
Toward Expressive Syndication on the Web

Christian Halaschek-Wiener
Department of Computer Science

University of Maryland
College Park, Maryland

halasche@cs.umd.edu

James Hendler
Department of Computer Science

University of Maryland
College Park, Maryland

hendler@cs.umd.edu

ABSTRACT
Syndication systems on the Web have attracted vast amounts of
attention in recent years. As technologies have emerged and ma-
tured, there has been a transition to more expressive syndication
approaches; that is, subscribers and publishers are provided with
more expressive means of describing their interests and published
content, enabling more accurate information filtering. In this pa-
per, we formalize a syndication architecture that utilizes expressive
Web ontologies and logic-based reasoning for selective content dis-
semination. This provides finer grained control for filtering and au-
tomated reasoning for discovering implicit subscription matches,
both of which are not achievable in less expressive approaches. We
then address one of the main limitations with such a syndication
approach, namely matching newly published information with sub-
scription requests in an efficient and practical manner. To this end,
we investigate continuous query answering for a large subset of the
Web Ontology Language (OWL); specifically, we formally define
continuous queries for OWL knowledge bases and present a novel
algorithm for continuous query answering in a large subset of this
language. Lastly, an evaluation of the query approach is shown,
demonstrating its effectiveness for syndication purposes.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation Formali-
sms and Methods; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval-Information Filtering

General Terms
Algorithms, Design, Performance

Keywords
Syndication, Publish/Subscribe, Description Logics, Continuous
Query Answering

1. INTRODUCTION
Web-based syndication systems have attracted a great amount of

attention in recent years. In typical syndication frameworks, users
register their subscription requests with syndication brokers; sim-
ilarly, content publishers register their feeds with syndication bro-
kers. It is then the broker’s task to match newly published informa-
tion with registered subscriptions. As technologies have emerged

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

and matured, there has been a transition to more expressive syndi-
cation approaches; that is, subscribers and publishers are provided
with more expressive means for describing their interests and pub-
lished content, enabling more accurate dissemination. Through the
years there has been a transition from keyword-based approaches
(e.g., [19]) to attribute-value pairs (e.g., [1]) and more recently to
XML (e.g., [4]). Given the limited knowledge modeling expres-
sivity of XML (and XML Schema), there has been interest in us-
ing RDF for syndication purposes (e.g., [23]). RDF has even been
adopted as the standard representation format of RSS 1.0.

Today’s syndication approaches still provide relatively weak ex-
pressive power from a modeling perspective (i.e., XML and RDF
are inexpressive modeling languages) and provide very little auto-
mated reasoning support. However, if a more expressive approach
with a formal semantics can be provided, many benefits can be
achieved; these include a rich semantics-based mechanism for ex-
pressing subscriptions and published content, allowing increased
selectivity and finer grained control for filtering [22]. Additionally,
reasoning can be utilized for discovering subscription matches not
found using traditional syntactic syndication approaches.

In this work, we consider using the Web Ontology Language
(OWL) for representing published content. As the semantics of
a large subset of OWL is aligned with description logics (DLs),
reasoning techniques for DLs can then be leveraged for matching
content with subscription requests [9, 22, 17]. In such an approach,
the previously mentioned benefits of using a formal representation
language can therefore be achieved. An additional benefit of an
OWL-based syndication approach is its native Web embedding and
power as a data integration language. Further, such an approach
can be seen as a natural extension of existing RSS 1.0 syndication
systems, as OWL can be encoded in RDF.

To demonstrate the increased expressivity of an OWL-based syn-
dication approach, consider the following example related to the
financial domain. Assume that a stock trader is interested in infor-
mation contained in news articles (or collections of articles) that
discuss news about companies that will make their stocks volatile
(i.e., they become risky investments). In particular, assume that
the trader is interested in any RiskyCompany that he or she defines
to include companies that had their credit downgraded by either
Moodys or S&P credit agency and exists on some sell ratings list
of a financial institution. Using an XML-based approach, syndi-
cation brokers can provide an XML Schema that contains an el-
ement RiskyCompany and such companies can be declared to be
this type of element. However, more complex logical definitions
and automatic classification of objects cannot be supported; there-
fore, an XML-based approach cannot accommodate the previous
example. If we consider an RDF-based approach, then a syndi-
cation broker can model the financial domain using RDF Schema;



therefore, slightly more complex subscription matches can be ob-
tained, as one can logically infer that a company is a RiskyCompany
(e.g., based on subclass relationships). However, in an RDF-based
approach, complex logical definitions, such as the previously men-
tioned RiskyCompany, are not definable. In contrast, in an OWL-
based approach, such expressivity is easily provided. For example,
RiskyCompany is defined in Table 1 (turtle syntax).

