. In this way, the user can stay current with a devel-

oping news story, track a good deal on a desired product or follow

who is writing about her blog.

The continuous monitoring of the Web to match a given set of

user-defined keywords, is also known as continuous querying. Typ-

ically, the results of a continuous query can be returned to the user

either in an “as-found” basis or “in-batch” after a particular time

interval (e.g. once a day). Although running continuous queries

on the Web can potentially help the users to stay current with im-

portant updates, in general, the amount of information returned

as updates to the user can be “unbounded”. For example, if the

user is following a very controversial or popular topic, she may

receive hundreds of updated pages as an alert, and may thus be

overwhelmed by this huge amount of information.

Since a user typically can allow a limited time for comprehend-

ing the information delivered to her, one way to alleviate this prob-

lem is to allow the user to restrict (or bound)1 the number of re-

turned results within a particular time interval. More specifically,

the user may decide that, say, every day, she is interested in read-

ing only the 10 most relevant updates to her continuous query and

would like to receive only those updates. For the cases where it is

acceptable to return the results in-batch the solution is straightfor-

ward: we first collect all the relevant results within a day, we rank

them and then return the top-10 to the user. However, in the cases

where the “freshness” of the results is very important, and thus we

need to return them as-found, the user is not willing to wait until

we collect all the relevant results and return them at the end of the

query period. For example, if a user is tracking Web pages describ-

ing digital cameras offered for sale, she would like to know the 10

best pages according to some specification as soon as they appear,

since the cameras may be sold after a short period of time.

1A bounded information load is familiar to users with respect to
other media like television or magazines. Newscasts and other
transmissions on television typically take a well-defined amount
of time.

WWW 2007 / Track: Search Session: Knowledge Discovery

551

Returning the k = 10 best results in an as-found basis to a given

continuous query involves two main challenges. First, the poten-

tially relevant results within a time period (e.g. a day) are not

known in advance. Without knowing all the relevant results how

can we find the top-k among them to return to the user? Second,

the points in time where the top-k relevant results will appear are

also not known in advance. Given that the freshness of results is

very important, how can we ensure that we return the top-k results

as soon as they appear?

Regarding the first challenge, clearly we will have to wait until

we see all results in order to calculate the exact top-k. However,

in a practical scenario, we may safely assume that the user is will-

ing to exchange some imprecision in the top-k results for a greater

freshness. For example, in our digital camera example, the user

may be happy to receive the 10 deals out of which only 9 belong to

the top-10, but receive them soon enough to actually be able to buy

the products.

Given this relevance/freshness tradeoff, in this paper we present

an optimization method for bounded continuous search queries on

the Web. More specifically, our goal is to extract the top-k relevant

pages that appear over a specified time interval on the Web and

return them to the user as soon as possible. Our proposed solution

utilizes principles from the field of optimal stopping [34] in order to

realize fresh, high quality and a bounded number of search results

during a specified execution time of a continuous query. Optimal

stopping is a well-known problem in the field of financial mathe-

matics. The main idea of this paper is to consider the development

of the relevance of versions of Web pages as relevance charts and

to treat the problem of estimating top-k results as-found similar to

a basic problem in financial mathematics, the problem of finding

the buying or selling points for stocks at optimal prices.

In summary, our contributions in this paper are:

• We define bounded continuous search queries as standing

search queries that extract the estimated top-k documents

from a specific Web area over a period of time. Bounded

search queries have the advantage that the amount of infor-

mation returned to a user is controlled without further user

interaction in contrast to many previous approaches in the

field of document filtering or topic tracking.

• Considering bounded continuous queries we demonstrate that

there is a tradeoff between freshness and the quality of query

results.

• We present and evaluate a new method to optimize the re-

trieval quality for the cases where up-to-date information is

required by the user. The new approach is based on the op-

timal stopping theory and estimates the relative ranking val-

ues of future documents based on previous observations in a

stream of documents.

In the next section we start our discussion by presenting the strat-

egy that is presently employed by the current search engines. In

section 2.2 we demonstrate that in the cases where we need to ob-

tain information as up-to-date as possible, current approaches may

return sub-optimal results to the users. In Section 3 we define a

new language for bounded continuous search queries and present

our optimization approach which utilizes principles from the field

of optimal stopping. Finally, in the experimental section 4 we ver-

ify that our new method can generate fresher and more relevant

results for a variety of continuous queries. We conclude with an

overview of related research and a summary.

2. BACKGROUND

2.1 Periodic Evaluation Method
In this section we give basic definitions and present a common

strategy to process bounded continuous search queries that is ap-

plied by Web search systems and used as a reference strategy in

this paper.

In this work we consider a simple stream of documents or versions

of a specific document {dt1 , dt2 , . . . dtn}. The index tj corre-

sponds to the time a document is obtained from the Web in a push

or a pull manner [21].2

Definition 1. A bounded (document) filtering method is a method

that accepts a stream of incoming documents, a bounding condi-

tion and a user profile and forwards a subset of (estimated opti-

mal) documents or notifications to a user. The amount of informa-

tion returned by the filtering method is restricted by the bounding

condition and the selection of optimal documents is based on the

user profile and a distance function between user profiles and doc-

uments.

We consider bounding conditions that are specified by the maxi-

mal number of documents to be returned. A bounding condition

provided by a user corresponds to the maximal information load a

user is willing to accept with respect to a query. It is obvious that

threshold-based information filtering methods presented in the field

of topic tracking and detection [2] are not bounded. We consider

query profiles that are determined by a set of query terms provided

by a user. We may thereby assume that query profiles, similar to

documents, may be expressed in a term vector space. Well-known

methods from Information Retrieval may therefore be applied to

compute a distance between a query profile and a document.

Based on the tf-idf measure [32] we may apply the function

Rj,Q =
X

term: wk∈Q

(0.5 + 0.5
tfj,k

tfj,max

)idfk (1)

to compute the distance between a document dj and a query profile

(i.e. a set of query terms) Q [39]. In the formula the term tfj,i (term

frequency) is the frequency of a term wi in a document dj . N is the

number of documents in the collection, idfi := log(N/dfi) is the

inverse document frequency where dfi is the number of documents

in the collection that contain wi. Formula 1 is one way to estimate

the relevance of a document with respect to a query. In this paper in

order to keep our discussion more concise whenever we talk about

relevance we will use equation 1, but in general we could use any

other estimation.

