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ABSTRACT
Each month, more attacks are launched with the aim of
making web users believe that they are communicating with
a trusted entity for the purpose of stealing account infor-
mation, logon credentials, and identity information in gen-
eral. This attack method, commonly known as “phishing,”
is most commonly initiated by sending out emails with links
to spoofed websites that harvest information. We present a
method for detecting these attacks, which in its most gen-
eral form is an application of machine learning on a fea-
ture set designed to highlight user-targeted deception in
electronic communication. This method is applicable, with
slight modification, to detection of phishing websites, or the
emails used to direct victims to these sites. We evaluate
this method on a set of approximately 860 such phishing
emails, and 6950 non-phishing emails, and correctly identify
over 96% of the phishing emails while only mis-classifying
on the order of 0.1% of the legitimate emails. We conclude
with thoughts on the future for such techniques to specifi-
cally identify deception, specifically with respect to the evo-
lutionary nature of the attacks and information available.

Categories and Subject Descriptors
K.4.4 [Computers and Society]: Electronic Commerce—
Security ; H.4.3 [Information Systems]: Communications
Applications—Electronic mail ; I.5.2 [Pattern Recognition]:
Design Methodology—Feature evaluation and selection

General Terms
Security

Keywords
phishing, email, filtering, spam, semantic attacks, learning

1. INTRODUCTION
Phishers launched a record number of attacks in January

2006, as reported by the Anti-Phishing Working Group [3].
This is part of a very clear trend in which the number of
attacks are increasing without showing any signs of slowing.
These attacks often take the form of an email that purports
to be from a trusted entity, such as eBay or PayPal. The
email states that the user needs to provide information, such
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as credit card numbers, identity information, or login cre-
dentials, often to correct some alleged problem supposedly
found with an account. Some number of users fall for these
attacks by providing the requested information, which can
lead to fraudulent charges against credit cards, withdrawals
from bank accounts, or other undesirable effects.

The phishing problem is a hard problem for a number of
reasons. Most difficulties stem from the fact that it is very
easy for an attacker to create an exact replica of a good site,
such as that of a bank, that looks very convincing to users.
Previous work [25] indicates that the ability to create good-
looking copies, as well as users’ unfamiliarity with browser
security indicators, leads to a significant percentage of users
being unable to recognize a phishing attack. Unfortunately,
the ease with which copies can be made in the digital world
also makes it difficult for computers to recognize phishing
attacks. As the phishing websites and phishing emails are
often nearly identical to legitimate websites and emails, cur-
rent filters have limited success in detecting these attacks,
leaving users vulnerable to a growing threat.

Our overall approach, first described in [13], centers on
extracting information that can be used to detect deception
targeted at web users, which is accomplished by looking at
features from each incoming email or potential attack vec-
tor. This process involves extracting data directly present
in the email, as well as collecting information from external
sources. The combination of internal and external informa-
tion is then used to create a compact representation called
a feature vector, a collection of which are used to train a
model. Based on a given feature vector and the trained
model, a decision is made as to whether the instance rep-
resents a phishing attack or not. We present a detailed de-
scription of our approach, which filters approximately 96%
of phishing emails before they ever reach the user.

The remainder of this paper is organized in the following
manner. Section 2 discusses previous approaches to filtering
phishing attacks, while Section 3 gives an overview of ma-
chine learning and how we apply it to the task of classifying
phishing emails, and how it could be used in a browser tool-
bar. Section 4 covers the results of empirical evaluation, as
well as some challenges presented therein. Section 5 presents
some concluding remarks.

2. BACKGROUND

2.1 Toolbars
The first attempts specifically designed to filter phishing

attacks have taken the form of browser toolbars, such as
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the Spoofguard [8] and Netcraft [23] toolbars. As reported
in [10], most toolbars are lucky to get 85% accuracy identi-
fying phishing websites. Accuracy aside, there are both ad-
vantages disadvantages to toolbars when compared to email
filtering.

The first disadvantage toolbars face when compared to
email filtering is a decreased amount of contextual infor-
mation. The email provides the context under which the
attack is delivered to the user. An email filter can see what
words are used to entice the user to take action, which is
currently not knowable to a filter operating in a browser
separate from the user’s e-mail client. An email filter also
has access to header information, which contains not only
information about who sent the message, but also informa-
tion about the route the message took to reach the user.
This context is not currently available in the browser with
given toolbar implementations.