:RiskyCompany a owl:Class;
owl:intersectionOf (

[ a owl:Restriction; owl:onProperty :onRecommendation;
owl:someValuesFrom :SellList ]

[ a owl:Restriction; owl:onProperty :downgradedBy;
owl:someValuesFrom [ owl:oneOf ( :SandP :Moodys ) ] ]

:Company
) .

:movedToJunk a owl:ObjectProperty;
rdfs:subPropertyOf :downgradedBy .

:onRecommendation a owl:ObjectProperty;
owl:InverseOf :hasRecommendation .

Table 1: Illustration of expressivity in OWL-based syndication.

The definitions that the property movedToJunk is a sub-property
of downgradedBy, and onRecommendation is the inverse of has-
Recommentation, are included in Table 1 as they are used later in
the paper.

While OWL-based syndication approaches provide increased ex-
pressivity over XML and RDF, previous DL-based syndication ap-
proaches suffer from scalability issues due to the inherent complex-
ity of DL reasoning [22, 17, 9]. This is an issue in domains such
as the syndication of financial news feeds because response times
must be minimal as critical information must be delivered in near
real time (e.g., for stock trading purposes). One of the main limita-
tions is related to DL reasoning over changing data; this is primar-
ily due to the static nature of existing DL reasoning techniques. In
particular, the addition of information from newly published docu-
ments and data can be viewed as a change in the underlying knowl-
edge base (KB). In current DL reasoning algorithms, reasoning on
the updated KB is performed from scratch. The consistency of the
KB must be ensured; queries must be re-evalutated; etc. This nega-
tively impacts the performance results of existing DL-based syndi-
cation approaches, as performance times are in the tens of seconds.
An additional limitation of OWL-based syndication approaches is
related to the infancy of the underlying architectures investigated
to date; in particular, these architectures have not been investigated
in great depth or fully formalized.

In this paper we address both of the previously discussed short-
comings with OWL-based syndication systems. First, we formalize
a DL-based syndication framework. We then address the scalability
of DL reasoning for the purpose of syndication, by first presenting
a technique for incremental consistency checking for a substantial
portion of OWL. Then, we address continuous query answering
over OWL KBs that are being updated, primarily focusing on re-
ducing the size of the KB that must be considered as candidate
query bindings. This effectively allows a smaller subset of the KB
to be considered for possible subscription matches. The techniques
we present are applicable to queries with at least one distinguished
variable (i.e., must be bound to a named individual) and containing
only simple roles (i.e., no transitive roles or super-roles of a tran-
sitive role). Further, the approach supports the description logic
SHI (a large subset of OWL) with the restriction the KB unfold-
able (i.e., acyclic). Lastly, an evaluation of the incremental reason-
ing techniques is provided, demonstrating their effectiveness for
OWL-based syndication. Full proofs of the results presented in this
work can be found in the accompanying technical report [10].

2. PRELIMINARIES
In this section, we briefly provide an overview of OWL and de-

scription logics, query answering for DL KBs, and tableau algo-
rithms for DL reasoning.

2.1 The Web Ontology Language
The W3C-approved Web Ontology Language (OWL) is the rec-

ommended standard for the formally representing content on the
Web. One of the main benefits of OWL is the support for formal
reasoning, as the semantics of a variety of its sub-languages are
firmly founded in description logics (a decidable fragment of First
Order Logic). In particular, the sub-language OWL-DL is a syntac-
tic variant of the description logic SHOIN [13], with an OWL-
DL ontology corresponding to a SHOIN KB. In this work, we
address a subset of SHOIN , namely SHI; therefore, we briefly
introduce the syntax of SHI (semantics can be found in [13]).

Let C,R, I be non-empty and pair-wise disjoint sets of atomic
concepts, atomic roles, and individuals respectively. The set of
SHI roles (roles, for short) is the set R ∪ {R− | R ∈ R}, where R−

denotes the inverse of the atomic role R. Concepts are inductively
using the following grammar:

C ← A | ¬C | C1 uC2 | C1 tC2 | ∃R.C | ∀R.C

where A ∈ C, a ∈ I, C(i) a SHI concept, R a role, and S a simple
role (i.e., no transitive roles or super-roles of a transitive role)1. We
write > and ⊥ to abbreviate C t ¬C and C u ¬C respectively.

A role inclusion axiom is an expression of the form R1 v R2,
where R1,R2 are roles. A transitivity axiom is an expression of
the form Trans(R), where R ∈ R. An RBox R is a finite set of
role inclusion axioms and transitivity axioms. To avoid consider-
ing the role R−− we introduce the function Inv(R), which returns the
inverse of a role R. Additionally, for a role hierarchy R let the sym-
bol v∗ R denote the reflexive transitive closure of v on R∪{Inv(R1) v
Inv(R2) | R1 v R2 ∈ R}. We also use R1 ≡R R2 as an abbrevia-
tion for R1 v∗ RR2 and R2 v∗ RR1. We define the function Tr(R,R)
that returns true if R is a transitive role; otherwise the function re-
turns false. A role R1 is considered simple with respect to R if
Tr(R2,R) = false for all R2 v∗ RR1.