A problem of this measure is the computation of the dfi term.

At a specific point in time the entire set of documents appearing in

the stream is not yet available. Possible approaches to this problem

have been presented in [38], [18] and [31]. In this work we con-

sider each version of the information source or incoming document

as a single document ’collection’. The dfk-term is based only on

the state of the information source at the current point in time. If

θti
is the state of the information source θ at time ti we denote the

respective ranking of document dj ∈ θti
with respect to the query

Q as R
θti
j,Q. As described above in this work we make the simplify-

ing assumption that at each point in time a single (new) document

2The extension to a stream of document-sets consisting of mj doc-
uments respectively {θt1 , θt2 , . . . θtn}, where θtj

is a set of (new)

documents {d1
tj

, d2
tj

, . . . d
mj

tj
}, is not the focus of this paper. In

this case the applied information retrieval measures presented here
have to be modified as described e.g. in [38].

WWW 2007 / Track: Search Session: Knowledge Discovery

552

is available. We may therefore define dj := θti
and Ri,Q := R

θti
j,Q.

The function Ri,Q is used to obtain relevance estimations for new

documents in the sequence with respect to a query profile. In this

work we simplify the search for optimal documents by defining

quality as the estimation provided by the ranking function Ri,Q.

Quality is used as a synonym for the relevance of documents.

Definition 2. The quality of a document di with respect to a

query profile Q is defined by the ranking function Ri,Q.

In order to find optimal documents we have therefore simply to find

documents with the highest ranking values according to Ri,Q. This

quality definition is used because the development of estimation

functions similar to (1) is not the focus of this paper but has been

examined thoroughly in the field of information retrieval. In this

paper we show that even if an optimal estimator for the quality

of documents is given (or assumed) the optimization of bounded

continuous search queries is not a trivial problem.

Based on the previous definitions we may now define a common

strategy to process bounded document filtering.

Definition 3. A period evaluation (PE(n)) method is a selection

strategy for documents in a document stream which is based on a

period length pl, a query execution time qet := n · pl, n ∈ N,

a bounding condition and an evaluation function. In this strategy

the time axis is sub-divided into ’n’ adjacent evaluation periods

of length pl. Documents appearing in each evaluation period are

stored and ranked. At the end of each evaluation period a number

of best documents is returned according to the bounding condition.

In this work we consider a PE method that applies function (1)

as the ranking or evaluation function. Obviously a PE method is

a bounded filtering method according to definition 1 due to the

bounding condition, which may e.g. imply a maximal number of

pages returned in each evaluation period or a total maximal num-

ber. In the latter case the number of returned pages per evaluation

period is determined by (the closest integer to) the total number

of documents to be returned according to the bounding condition

divided by n, the number of evaluation periods. A PE-query may

e.g. inquire about the ’best 10’ pages each day with respect to a

set of query terms, as e.g. realized by the GoogleAlert system [16].

The PE-method is illustrated in figure 1. In the figure ’×’-symbols

denote ranking values depending on the current state of a specific

data source or a new document in a stream, a query profile and a

ranking function (as e.g. function (1)). In this case the query ex-

ecution time is qet = e2 − e0. There are two evaluation periods.

The bounding condition is 4, i.e. the best two documents in each

evaluation period have to be selected and forwarded to a user as

indicated by circled ranking values.

2.2 The freshness/quality tradeoff
In this section we demonstrate cases where the PE strategy is

sub-optimal and thereby illustrate the tradeoff-problem between

freshness of information and the quality of retrieved results.

It is obvious from figure 1 that by applying the PE strategy docu-

ments are returned with a certain delay between the point in time

when a document is obtained3 and the time at the end of an eval-

uation period when a document or a respective notification is for-

warded to a user. We may therefore define a freshness (or recipro-

3We consider the time needed to compute a ranking value negligi-
ble. Therefore the time a document is obtained corresponds to the
x-axis values of ’×’-symbols in figure 1.

timet1 t2 t3 t4 t5 t6 t7 t8
e0 e2e1

evaluation period 1 evaluation period 2

query period

relevance

Figure 1: The PE(n) strategy: A number of best items accord-

ing to the bounding condition is returned to a user after each of

the n evaluation periods.

cal: delay) metric as:

delay :=
1

k(e♯e − e0)

X

n=1,...♯e

an
X

j=1

en − dn
j (2)

where e1, e2 . . . are the end points of the evaluation periods (figure

1). At these points in time results are sent to a user. ♯e is the number

of evaluation periods and k is the number of requested (estimated

best) objects. an is the number of optimal elements to be selected

in the n-th evaluation period (with
P♯e

i=1
ai = k) and dn

j is the j-th

best element selected in the n-th evaluation period.

It may now be shown that a PE-method is not optimal if a high

freshness is required.

THEOREM 1. The PE-method may choose sub-optimal docu-

ments if a high freshness value is required, i.e. if delay → 0.

PROOF. The validity of this theorem may be demonstrated by

considering the example in figure 1. If the best documents have

to be selected that appear during the query execution time [e0, e2]
the optimal strategy is to store documents and to wait until e2. At

this point the 4 highest ranked documents may be returned if we

assume that the bounding condition implies a number of 4 docu-

ments to be returned. However, as shown in the example in figure

1 the delay-value as defined in (2) may be significant.4 In order to

acquire fresher results, a larger number of evaluation periods has

to be considered. In figure 1 the query period is subdivided into 2

evaluation periods. The bounding condition in this case is 2 docu-

ments for each of the two evaluation periods in order to fulfill the

global bounding condition of maximal 4 documents. The freshness

of retrieved optimal documents according to (2) is obviously in-

creased. However the selected documents (as illustrated by circled

’×’-symbols) are no longer the optimal ones and represent a sub-

optimal choice.

The reason for this decrease of retrieval quality is the missing knowl-

edge about future document rankings if objects are evaluated at an

earlier point in time. This is obviously an intrinsic problem if the

optimization of bounded continuous search queries is concerned.

There is no method that has information about future data objects

and therefore each conceivable method is subject to this problem,

which we denote as freshness/quality tradeoff.

Lemma 1. If the freshness of the information returned by a boun-

ded filtering method has to be increased this implicates a decrease

of the quality of retrieval results (and vice versa).