Future work to more closely integrate a user’s email envi-
ronment with their browser could alleviate these problems,
and would actually provide a potentially richer context in
which to make a decision. As discussed later in this pa-
per, there are some pieces of information available in the
web browser and website itself that could help to make a
more informed decision, especially if this information could
be combined with the context from the initial attack vector,
such as the email prompting a user to visit a given website.
This is discussed in greater detail in Section 3.3.

The second disadvantage of toolbars is the inability to
completely shield the user from the decision making pro-
cess. Toolbars usually prompt users with a dialog box, which
many users will simply dismiss or misinterpret, or worse yet
these warning dialogs can be intercepted by user-space mal-
ware [2]. By filtering out phishing emails before they are
ever seen by users, we avoid the risk of these warnings being
dismissed by or hidden from the user. We also prevent the
loss of productivity suffered by a user who has to take time
to read, process, and delete these attack emails.

2.2 Email Filtering
Although there are clear advantages to filtering phishing

attacks at the email level, there are at present not many
methods specifically designed to target phishing emails, as
opposed to spam emails in general. The most closely related
prior attempt is [7], in which the authors use structural fea-
tures of emails to determine whether or not they represent
phishing attacks. The features are mostly linguistic, and
include things such as the number of words in the email,
the “richness” of the vocabulary, the structure of the sub-
ject line, and the presence of 18 keywords. Other examples
include the filter built into Thunderbird 1.5 [21]. However,
this filter is extremely simple, looking for only the presence
of any one of three features, namely the presence of IP-based
URLs, nonmatching URLs (discussed in Section 3.2.3), and
the presence of an HTML “form” element. The Thunder-
bird built-in filter still only presents a warning to the user,
and does not avoid the costs of storage and the user’s time.
In our implementation and evaluation, we seek to fill this
gap in email-based phishing filters. Our approach is gen-
eralizable beyond email filtering, however, and we do note
how it could be used and what changes would be required
in the context of filtering web pages as opposed to emails.

Many people have proposed ways in which to eliminate
spam emails in general, which would include phishing emails

(see, for example, [17, 9, 16, 27, 26, 18]). A number of
early attempts at combating spam emails were based on so-
called “näıve” approaches, ranging from “bag-of-words”, in
which the features of an email are the presence or absence
of highly frequent and rare words, to analysis of the entropy
of the messages. While these approaches looking at the text
of the email appear to do well for spam, in practice these
approaches often fail to stop phishing emails. This makes
sense, as phishing emails are designed to look as close as
possible to a real, non-spam email that a legitimate company
would (or already has) sent out. As such, it is our belief that
to stop phishing emails, we need to look at features selected
specifically to detect this class of emails.

Looking at class-specific features is not a new approach in
email filtering. SpamAssassin [4], for instance, has a number
of rules that try to detect features common in spam email
that go beyond just the text of the email. Such tests include
things like the ratio of pixels occupied by text to those oc-
cupied by images in a rendered version of the mail, presence
of certain faked headers, and the like. Spamato [1] is an-
other extensible filtering platform that ships with a number
of advanced filters, such as Vipul’s Razor [24] (a collabora-
tive algorithm using both URLs and message hashes), that
work in tandem to detect spam emails. Our contribution is
a new approach focused on learning to detect phishing, or
semantic attacks in general. We do this by extracting a plu-
rality of features designed to highlight deception, utilizing
both sources of information internal to the attack itself, as
well as external sources to gain more information about the
context of the attack. Our solution can easily be used in
conjunction with existing spam filters. The solution signifi-
cantly reduces the amount of phishing emails with minimal
cost in terms of false positives (legitimate emails marked as
phishing).

3. METHOD

3.1 Overall Approach
Our approach, PILFER, is a machine-learning based ap-

proach to classification [20]. In a general sense, we are decid-
ing whether some communication is deceptive, i.e. whether
it is designed to trick the user into believing they are com-
municating with a trusted source, when in reality the com-
munication is from an attacker. We make this decision based
on information from within the email or attack vector itself
(an internal source), combined with information from exter-
nal sources. This combination of information is then used
as the input to a classifier, the result of which is a decision
on whether the input contained data designed to deceive the
user.