For C,D concepts, a concept inclusion axiom is an expression
of the form C v D. A TBox T is a finite set of concept inclusion
axioms. An ABox A is a finite set of concept assertions of the
form C(a) (where C can be an arbitrary concept expression), role
assertions of the form R(a, b) and inequality (equality) assertions
of the form a , b (respectively a = b). A KB K = (T,R,A) is
composed of TBox T, RBox R and ABox A. Denote the set of
individuals in KB K (ABox assertion α) as IK (respectively Iα).

We also introduce the following notation: denote by Mod(K)
the set of all models for K. Additionally, given a SHI concept
C, denote by Depth(C) the maximum modal depth for C (i.e., the
maximum nesting depth of quantifiers). Lastly, we provide a brief
overview of conjunctive ABox queries (query, for short) for de-
scription logics. A query Q consists of a conjunction of ABox
assertions of the form C(a) or R(a, b) (see [14] for a precise def-
inition), in which variables can be used in place of individuals and
are considered as existentially quantified (the set of variable names,
denoted V(Q), is assumed to be distinct from the individual names,
I). Query answering is the task for determining if Q is a logical
consequence of the KB K (denoted K |= Q); that is, determining
if for all models I of K, I |= Q. As query retrieval is addressed
in this work, we briefly introduce the following notation (adopted
from [14]): 〈x1, ..., xn〉 ← Q indicates that the variables x1, ...xn

1See [13] for a precise definition of simple roles.



appearing in Q must be bound to individual names, therefore con-
stituting the answer to the query. These variables are referred to as
distinguished variables, denoted DV(Q). The answer set of a query
〈x1, ..., xn〉 ← Q w.r.t. to K is the set n-ary tuples defined by the
following:

{〈a1, ..., an〉 ∈ In
K | K |= Q[x1/a1, ..., xn/an]}

where Q[x/a] represents the query, Q, with all occurrences of vari-
able x substituted by the individual name a. Lastly, we note that if
a query can be partitioned into unconnected components (i.e., com-
ponents that do not share variables), then they are considered inde-
pendently. Without loss of generality, we assume queries are con-
nected in the remainder of this work [7]. We additionally introduce
the following notation: given query Q, let Con(Q), Rol(Q) denote
the set of concepts and roles in Q respectively. In the remainder, we
assume queries contain at least one distinguished variable; thus, the
query can be rolled-up [14] into a distinguished variable. Given a
query Q, with abuse of notation, we denote by Depth(Q) the maxi-
mum Depth(C), where C is the query rolled-up into a distinguished
variable.

2.2 Tableau Algorithms
DL tableau-based algorithms decide the consistency of an ABox

A with respect to a TBox T and RBox R by trying to construct (an
abstraction of) a common model for A, T, and R, called a comple-
tion graph [13]. Each node in the graph represents an individual
that is labeled with a set of concepts that it satisfies (in the par-
ticular model). Formally, a completion graph for an ABox A with
respect to T is a directed graph G = (V,E,L, ,̇). Each node x ∈ V
is labeled with a set of concepts L(x), and each edge e = 〈x, y〉
with a set L(e) of role names. The binary predicate ,̇ is used for
recording inequalities between nodes. This graph is constructed by
repeatedly applying a set of tableau expansion rules, adding new
concept labels and edges to the graph when necessary. This pro-
cess continues until the tableau is fully expanded and no additional
rules can be applied. A node, x, contains a clash if a contradiction
exists in its label (e.g., C,¬C ∈ L(x)) or between two nodes (equal-
ity and/or inequality). It is noted that the tableau algorithm can
be saturated such that all possible completions of a KB are found
(corresponding to all models). We lastly introduce the following
notation: denote by Comp(K) the set of all complete, clash-free
completions of K (i.e., all models); additionally, given completion
graph G, denote by Roots(G) the subset of G containing root nodes
and their labels, as well edges and edge labels between root nodes.

3. SYNDICATION FRAMEWORK
In this section we formally define the generic DL-based syndi-

cation framework proposed in this work. As in typical syndication
systems, we assume syndication brokers deliver relevant informa-
tion to the appropriate subscription requests. Within this frame-
work, a subscription is comprised of a conjunctive ABox (instance)
query, which represents the subscribers interests, and an expiration
time (i.e., the number of time units that the subscription is valid).
The subscription query can be thought of as a continuous conjunc-
tive query that should be evaluated until the expiration time. There-
fore, the query is issued once over a changing ABox whose results
set is continuously updated as the ABox changes. Intuitively, the
answer set of a continuous conjunctive ABox query at time t is the
set of all variable bindings entailed by the KB at time t and can be
seen as an extension of the definition of a conjunctive query pre-
sented earlier.