4Obviously by this method results are returned with a delay of
50% of the query execution time on average assuming equally dis-
tributed ranking values.

WWW 2007 / Track: Search Session: Knowledge Discovery

553

It has to be noted that this tradeoff-problem is not valid for threshold-

based filtering methods. In the example in figure 1 we wouldn’t

have the restriction of the maximal number of objects to be returned

and could forward each object above a specified threshold. How-

ever in this case not knowing future ranking values, a suboptimal

threshold may be chosen, which affects precision and recall results.

3. A QUERY METHOD FOR BOUNDED CON

TINUOUS SEARCH (BCS) QUERIES

3.1 The query language ’BCSQL’
In this section we describe the main syntax of a new query lan-

guage to state bounded continuous search (BCS) queries and in

subsequent sections we describe how these queries are answered

within our prototype system.

At a high level, we employ a query model similar to the OpenCQ

language [23]. In OpenCQ a continuous query is a triple

(Q, Tc, Stop) consisting of a normal query Q (e.g. written in SQL),

a trigger condition Tc and a termination criterion Stop. In this

work we consider only time-based trigger conditions. We extend

the basic notation of OpenCQ in order to support continuous search

queries. For this purpose we assume the availability of a ranking

function for query results as provided by (1). A main extension

with respect to many continuous query languages is the possibility

to provide a bounding condition. In the considered query language

a user has to define the number of estimated best results to be re-

turned. This feature is well-known from common search engines.

The best ’n’ results are displayed on the first result page. A further

specific attribute is the requirement to specify a user profile consist-

ing of query terms. An example for the considered query language

is the following:

CREATE BCSQ: SalesWatch as

Query: SELECT ESTIMATEDmethod BEST 10

FROM SERVER www.ebay.com

WHERE query=’camera 12 mega flash’

Trigger: 60 minutes

Start: now

Stop: 7 days

Delay: 0 minutes

In this query the user requests the best documents on the server

www.ebay.com over a period of 7 days with respect to the query

terms ’camera 12 mega flash’. The trigger condition in this query

language is used to define the incoming document stream in a pull-

based manner. In this example the data source is reloaded every

hour. Since the user in this example wants to buy the respective

camera, she is interested in an immediate notification if relevant

pages appear. The delay parameter (Delay=0) indicates that re-

sults should be delivered immediately after detection on the Web.5

By the ’BEST 10’ directive she may limit the number of irrele-

vant pages returned by the query engine. The ’ESTIMATEDmethod

BEST’ directive in the query denotes that, given an appropriate

ranking measure and estimation method, the query engine should

estimate and return the best documents. In general it is not known,

if versions of a data source that appear in the future have a higher

ranking and thereby declassify the current version as (relatively) ir-

relevant. The current version would thereby create ’costs’ in terms

5If ’Delay = 1 week’ obviously the optimal objects may be selected
(at the end of the week). If however Delay < 1 week, usually only
a suboptimal choice is possible.

of information overload and a decreased ’precision’, if returned to

a user.

In the example the current version may contain the terms ’camera

12 mega’ but a future version may contain the terms ’camera 12

mega’ and ’flash’ which declassifies the current version. However

if the query engine waits until all versions have been available, the

respective cameras may already be sold.

In the following we refer to this query language as bounded con-

tinuous search query language (BCSQL).

3.2 Answering queries: selecting the best k
In this section we give an introduction into the considered opti-

mal stopping problem, frequently denoted as ’Secretary Selection

problem’ (SSP). We first summarize results from the literature that

are the basis for the optimization method in this paper.

In the classical SSP a sequence of ranked objects is presented to

a ’player’. The player has the task to choose the best object. The

choice is based only on previous observations. The ranking values

of the objects are assumed to be distinct and equally distributed.6

An object has to be chosen immediately when presented to the

player and may not be chosen later. This basic problem has been

analyzed e.g. in [14] and [12]. A well-known strategy for this prob-

lem is to observe a number of candidates without choosing them.

The respective ranking values of candidates are stored. After this

observation period the first subsequent candidate is chosen that has

a higher ranking than the maximal ranking value of the candidates

in the observation period. The main problem then is to find an

optimal length of the observation period. An optimal strategy for

this problem in order to maximize the probability of finding the

best candidate is to choose an observation period of n
e

, where n
is the number of candidates and e ∼ 2.7 is the Euler number. In

other words approximately one third of the candidates should be

observed without being chosen. This result has been proved ’in the

limit’, for n → ∞. Further strategies for the basic SSP are dis-

cussed in [19]. Extensions of the basic SSP have been proposed in

[14] and [30].

In contrast to the problem of selecting one single best candidate,

in this paper we consider the more general problem of selecting the

best k candidates in a stream of ranked documents by k choices, we

denote as k-SSP. An obvious extension of the single SSP is not to

consider a single observation period (needed to adjust the optimal

selection probability) but to consider k observation periods. Our

method, following an approach in [15], first implies the choice of

k starting times t⋆
1, . . . , t

⋆
k.7 After rejecting the first 1, . . . t⋆

1 − 1
candidates, the first candidate considered for selection is examined

at or after time t⋆
1 .

(1) If i + j candidates have already been examined with i objects

accepted and j rejected, the (i + j + 1)st object is chosen if it is at

least better than one of the i objects already selected. It is rejected

if it is worse than at least one of the j objects rejected.

(2) If among all the candidates examined so far the (i + j + 1)st

is ranked i + 1 (between the accepted and the rejected objects) it is

chosen if i + j + 1 ≥ t⋆
i+1 and rejected if i + j + 1 < t⋆

i+1, where

i + j + 1 is the current point in time.

(3) If m choices have been made where m ≤ k and k − m candi-

dates are left with respect to the entire sequence of input candidates

6If ri(aj) denotes the ranking position of object aj with re-
spect to objects a1, . . . , ai, then the independence assumption is

P (ri+1(ai+1) = j) = 1

i+1
, ∀j ∈ {1, . . . i + 1}.

7We consider discrete times. If e.g. j candidates have been rejected
and i accepted we are at time i + j. A rank of ’1’ marks the best
object.