With respect to email classification, we have two classes,
namely the class of phishing emails, and the class of good
(“ham”) emails. In this paper we present a collection of fea-
tures that has been identified as being particularly success-
ful at detecting phishing, given the current state of attacks.
We expect that over time, as the attacks evolve, new sets
of features will have to be identified combining information
from both internal or external sources. The features cur-
rently used are presented in Section 3.2, with Section 3.3
discussing how these can be adapted for use in detecting
phishing web pages. In Section 4 we present a method for
evaluating the effectiveness of these features, as well as the
results of such an evaluation.
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3.2 Features as used in email classification
Some spam filters use hundreds of features to detect un-

wanted emails. We have tested a number of different fea-
tures, and present in this paper a list of the ten features
that are used in PILFER, which are either binary or con-
tinuous numeric features. As the nature of phishing attacks
changes, additional features may become more powerful, and
PILFER can easily be adapted by providing such new fea-
tures to the classifier. At this point, however, we are able to
obtain high accuracy with only ten features, which makes
the decision boundaries less complex, and therefore both
more intuitive and faster to evaluate. We explain these fea-
tures in detail below. While some of these features are al-
ready implemented in spam filters (such as the presence of
IP-based URLs), these features are also a useful component
of a phishing filter.

3.2.1 IP-based URLs
Some phishing attacks are hosted off of compromised PCs.

These machines may not have DNS entries, and the simplest
way to refer to them is by IP address. Companies rarely link
to pages by an IP-address, and so such a link in an email is a
potential indication of a phishing attack. As such, anytime
we see a link in an email whose host is an IP-address (such as
http://192.168.0.1/paypal.cgi?fix account), we flag the
email as having an IP-based URL. As phishing attacks are
becoming more sophisticated, IP-based links are becoming
less prevalent, with attackers purchasing domain names to
point to the attack website instead. However, there are still
a significant number of IP-based attacks, and therefore this
is still a useful feature. This feature is binary.

3.2.2 Age of linked-to domain names
Phishers are learning not to give themselves away by us-

ing IP-based URLs. Name-based attacks, in which a phisher
will register a similar or otherwise legitimate-sounding do-
main name (such as playpal.com or paypal-update.com) are
increasingly common. These domains often have a limited
life, however. Phishers may register these domains with
fraudulently obtained credit cards (in which case the reg-
istrar may cancel the registration), or the domain may be
caught by a company hired to monitor registrations that
seem suspicious. (Microsoft, for instance, watches for do-
main name registrations involving any of their trademarks.)
As such, the phisher has an incentive to use these domain
names shortly after registration. We therefore perform a
WHOIS query on each domain name that is linked to, and
store the date on which the registrar reports the domain
was registered. If this date is within 60 days of the date
the email was sent, the email is flagged with the feature of
linking to a “fresh” domain. This is a binary feature.

3.2.3 Nonmatching URLs
Phishers often exploit HTML emails, in which it is possi-

ble to display a link that says paypal.com but actually links
to badsite.com. For this feature, all links are checked, and
if the text of a link is a URL, and the HREF of the link
is to a different host than the link in the text, the email
is flagged with a “nonmatching URL” feature. Such a link
looks like <a href="badsite.com"> paypal.com</a>. This
is a binary feature.

3.2.4 “Here" links to non-modal domain
Phishing emails, often contain text like “Click here to re-

store your account access”. In many cases, this is the most
predominantly displayed link, and is the link the phisher in-
tends the user to click. Other links are maintained in the
email to keep the authentic feel, such as the link to a pri-
vacy policy, a link to the user agreement, and others. We
call the domain most frequently linked to the “modal do-
main” of the email. If there is a link with the text “link”,
“click”, or “here” that links to a domain other than this
“modal domain”, the email is flagged with a “here” link to
a non-modal domain feature. This is a binary feature.

3.2.5 HTML emails
Most emails are sent as either plain text, HTML, or a com-

bination of the two in what is known as a multipart/alternative
format. The email is flagged with the HTML email feature
if it contains a section that is denoted with a MIME type
of text/html. (This includes many multipart/alternative
emails). While HTML email is not necessarily indicative
of a phishing email, it does make many of the deceptions
seen in phishing attacks possible. For a phisher to launch
an attack without using HTML is difficult, because in a
plain text email there is virtually no way to disguise the
URL to which the user is taken. Thus, the user still can be
deceived by legitimate-sounding domain names, but many
of the technical, deceptive attacks are not possible. This is
a binary feature.