WWW 2007 / Track: Search Session: Knowledge Discovery

554

timet1 t2
t1* t2*
t3 t4 t5 t6 t7 t8

query period

ranking

Figure 2: A strategy for selecting the best two candidates in

a stream of documents. Rejected candidates are marked by

rectangles, accepted candidates by circles.

to be evaluated, all of the remaining candidates must be chosen in

order to guarantee that k objects are chosen.

In this paper we do not provide a proof for the previous strategy but

in the experiments the algorithm is evaluated with artificial and real

relevance sequences.

An example is shown in figure 2. We denote the sequence of

candidates as d1, d2 . . . dn appearing at times t1, t2, . . . tn respec-

tively. We consider a number of 2 candidates to be returned and

two starting points t⋆
1 := t3 and t⋆

2 := t7. Candidates d1 and d2

are rejected due to the first observation phase. Candidate d3 at t⋆
1

is accepted because it is better than all of the previously rejected

candidates. d4 is better than all the previously rejected candidates

and worse than all the previously accepted candidates. It is rejected

because it appears before the stopping time t⋆
2. It would have been

accepted if t4 >= t⋆
2 . d6 is accepted because it is better than at

least one previously accepted candidate. Due to the previous choice

of two candidates, candidates d7 and d8 are not considered.

Based on this selection strategy the main problem is to find optimal

times t⋆
1, . . . , t⋆

k in order to maximize the probability of choosing

the best k candidates. Due to the equal distribution of ranking val-

ues intuitively the starting times should be spread evenly over the

considered time period. In [15] a strategy is proposed to position

starting times that is proved to be optimal and applied in section

3.4.

3.3 Application of the kSSP for BCS process
ing

In the SSP as in the BCSQL optimization problem the candidates

or versions of the data source appear sequentially ordered one after

another. There exists a definite starting point and a definite end-

point in the BCSQL problem. In the SSP the starting point is de-

termined by the time of the appearance of the first, the endpoint by

the appearance of the last candidate. The trigger condition in the

BCSQL corresponds to the considered candidates in the SSP. Each

candidate is assigned a ranking value in the SSP. In the SSP the

ranking values are assumed to be distinct. In the BCSQL problem

this property depends on the applied ranking function and may not

be fulfilled (especially if the data source did not change between

2 trigger executions). The condition of different ranking values

may be guaranteed artificially by considering ranking values that

depend on time, i.e. versions appearing later in the sequence are

assigned a lower ranking value. In the SSP as in the CQ problem

the selection strategy may be based only on previous observations.

No information about future objects is available. In contrast to the

general BCS query language in section 3.1 the delay parameter is

not adjustable if the SSP is applied to the optimization of retrieval

results. Results are returned immediately (delay=0) if estimated to

have a high ranking.

3.4 A query engine for BCS processing
Figure 3 shows the basic steps of the BCS query processing al-

gorithm. The input of the algorithm are the start and the end time

of the continuous query, the trigger condition, a value ’k’ for the

number of estimated best items to be chosen and a query profile Q.

Based on the start, the end time and the trigger condition in steps 1

and 2 the number of reload operations (i.e. the number of ’can-

didates’) and the times t1, . . . tN of reload operations are com-

puted. Applying the k-SSP strategy in section 3.2 the starting times

t⋆
1, . . . , t⋆

k are computed based on the number of candidates and the

number ’k’ of highly ranked candidates to be chosen. At time t1
the first candidate is loaded in step 7 and the ranking with respect

to the search query ’Q’ is computed (section 2.1). The ranking is

compared to previous ranking values in step 9 which are available

in the list rankList and the relative ranking is computed. In step

10 it is determined if a new version is chosen as a highly ranked

candidate according to section 3.2. In figure 3 we assume the avail-

ability of a function isSelected(C) that indicates, if a candidate C

has been selected. In step 11 the new candidate C is inserted into

the list rankList at the position determined by the ranking value. If

the candidate is chosen, a message is sent to the client. Finally the

algorithm waits until the time of the subsequent reload time in step

13 and returns to step 6.

BCS-Query-Processing (Input: start-time s, end-time e,

trigger-condition tc, ’number of best choices’ k, Query Q)

1 rankList := null

2 compute number of candidates N based on s,e,tc

3 compute reload times t1, . . . tN based on s,e,tc

4 compute starting times t⋆
1, . . . , t⋆

k based on k, N
5 wait until t1
6 for(i = 1,...N)

7 load candidate C = dti

8 compute ranking RC,Q (sec. 2.1) based on C , Q
9 compare RC,Q to previous rankings

10 select or reject C according to

selection strategy (sec. 3.2)

11 insert (RC,Q, C, isSelected(C)) into rankList

12 if(isSelected(C)) send message to client

13 wait(ti+1 − ti)

Figure 3: Computation steps for the BCSQL optimization.

4. EXPERIMENTS
In the following experiments we compare the new BCS query

method to the period evaluation (PE) method. The considered qual-

ity parameters are the freshness of the retrieved information ac-

cording to eq. (2) and the quality of search results according to

definition 2. Applying the k-SSP method (figure 3) objects that are

estimated to be relevant are returned to a user immediately after de-

tection on the Web.8 In this case we assume an immediate decision

of the filtering method and the delay value in formula (2) is 0.

In definition 2 we defined the quality or relevance of a single docu-

ment retrieved by a search engine. In order to measure the quality

of a set of retrieved documents we build the sum of quality values

of the individual documents. In [20] a very similar relevance mea-

sure is presented that is based on graded relevance assessments (in

8We ignore the time to perform the relevance estimation. Objects
that are rejected due to the learning period of the filter affect the
quality but not freshness value.

WWW 2007 / Track: Search Session: Knowledge Discovery

555

contrast to binary relevance assessments usually considered in IR).

In [20] the functions

gr : =
X

x∈retr

relevance(x)/
X

x∈D

relevance(x)

and

gp : =
X

x∈retr

relevance(x)/|retr|
(3)

for the graded recall (gr) and the graded precision (gp) are pro-

posed, where D denotes the entire set of documents and relevance

is a function providing relevance values for documents, retr is the

set of retrieved documents. In the experiments we apply the same

measures and define the relevance function according to definition

2.

In the experiments we work with simulated and real data. In the

k-SSP method a special distribution of ranking values, in particular

an equal likelihood of each new ranking value, is assumed. Real

data sometimes are not distributed like that. As an example, figure

0 20 40 60

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

oscar

time in days

R
(C

,Q
)

0 20 40 60

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

basketball

time in days

R
(C

,Q
)

Figure 4: Relevance evolutions (RC,Q) of the source

’www.washingtonpost.com’ over a period of 60 days with re-

spect to the queries ’oscar’ and ’basketball’.

4 shows two examples for the relevance evolution of two queries

(’oscar’ and ’basketball’) over a period of 60 days according to the

quality definition in (1). The reason to consider generated data in

the following is to show the basic functionality in principle. Real

Web data are considered to show that the presented filtering method

based on k-SSP selection may be applied to distributions of rele-

vance developments of real information.

4.1 Simulated data
In this paragraph we demonstrate experiments with simulated

data in order to analyze statistical properties of the presented BCS

method compared to the PE method. The main advantage to con-

sider simulated data is a simple and exactly known distribution

of input data which helps to illustrate main properties of the new

method. In these experiments sequences of distinct ranking values

of candidate size N with identical likelihoods are generated. An

individual sequence is gradually provided as an input to the BCS

and PE algorithms.

In the experiment illustrated in figure 5 a number of 50 sequences

of (distinct) ranking values (in {1, 2, . . . 100}) of candidate size

N = 100 were generated. Figure 5 shows the respective mean val-

ues of acquired retrieval qualities (gr and gp according to (3)) for

2 4 6 8 12

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

graded recall (N=100)

k−value

gr
ad

ed
 re

ca
ll

PE(1)
BCSQL
random

2 4 6 8 12

0
20

40
60

80
10

0
12

0
14

0

graded precision (N=100)

k−value

gr
ad

ed
 p

re
cis

ion

PE(1)
BCSQL
random

Figure 5: Dependence of the mean values of retrieval results

(graded recall and precision) on the number of chosen best ob-

jects ’k’.

different values of k, the number of objects to be returned. The PE

strategy is applied to the data based on a single evaluation period

(PE(1)) of length 99, where the time span between the appearance

of two candidates is assumed to be 1.9 These retrieval results are

optimal since the PE(1) method has knowledge of the whole dis-

tribution of (previous) retrieval values. The lower graph shows the

retrieval quality of the BCS method. The graph below shows the

retrieval quality of the random method that chooses a number of k
arbitrary candidates. Figure 5 shows that the BCS method provides

significantly better results than the random strategy. As expected

the quality is lower than the quality provided by the PE(1) method

which has access to the entire set of ranking values.

Comparison of the BCSQL and PE strategy (generated
data). In the experiment shown in figure 5 the retrieval quality

of the BCS strategy is lower than the retrieval quality of the PE(1)

strategy. However the BCSQL results are returned to a user imme-

diately while the PE(1) strategy returns results at the end of a single

evaluation period which is in this case identical to the query period.

If fresher results are requested when using the PE method obviously

a larger number of evaluation periods has to be considered during

the query execution time. We proportion requested items k to the

number of evaluation periods. If k < {number of eval. periods}
the selected candidates are proportioned with an equal likelood to

the evaluation periods. In the following we consider the tradeoff

between retrieval quality and freshness of data.

In this experiment k = 1 and N = 50. We consider the mean

values of 200 generated sequences. Figure 6 (left) shows the devel-

opment of the graded recall for the PE(n) strategy when the number

of PE intervals is increased from 1 to N, the number of versions

over time (curve 3⋆). Due to a constant k (= |retr| in def. (3)) it is

sufficient to consider the graded recall. Similar results would have

been obtained by considering the graded precision. If the number

of evaluation intervals is N, the retrieval quality of the PE strategy

(PE(N)) is obviously similar to a strategy where candidates are se-

lected randomly (m⋆ in figure 6): Since the number of candidates

is N = 50, the average graded recall of the random strategy is

m⋆ := 1/50 = 0.02 (according to (3)). In figure 6 (left) graph 2⋆

shows the retrieval quality of the BCS strategy and graph 1⋆ shows

the retrieval quality of the PE strategy when only a single evalua-

9Considering PE(1) there is a slight decrease of the graded preci-
sion for increasing k-value due to definition (3).

WWW 2007 / Track: Search Session: Knowledge Discovery

556

0 10 20 30 40 50

0.
02

0
0.

02
5

0.
03

0
0.

03
5

0.
04

0

retrieval quality (graded recall)

number of PE−intervals

gr
ad

ed
 re

ca
ll 2*−BCS

1*−PE(1)

3*−PE(n)

IS

x*

m*

0 10 20 30 40 50

−0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

delay

number of PE−intervals

de
la

y B*−PE(n)

A*−PE(1)

C*−BCS

D*y*

x*

Figure 6: Comparison of PE and BCS strategy: the intersec-

tion (IS) of BCS and PE recall defines the maximal number of

PE intervals (evaluation periods) where the retrieval quality of

PE(n) is better than the retrieval quality of the BCS strategy.

tion period is considered (PE(1)). Both strategies do not depend on

the the number of observation periods (x-axis).

The intersection point of the fitting lines of BCS and PE(n) strategy

(IS) defines the (x-axis)-point (X⋆ in figure 6 (left)) of the maxi-

mal number of evaluation periods where the graded recall of the PE

strategy is better than the graded recall of the BCS strategy. I.e. if

the number of intervals is further increased because fresher results

shall be returned by the PE strategy, the retrieval quality is lower

than the retrieval quality of the BCS method. Below the intersec-

tion point IS in figure 6 (left) the PE strategy therefore becomes

inferior to the BCS strategy. The BCS strategy provides maximal

freshness due to an immediate delivery of results. In this situation

also the retrieval quality is superior to the PE method in a proba-

bilistic sense.

In order to quantify this situation, in figure 6 (right) we consider

the delay of the considered strategies according to definition (2).

The data points close to A⋆ denote the delay of results of the PE

strategy considering a single evaluation period (PE(1)). The fig-

ure shows that results are delivered with a delay of approximately

0.5=̂50% of the entire query execution time. If e.g. the query exe-

cution time is 40 days, results are returned with a delay of 20 days.