3.2.6 Number of links
The number of links present in an email is a feature. The

number of links is the number of links in the html part(s)
of an email, where a link is defined as being an <a> tag
with a href attribute. This includes mailto: links. This is a
continuous feature.

3.2.7 Number of domains
For all URLs that start with either http:// or https://,

we extract the domain name for the purpose of determining
whether the email contains a link to a “fresh” domain. For
this feature, we simply take the domain names previously ex-
tracted from all of the links, and simply count the number
of distinct domains. We try to only look at the “main” part
of a domain, e.g. what a person actually would pay to regis-
ter through a domain registrar. It should be noted that this
is not necessarily the combination of the top- and second-
level domain. For instance, we consider the “main” part
of www.cs.university.edu to be university.edu, but the
“main” part of www.company.co.jp would be company.co.jp,
as this is what is actually registered with a registrar, even
though technically the top-level domain is .jp and the second-
level domain is .co. This feature is simply the number of
such “main” domains linked to in the email, and is a con-
tinuous feature.

3.2.8 Number of dots
There are a number of ways for attackers to construct

legitimate-looking URLs. One such method uses subdo-
mains, like http://www.my-bank.update.data.com. Another
method is to use a redirection script, such as
http://www.google.com/url?q=http://www.badsite.com.
To the user (or a näıve filter), this may appear to be a site
hosted at google.com, but in reality will redirect the browser
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to badsite.com. In both of these examples, either by the in-
clusion of a URL into an open redirect script or by the use
of a number of subdomains, there are a large number of dots
in the URL. Of course, legitimate URLs also can contain a
number of dots, and this does not make it a phishing URL,
however there is still information conveyed by this feature,
as its inclusion increases the accuracy in our empirical evalu-
ations. This feature is simply the maximum number of dots
(‘.’) contained in any of the links present in the email, and
is a continuous feature.

3.2.9 Contains javascript
JavaScript is used for many things, from creating popup

windows to changing the status bar of a web browser or
email client. It can appear directly in the body of an email,
or it can be embedded in something like a link. Attack-
ers can use JavaScript to hide information from the user,
and potentially launch sophisticated attacks. An email is
flagged with the “contains javascript” feature if the string
“javascript” appears in the email, regardless of whether it
is actually in a <script> or <a> tag. This might not be
optimal, but it makes parsing much simpler, especially when
dealing with attacks that contain malformed HTML. This
is a binary feature.

3.2.10 Spam-filter output
Many mail clients already have a spam filter in place, and

as such it seems natural to leverage the ability of existing
solutions in combating the phishing problem. We there-
fore include as a feature the class assigned to the email by
SpamAssassin - either “ham” or “spam”. This is a binary
feature, using the trained version of SpamAssassin with the
default rule weights and threshold.

3.3 Features as used in webpage classification
Although we have focused primarily on detecting attacks

at the email level, most of the features discussed in Section
3.2 also can be applied towards classifiying a webpage in a
browser environment. A spam filter cannot generally be run
on a webpage, so the last feature is not applicable, but the
other features can still be evaluated with slight modification.
For instance, the number of dots could be turned into two
features - the number of dots in the URL of the current
page, and the maximum number of dots in all URLs linked
to in the current page. The same extension could be applied
to the evaluation of the domain age feature. One could
likewise split the presence of deceptive links into two features
- deceptive links on the current page, and deceptive links
on the previous page. This technique may enable the use
of additional context, and would be especially useful if the
user is coming to the attack site from a message in their
web-based email interface. Additionally, one might be able
to make use of additional context available in the browser
and its history in features such as the following.

3.3.1 Site in browser history
As phishing sites are short-lived and located at a number

of different URLs, the presence or absence of the current
website in the browser’s history would provide information
for the classification process. A site never previously visited
(not in the history) is more likely to be a phishing website
than a site already visited for the following simple reason:
a user would have no reason to have previously visited that

particular spoof of the legitimate site during its short life-
time. This feature could be used in a binary fashion (present
in history or not) if that’s all that were available, but if the
history included the number of times the page was visited,
that would be even more valuable. A large number of vis-
its would establish some existing relationship with the site,
which likely indicates some level of legitimacy.