Curve B⋆ shows the delay of the PE(n) method where the number

of evaluation periods is increased from 1 to N. Obviously the de-

lay converges monotonically to 0. The main point in this graph is

the y-value Y ⋆ of the PE-delay (figure 6 (right)) where the x value

(X⋆) corresponds to the x-value of the intersection point IS in the

figure on the left. This point marks the minimal delay of the PE

strategy where the retrieval quality is better than the retrieval qual-

ity of the BCS strategy. In other words: If results are requested

by a user that are fresher than Y ⋆, a user should prefer the BCS

strategy presuming he wants to acquire maximal retrieval quality.

Otherwise, if less fresh results are sufficient, the PE strategy should

be applied. We denote Y ⋆ as Y ⋆-turning point in the following.

The Y ⋆-turning point is obtained by a local linear fit of the PE and

BCS recall close to the intersection point IS in figure 6 (left) and

by computing the intersection point of the respective PE and BCS

fitting lines (close to 2⋆ and 3⋆ in figure 6, left). Then the point

D⋆ in the PE-delay graph (the intersection of the X⋆-value and the

PE-delay graph) has to be extracted. In the example in figure 6

(right) BCS should be used if results are requested that are fresher

than Y ⋆ = 0.033=̂3.3% of the query execution time. If the entire

query period is 40 days, the BCS strategy should be used if results

should be fresher than 1.3 days. Figure 7 shows the Y ⋆-turning

50 100 150 200

0.
00

0.
01

0.
02

0.
03

0.
04

N

Y*
−t

ur
ni

ng
 p

oi
nt

 in
 %

/1
00

k=1
k=2
k=4
k=8
k=16

5 10 15

0.
00

0.
01

0.
02

0.
03

0.
04

k

Y*
−t

ur
ni

ng
 p

oi
nt

 in
 %

/1
00

N=50
N=100
N=200

Figure 7: Y ⋆-turning point (in %/100) for different values of

the number of candidates N and the number of best values to

be returned k.

point for different values of the number of candidates N and the

number of best values to be returned k. It may be observed that the

Y ⋆-turning point tends to decrease for higher values of N . The im-

age on the right suggests that, provided that N is sufficiently high,

Y ⋆ is relatively constant.

4.2 Real information sources
In the following experiments we applied the BCS strategy to data

sources on the Web. In particular we considered the homepages of

diverse newspapers in English or German. Before the experiments

we first created a Web archive over a period of a quarter of a year.

By using a Web crawler at regular points in time (twice a day) a

mirror of the sources was obtained and stored periodically.

Based on the obtained Web archive we extracted a number of query

terms. These query terms were the most frequent terms in the

archive not contained in the list of stop words. Thereby 480 Ger-

man and 480 English query terms were extracted.

In the following experiments we considered BCS queries of the fol-

lowing structure:

Query: SELECT ESTIMATED<method> BEST <d>
FROM PAGE <url> WHERE query=’<singleterm>’

Trigger=9h and 17h, Start=now, Stop=80days

Delay=<delay>
We applied the queries to the Web archive; the trigger condition

corresponds to the versions available in the Web archive. The delay-

parameter is 0 for the k-SSP estimation method and 80 days for the

PE(1) method (single evaluation period). Table 1 shows a represen-

tative fraction of these experiments. The table shows the retrieval

quality (graded recall) of the BCS, the PE(j) and the PE(1) strategy

for 12 Web pages, 7 in German and 5 in English. We consider a

number of the 4 best objects to be chosen (k = 4). Each entry

in the table is the mean value of the respective quality parameters

of all considered (480 German and 480 English) queries. In these

experiments we specified a maximal delay of returned results of 2,

4, 8 and 12 days and adjusted the number of evaluation intervals in

WWW 2007 / Track: Search Session: Knowledge Discovery

557

Table 1: Evaluation results (k=4)

BCS PE(n) PE(1) turning point

gr gr depend. on maximal delay optimal gr

source (language) 2 days 4 days 8 days 12 days Y
⋆(in days)

news.bbc.co.uk (e) 0.387 0.135 0.246 0.408 0.506 0.595 7.9

www.faz.net-s-homepage.html (g) 0.374 0.107 0.245 0.354 0.443 0.548 8.8

www.ftd.de (g) 0.317 0.095 0.23 0.319 0.408 0.5 7.9

www.latimes.com (e) 0.24 0.067 0.104 0.238 0.3 0.404 8.4

www.nytimes.com (e) 0.231 0.094 0.159 0.248 0.321 0.424 7.4

www.spiegel.de (g) 0.326 0.104 0.167 0.328 0.404 0.5 7.5

www.sueddeutsche.de (g) 0.307 0.099 0.157 0.267 0.351 0.463 10.7

www.usatoday.com-news-front.htm (e) 0.307 0.093 0.153 0.277 0.372 0.542 11.2

www.washingtonpost.com (e) 0.121 0.074 0.113 0.167 0.223 0.307 5.1

www.welt.de-chl-20.html (g) 0.178 0.057 0.076 0.155 0.198 0.296 10.6

www.wienerzeitung.at (g) 0.332 0.118 0.154 0.322 0.439 0.605 9.6

www.zeit.de (g) 0.276 0.074 0.134 0.283 0.361 0.479 7.5

normalized mean value 57% 18% 31% 58% 73% 100%

2 4 6 8 10 12

0
5

10
15

k−value

Y*
 tu

rn
ing

 po
int

 (in
 da

ys
)

http://news.bbc.co.uk
http://www.sueddeutsche.de
http://www.spiegel.de
mean values of 14 sources

Figure 8: The Y ⋆-turning point (in days) for 3 exemplary data

sources. The time period of the BCS query is 80 days. The dot-

dashed (thick) line shows the mean value of results of 14 data

sources. If results are to be returned ’fresher’ than Y ⋆ (days),

the BCS returns results with a higher retrieval quality than the

PE strategy.

the PE(j) method respectively. The table shows the resulting graded

recall (gr) values of the different methods and the Y ⋆ turning point

(in days) for each source.

As expected, the retrieval quality of the new BCS method is smaller

than the quality of the PE(1) method which is the maximal retrieval

quality with respect to the number of retrieved pages. If a higher

freshness of results is requested, the retrieval quality of the PE(n)

method decreased in the experiments. The Y ⋆ value (in days) in

table 1 marks the maximal freshness where a user obtains the best

results by the PE(n) method. Below this point the BCS strategy

provides results of a higher retrieval quality. The last row of table

1 shows the mean values of all data sources standardized by the

maximal recall value provided by the PE(1) strategy.