3.3.2 Redirected site
A site can be reached in a number of different ways, in-

cluding redirection from another site. When a user goes to a
web page, either by clicking a link or typing in a URL, that
web page can redirect the browser to a different page. Redi-
rection has many legitimate uses, but one could imagine an
attacker using a redirection service such as TinyURL [15] to
hide the phishing site’s URL in the email (or other attack
vector). The browser is explicitly instructed to redirect to
a new page, and as such it would be possible to create a
feature out of whether or not the browser was redirected
to the present page, or whether the user went to the cur-
rent page explicitly. This information would be available in
the context of a browser, but might not be available if only
analyzing the source email.

3.3.3 tf-idf
“tf-idf”, or term frequency-inverse document frequency, is

a measure of importance of a term. One can use tf-idf to
attempt to identify key terms of a page, and subsequently
determine whether the current page is a copy of a more
popular page. In general, this involves searching for the key
terms on a page and checking whether the current page is
present in the result. This method and its accuracy are
discussed in more detail in [30].

4. EMPIRICAL EVALUATION

4.1 Overview
In this section, we present the details of our implementa-

tion used in evaluation of PILFER (Section 4.2) and in eval-
uating SpamAssassin (Section 4.3). The dataset of emails
used to perform the evaluation is described in Section 4.4.
Certain challenges are present when trying to do post-hoc
analysis of phishing attacks, the specifics and impact of
which are discussed in Section 4.5. Section 4.6 introduces
some terminology, and Section 4.7 shows our results in clas-
sifying the dataset.

4.2 Machine-Learning Implementation
In order to test our model, we first run a set of scripts

to extract all the features listed in Section 3.2. Once the
features are extracted, we train and test a classifier using
10-fold cross validation. (The dataset is divided into ten
distinct parts. Each part is then tested using the other
nine parts of the data as the training data. This ensures
that the training data is separate from the test data, and is
called “cross-validation”.) For our reference implementation
of PILFER, we use a random forest [6] as a classifier. Ran-
dom forests create a number of decision trees (in our case,
10), and each decision tree is made by randomly choosing an
attribute to split on at each level, and then pruning the tree.
The exact workings of the classifier are beyond the scope of
this paper. We evaluated a number of other classifiers as
well, including SVMs [11], rule-based approaches, normal

WWW 2007 / Track: Security, Privacy, Reliability, and Ethics Session: Passwords and Phishing

652



decision trees, and Bayesian approaches, but the overall ac-
curacies of most of the classifiers were not different with
statistical significance. Accuracies for some of these other
classifiers are shown in appendix A. For a complete discus-
sion of classifiers and text classification in general, the reader
is directed to a machine learning text such as [20] or [11].

4.3 Testing SpamAssassin
SpamAssassin is a widely-deployed freely-available spam

filter that is highly accurate in classifying spam emails. For
comparison against PILFER, we classify the exact same
dataset using SpamAssassin version 3.1.0, using the default
thresholds and rules. The results reported for “untrained”
SpamAssassin are obtained by simply treating the entire
dataset as a test set, and not training on any emails. This
represents an out-of-the-box install of SpamAssassin. (To
be sure that SpamAssassin was untrained, we deleted the
.spamassassin directory where learned data is stored before
testing the emails). The results reported for the “trained”
SpamAssassin are from the same version, except that we now
use 10-fold cross validation, where before each fold we clear
SpamAssassin’s learned data (by deleting v/.spamassassin).
We then train on all the emails in the train part of the fold
and test on those in the test part of the fold. To get re-
alistic results from SpamAssassin, we disable online tests
(blacklist lookups, mostly). Since the dataset we are us-
ing is slightly older and publically available, it is probable
that the blacklists have much more information about the
senders of the emails in the dataset at the time of testing
than was available at the time the emails were sent, and so
including these tests would artifically inflate the accuracy.
By disabling these online tests, we hope to more closely ap-
proximate the information available at the time the attacks
are first sent out. It is not a perfect approximation, but it
is the closest we can come.

4.4 Datasets
Two publicly available datasets were used to test our im-

plementation: the ham corpora from the SpamAssassin project
[5] (both the 2002 and 2003 ham collections, easy and hard,
for a total of approximately 6950 non-phishing non-spam
emails), and the publicly available phishingcorpus [22] (ap-
proximately 860 email messages). We use a series of short
scripts to programmatically extract the features from Sec-
tion 3.2, and store these in a database for quick reference.
We label emails as being non-phishing if they come from the
SpamAssassin ham corpora, and as phishing if they come
from the phishingcorpus. For these experiments we used
the entire dataset and did not re-label any of its contents.