Figure 8 shows the Y ⋆-turning point for exemplary data sources

and the mean value of 14 data sources with respect to the num-

ber of best items to be returned. The mean value of the Y ⋆ values

(e.g. for k=8) is approximately 7.3 days. This is 9.1% of the query

execution time of 80 days.

5. RELATED RESEARCH
Query systems are available to automate and simplify similar

search problems which are known as continuous, monitoring, noti-

fication, alert or information dissemination services. Many publish-

ers provide e.g. table-of-contents or alert functions, such as ACM

Table-of-Contents Alert [1], Springer Link Alert [35] or Elsevier

Contents Direct [8]. Independent mediating alerting services like

Hermes [11] or Dias [22] provide access to heterogeneous digital

libraries.

Query languages for continuous queries are well-known in the field

of active databases [6], [5], [33]. In this field the event-condition-

action model (ECA) is used to define standing queries to databases.

Every time the event occurs, a trigger condition is tested. The test-

ing result may cause the execution of the defined action. The re-

spective information is assumed to be structured. In many informa-

tion dissemination systems, too [9], [13], the considered query lan-

guages concern structured or semistructured data [29], [17], [27],

[9], [10], [36], [28]. In [23] and [24] continuous query languages

for information on the Web are presented that are more appropriate

in a Web context and allow e.g. the evaluation of requests to Web

forms. Although the basic syntax of the query language considered

in this paper is similar to many of the previous languages, we focus

on unstructured data, in particular documents extracted from Web

pages, similar to the approaches in [16] and [26]. The respective

task to extract relevant documents from a stream of documents is

well-known from the TREC-filtering track [31], [7], [4], [41], [37],

[40], [25] and the field of topic detection and tracking [2], [3], [38].

In the filtering track of the Text Retrieval Conference (TREC) [18]

streams of documents are considered. The task is to optimize meth-

ods that realize an immediate distribution of relevant documents. A

binary decision is made to either accept or reject a document as it

arrives. The information such classifiers are based on is usually a

set of training examples, i.e. documents provided with a relevance

label and possibly a topic description. This information is used to

create a query profile which is applied to estimate the relevance

of future documents by a distance computation between the gen-

erated query profile and a new document. The decision to either

accept a document as relevant or not is finally based on a threshold

value which may also be learned by the training examples. In the

’adaptive’ filtering track [18] the query profile or the threshold are

tuned by feedback provided by a user after the appearance of a new

WWW 2007 / Track: Search Session: Knowledge Discovery

558

document.10 Similar to the TREC filtering track the field of topic

detection and tracking (TDT) [2], [3], [38] deals with the problem

of finding relevant documents in a document stream. In this case

the classifications are based on a significantly smaller training set

and tracking (of events or topics) should start immediately, which

is more appropriate for real applications.

These previous filtering or tracking methods are usually threshold-

based [37]. The returned information load is ’unbounded’ accord-

ing to definition 1. In contrast to this in order to control the amount

of information returned by a query engine without the need of fur-

ther user interaction in this paper we consider bounded continu-

ous search queries. Although bounded query strategies are well-

known and applied in current Web search systems [16], [26], to our

knowledge the quality/freshness tradeoff has not been thoroughly

examined for bounded continuous search queries. Following ap-

proaches developed in the field of optimal stopping [14], [12], [19],

[15], [30], [34] we develop a new solution for the optimization of

bounded continuous search queries.

6. CONCLUSION
In this paper we consider continuous search queries as a means

to search for information appearing in a specific Web area over a

period of time. Assuming a query profile and a distance measure

between profile and documents there are two basic strategies to

process continuous search queries. A first strategy is to adjust a

quality threshold in order to extract relevant documents. The sec-

ond strategy is to estimate the best ’k’ documents that appear in

the document stream. In this paper we focus on the latter query

method which we denote as bounded continuous search. The main

advantages to consider bounded queries is a simple query formula-

tion since no threshold (except the maximal amount of information

to be returned) has to be provided. Second, there is no risk for a

user to spend too much time reviewing the documents or to over-

look important documents because of an information overflow. On

the other hand if bounded continuous search queries are concerned

there is a tradeoff between freshness and quality of the retrieved in-

formation. In this paper we show that this freshness/quality tradeoff

may lead to suboptimal choices of documents if very fresh infor-

mation is required. We show in experiments that in this case by

applying optimal stopping theory the quality of retrieved informa-

tion may be improved significantly.

Optimal stopping is a problem well-known in the field of financial

mathematics [34]. The results of this paper indicate that, consid-

ering charts of the relevance of document versions, further instru-

ments from the field of financial mathematics may be applied to

improve continuous search queries.

7. REFERENCES

[1] ACM Table-of-Contents Alert. URL: http://portal.acm.org,

2006.

[2] J. Allan, J. Carbonell, G. Doddington, J. Yamron, and

Y. Yang. Topic detection and tracking pilot study: Final

report. In Proc. of the DARPA Broadcast News Transcription

and Understanding Workshop, pages 194–218, 1998.

[3] J. Allan, R. Papka, and V. Lavrenko. On-line new event

detection and tracking. In SIGIR ’98: Proc. of the 21st

annual international ACM SIGIR conf. on Research and

development in information retrieval, pages 37–45, New

York, NY, USA, 1998. ACM Press.

10On-line feedback may be simulated by successive revealing of
training data.

[4] A. Arampatzis and A. van Hameran. The score-distributional

threshold optimization for adaptive binary classification

tasks. In SIGIR ’01: Proc. of the 24th annual international

ACM SIGIR conf. on Research and development in

information retrieval, pages 285–293, New York, NY, USA,

2001. ACM Press.

[5] A. Arasu, S.Babu, and J.Widom. The cql continuous query

language: semantic foundations and query execution. VLDB

J., 15(2):121–142, 2006.

[6] S. Babu and J.Widom. Continuous queries over data streams.

SIGMOD Rec., 30(3):109–120, 2001.

[7] K. Collins-Thompson, P. Ogilvie, Y. Zhang, and J. Callan.

Information filtering, novelty detection, and named-page

finding. In TREC 2002. Gaithersburg, 2002.

[8] Elsevier contents direct. URL:

http://www.sciencedirect.com/, 2006.

[9] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.