4.5 Additional Challenges
There are a number of challenges posed by doing post-hoc

classification of phishing emails. Most of these challenges
apply mainly to the phishing emails in the dataset and ma-
terialize in the form of missing information, which has the
net effect of increasing the false negative rate. Without the
challenges outlined below, which are mostly artifacts of test-
ing after the fact as opposed to live in a real system, even
better accuracy should be possible.

The age of the dataset poses the most problems, which
is particularly relevant with the phishing corpus. Phishing
websites are short-lived, often lasting only on the order of
48 hours [12]. Some of our features can therefore not be

extracted from older emails, making our tests difficult. For
instance, in one of our features, we are interested in the age
of domains linked to. We perform a WHOIS query to de-
termine the date a domain was registered, and subtract this
date from the date the email was sent according to its head-
ers to determine its age. In many cases of phishing attacks,
however, these domains are no longer live at the time of our
testing, resulting in missing information. The disappearance
of domain names, combined with difficulty in parsing results
from a large number of WHOIS servers returning results in
non-standardized formats resulted in only being able to pro-
grammatically extract registration dates for 505 of a total
of 870 distinct domain names referenced in the dataset at
the time of writing.

It is not clear whether this dataset is representative of nor-
mal people’s email inboxes or not, but to date it is the best
data we have been able to find. We are currently planning
a follow-up study where we will be having users label every
email coming into their inbox as either legitimate, spam, or
phishing. This future work will provide us with a dataset
more representative of real users’ inboxes.

4.6 False Positives vs. False Negatives
It is important to note that misclassifying a phishing email

may have a different impact than misclassifying a good email,
so we report separately the rate of false positives and false
negatives. The false positive rate corresponds to the pro-
portion of ham emails classified as phishing emails, and
false negative rate corresponds to the proportion of phishing
emails classified as ham. Let us denote the number of ham
emails classified as ham (correctly classified) as hamham, the
number of ham emails classified as phishing as hamphish, the
number of phishing emails classified as ham as phishham,
and the number of phishing emails classified as phishing as
phishphish. We then define fp, the false positive rate, as

fp =
hamphish

hamphish + hamham

and fn, the false negatives rate, as

fn =
phishham

phishham + phishphish

Given this definition, fp = 0.1 would correspond to one
of every ten good emails being classified as phishing, and
fn = 0.2 would correspond to two of every ten phishing
emails being classified as good. We will use the terms fp
and fn in this manner in the evaluations presented in the
rest of the paper.

4.7 Results
On our dataset, we are able to more accurately classify

emails using PILFER than by using a spam filter alone. PIL-
FER achieves an overall accuracy of 99.5%. with a false pos-
itive rate fp of approximately 0.0013. PILFER’s false nega-
tive rate fn on the dataset is approximately 0.035, which is
almost one fourth the false negative rate of the spam filter
by itself. These results are compared in detail with those of
SpamAssassin in Table 1. As seen in the table, the inclusion
of the result of a spam filter as a feature to PILFER makes
for a significant reduction in phishing emails that get by.
While PILFER without the spam filter’s input has compa-
rable accuracy to the spam filter, the accuracy obtained by
providing the spam filter’s decision as an input to PILFER,
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Table 1: Accuracy of classifier compared with baseline spam filter
Classifier False Positive Rate fp False Negative Rate fn
PILFER, with S.A. feature 0.0013 0.036
PILFER, without S.A. feature 0.0022 0.085
SpamAssassin (Untrained) 0.0014 0.376
SpamAssassin (Trained) 0.0012 0.130

Table 2: Percentage of emails matching the binary features
Feature Non-Phishing Matched Phishing Matched
Has IP link 0.06% 45.04%
Has “fresh” link 0.98% 12.49%
Has “nonmatching” URL 0.14% 50.64%
Has non-modal here link 0.82% 18.20%
Is HTML email 5.55% 93.47%
Contains JavaScript 2.30% 10.15%
SpamAssassin Output 0.12% 87.05%

i.e. the combination of the two, improves the accuracy to be
much better than either one alone. This result suggests that
the features present in the two are catching different subsets
of the phishing emails, and shows that a phishing filter and
a spam filter can work well as complementary parts of an
overall solution.

Table 2 shows the exact percentages of emails (by class)
matching each of the seven binary features. All of the binary
features are matched more frequently by phishing emails
than by nonphishing emails. For the three non-binary fea-
tures, their averages and standard deviations per-class are
shown in Table 3. These features have higher mean values
for phishing emails.

In summary, PILFER can be either deployed in a stand-
alone configuration without a spam filter to catch a large
percentage of phishing emails with very few false positives,
or in conjunction with an existing spam filter such as Spa-
mAssassin for even higher accuracy. If a filter like SpamAs-
sassin is already deployed, then adding PILFER has the
advantage of significantly reducing the number of phishing
emails making it to the user, while having no significant
effect on the number of emails erroneously caught by the
filtering system.

5. CONCLUDING REMARKS
In this paper, we have shown that it is possible to de-

tect phishing emails with high accuracy by using a special-
ized filter, using features that are more directly applicable
to phishing emails than those employed by general purpose
spam filters. Although phishing is a subset of spam (after
all, who asks to receive emails from a person pretending to
be their bank for the purpose of fraud and identity theft?),
it is characterized by certain unique properties that we have
identified.

One might be inclined to think that phishing emails should
be harder to detect than general spam emails. After all,
phishing emails are designed to sound like an email from a le-
gitimate company, often a company with which the attacker
hopes the user has a pre-existing relationship. Models based
on “näıve” assumptions, such as certain words like “Viagra”
being indicative of a class of un-desirable emails, no longer

hold when the attackers are using the same words and the
same overall “feel” to lure the user into a false sense of se-
curity. At the same time, phishing emails present unique
opportunities for detection that are not present in general
spam emails.

In general spam emails, the sender does not need to mis-
represent their identity. A company offering to sell “Via-
gra” over the Internet does not need to convince potential
buyers that they are a pharmacy that the user already has
a relationship with, such as CVS or RiteAid. Instead, a
spammer can actually set up a (quasi-)legitimate company
called Pharmacy1283, and identify themselves as such, with
no need to try to convince users that they are receiving a
communication from their bank, or some other entity with
which they have an established relationship. It is this mis-
representation of sender identity that is key to the identifica-
tion of phishing emails, and further work in the area should
concentrate on features to identify this deceptive behavior.

As the phishing attacks evolve over time to employ alter-
nate deceptive behaviors, so does the information available
to combat these attacks. The approach used is flexible, and
new external information sources can be added as they be-
come available. These sources could take the form of web
services, or other tagged resources, to provide additional
information to the decision making process. For instance,
many phishing attacks include copies of corporate logos, and
if one could map a logo back to its legitimate owner’s web-
site, that would be valuable information in determining the
authenticity of a website or email displaying that logo. As
image sharing and tagging services such as Flickr [29] are
increasing in use, it is not unreasonable to think that some
day in the near future, one might actually be able to search
with an image and get back a description as a result.

There are a number of emerging technologies that could
greatly assist phishing classification that we have not con-
sidered. For instance, Sender ID Framework (SIDF) [19]
and DomainKeys [28], along with other such sender authen-
tication technologies, should help to both reduce false pos-
itives and make detection of spoofed senders much simpler
in the time to come. Looking farther into the future, deeper
knowledge-based models of the user and the types of prior
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Table 3: Mean, standard deviation of the continuous features, per-class
Feature µphishing σphishing µnon-phishing σnon-phishing

Number of links 3.87 4.97 2.36 12.00
Number of domains 1.49 1.42 0.43 3.32
Number of dots 3.78 1.94 0.19 0.87

relationships she may or may not have with different sites
or organizations could also help fend off more sophisticated
phishing attacks. Such techniques would likely build on
ongoing research on federated identities and semantic web
technologies [14]. In the meantime, however, we believe that
using features such as those presented here can significantly
help with detecting this class of phishing emails. We are
currently in the process of building a live filtering solution
based around PILFER, which we will start making available
to users for testing for further validation.
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APPENDIX
A. ACCURACIES OF OTHER CLASSIFIERS

Table 4 shows the accuracies in terms of false positive
and false negative rates when different classifiers are used
instead of the random forest used in PILFER. For almost
all of the high-performing classifiers, the difference in accu-
racy is not statistically significant, and none are statistically
significantly better.
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