Kermarrec. The many faces of publish/subscribe. ACM

Comput. Surv., 35(2):114–131, 2003.

[10] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross,

and D. Shasha. Filtering algorithms and implementation for

very fast publish/subscribe systems. In SIGMOD ’01: Proc.

of the 2001 ACM SIGMOD international conf. on

Management of data, pages 115–126, New York, NY, USA,

2001. ACM Press.

[11] D. Faensen, L. Faulstich, H. Schweppe, A. Hinze, and

A. Steidinger. Hermes: a notification service for digital

libraries. In JCDL ’01: Proc. of the 1st ACM/IEEE-CS joint

conf. on digital libraries, pages 373–380, New York, NY,

USA, 2001. ACM Press.

[12] T. Ferguson. Who solved the secretary problem? Statistical

Science, 4(3):282–289, 1988.

[13] P. Foltz and S. Dumais. Personalized information delivery:

an analysis of information filtering methods. Commun. ACM,

35(12):51–60, 1992.

[14] P. Freeman. The secretary problem and its extensions: a

review. Int. Statistical Review, 51:189–206, 1983.

[15] K. S. Glasser, R.Holzsager, and A. Barron. The d choice

secretary problem. Comm. Statist. -Sequential Anal.,

2(3):177–199, 1983.

[16] Google alert. URL: http://www.googlealert.com, 2006.

[17] A. Hinze. Efficient filtering of composite events. In Proc. of

the 20th British National Database Conf., 2003.

[18] D. Hull. The TREC 6 filtering track: Description and

analysis. In The Sixth Text Retrieval Conf. (TREC-6), pages

45–68. Gaithersburg, 1997.

[19] R. Kadison. Strategies in the secretary problem. Expo. Math.,

12(2):125–144, 1994.

[20] J. Kekalainen and K.Jarvelin. Using graded relevance

assessments in IR evaluation. J. of the American Society for

Information Science and Technology, 53(13), 2002.

[21] J. Kendall and K. Kendall. Information delivery systems: an

exploration of web pull and push technologies. Commun.

AIS, 1(4es):1–43, 1999.

[22] M. Koubarakis, T. Koutris, C. Tryfonopoulos, and

P. Raftopoulou. Information alert in distributed digital

libraries: The models, languages, and architecture of DIAS.

In ECDL ’02: Proc. of the 6th European Conf. on Research

and Advanced Technology for Digital Libraries, pages

527–542, London, UK, 2002. Springer.

[23] L. Liu, C.Pu, and W.Tang. Continual queries for internet

WWW 2007 / Track: Search Session: Knowledge Discovery

559

scale event-driven information delivery. Knowledge and

Data Engineering, 11(4):610–628, 1999.

[24] L. Liu, C.Pu, and W.Tang. Webcq-detecting and delivering

information changes on the web. In CIKM ’00: Proc. of the

9th int. conf. on Information and knowledge management,

pages 512–519, New York, NY, USA, 2000. ACM Press.

[25] R.-L. Liu and W.-J. Lin. Adaptive sampling for thresholding

in document filtering and classification. Inf. Process.

Manage., 41(4):745–758, 2005.

[26] Windows live alerts. URL:

http://alerts.live.com/Alerts/Default.aspx, 2006.

[27] G. Mühl. Large-Scale Content-Based Publish /Subscribe

Systems. PhD thesis, Darmstadt University of Technology,

2002.

[28] S. Pandey, K. Ramamritham, and S. Chakrabarti. Monitoring

the dynamic web to respond to continuous queries. In WWW

’03: Proc. of the 12th international conf. on World Wide

Web, pages 659–668. ACM Press, 2003.

[29] J. Pereira, F. Fabret, F. Llirbat, R. Preotiuc-Pietro, K. A.

Ross, and D. Shasha. Publish/subscribe on the web at

extreme speed. In VLDB, pages 627–630, 2000.

[30] J. Praeter. On multiple choice secretary problems.

Mathematics of Operations Research, 19(3):597–602, 1994.

[31] S. Robertson and I.Soboroff. The TREC 2002 filtering track

report. In The Eleventh Text Retrieval Conf., 2002.

[32] G. Salton and M.J.McGill. Introduction to modern

information retrieval. McGraw-Hill, 1983.

[33] U. Schreier, H.Pirahesh, R.Agrawal, and C. Mohan. Alert:

An architecture for transforming a passive dbms into an

active dbms. In 17th Int. Conf. on Very Large Data Bases

(VLDB), pages 469–478, 1991.

[34] A. Shiryaev and G.Peskir. Optimal Stopping and

Free-Boundary Problems (Lectures in Mathematics. ETH

Zürich). Birkhauser, 2006.

[35] Springer link alert. URL: http://www.springerlink.com, 2006.

[36] T. W. Yan and H.Garcia-Molina. The SIFT information

dissemination system. ACM Transactions on Database

Systems, 24(4):529–565, 1999.

[37] Y. Yang. A study on thresholding strategies for text

categorization. In W. B. Croft, D. J. Harper, D. H. Kraft, and

J. Zobel, editors, Proc. of SIGIR-01, 24th ACM International

Conf. on Research and Development in Information

Retrieval, pages 137–145, New Orleans, US, 2001. ACM

Press, New York, US.

[38] Y. Yang, T. Pierce, and J. Carbonell. A study of retrospective

and on-line event detection. In SIGIR ’98: Proc. of the 21st

annual international ACM SIGIR conf. on Research and

development in information retrieval, pages 28–36, New

York, NY, USA, 1998. ACM Press.

[39] B. Yuwono, S. L. Y. Lam, J. H. Ying, and D. L. Lee. A World

Wide Web resource discovery system. In In Fourth

International World Wide Web Conf., Boston, pages

145–158, 1995.

[40] C. Zhai, P.Jansen, E.Stoica, N.Grot, and D.A.Evans.

Threshold calibration in CLARIT adaptive filtering. In Text

REtrieval Conf. 1998, pages 96–103, 1998.

[41] Y. Zhang and J. Callan. Maximum likelihood estimation for

filtering thresholds. In SIGIR ’01: Proc. of the 24th annual

international ACM SIGIR conf. on Research and

development in information retrieval, pages 294–302, New

York, NY, USA, 2001. ACM Press.

WWW 2007 / Track: Search Session: Knowledge Discovery

560