Definition 1. (Continuous Conjunctive ABox Query) Define a
continuous conjunction ABox query Qc with respect to a DL KB Kt

(K at time t) such that it produces results at time t, denoted Qcr (t),
as follows:

Qcr (t) = {〈a1, ..., an〉 ∈ In
Kt
| Kt |= Qc[x1/a1, ..., xn/an]}

Given this, a subscription is then defined as follows:

Definition 2. (Subscription) A subscription S is defined as a pair
(Qc, t), where Qc is a continuous conjunctive ABox query that is
evaluated for t time units.

We denote the continuous query of a subscription as S(Qc) and
the expiration time as S(t). We now define a subscriber to be com-
posed of a set of subscriptions and a unique identifier:

Definition 3. (Subscriber) A subscriber Sub is defined to be a
pair (s, i), where s is a set of subscriptions and i is a unique identi-
fier.

Denote a subscriber’s set of subscriptions as Sub(s), and its iden-
tifier as Sub(i). Next, we define a publisher to be identified by a
unique identifier:

Definition 4. (Publisher) A publisher Pub is defined as being
composed of and identified by a unique identifier i.

Additionally, a publication is defined to be composed of a set of
ABox assertions, the number of time units that the publication is
valid, and the identifier of the publisher that produced the informa-
tion; after the specified time units have passed, it is assumed that
the publication is discarded.

Definition 5. (Publication) A publication P is defined as a tuple
(α, t, p), where α is a set of DL ABox assertions that expire after t
time units, and p is the identifier of the publisher that produced the
publication.

Given a publication P, denote the set of ABox assertions as P(α),
the expiration time as P(t), etc. Intuitively, a syndication broker
maintains a local KB, in which newly published information is inte-
grated. Additionally, the syndication broker maintains the currently
registered subscribers (that have associated subscriptions) and pub-
lishers. This is formally defined as follows:

Definition 6. (Syndication Broker) A syndication broker B is de-
fined as a tuple (S , P,Kl), where S is a set of subscribers, P is a set
of publishers, and Kl is the broker’s local DL KB.

We denote a syndication broker’s subscriptions, publishers, and
KB as B(S ), B(P), and B(Kl) respectively. After a new publication
is received, it is the broker’s task to determine the subscribers for
which this new infromation is relevant. Before defining subscrip-
tion matches, we define a generic update function that takes a set
of publications and integrates them into the broker’s KB. Such a
function is necessary for integrating newly published information
into a DL KB.

Definition 7. (Update Function) Define the update function
update(K, P) to take as input a DL KB K and a set of publications P
and return a new consistent DL KB K′ that is the result of updating
K with P(α), for all P ∈ P.

Observe that this update function is generic, as there are many
different ways to interpret the update. Such problems have been
studied extensively in literature for updating logical KBs. We do



not impose a particular type of update semantics in the formaliza-
tion of the syndication framework; rather, we only enforce that the
update function result in a consistent KB. This is necessary because
if the updated KB is inconsistent, then everything is trivially en-
tailed. In Section 4.1 we define a specific update function, referred
to as syntactic updates.

Lastly, we define a match for a subscription request. As infor-
mation (documents) is published from multiple publishers and re-
mains valid in the broker’s local KB for varying time, a match for a
subscription can actually be a composition of the information from
multiple publications; that is, the information provided in multi-
ple publications collectively forms a match for the query. To the
authors’ knowledge, recent approaches have not investigated such
functionality; rather, only information from individually published
documents form a match for a given subscription. However, such
a capability is beneficial, as information can be considered collec-
tively and form matches not found otherwise.

We additionally distinguish between two types of subscription
matches, namely information matches and publication matches. An
information match refers to the individuals bound to the (distin-
guished) variables of a continuous query representing a subscrip-
tion; that is, the result returned to the subscriber is actually the
query answer rather than the publication(s) responsible for the an-
swer. This type of match aligns with recent work in XML-based
syndication literature, in which the actual information is filtered
and the query answers are returned to the user [16]. In contrast, a
publication match refers to the collection of publications that sat-
isfy a subscription; that is, given an information match for a regis-
tered subscription, return all minimal sets of publications that cause
this match to occur; this aligns with the task of selective content-
based filtering of publications. It is clear that given an information
match, there is a corresponding set of publication matches.

The distinction between these two match types is made as ad-
ditional computation is needed to derive all the minimal sets of
publications responsible for an information match. Further, the
type of match required is application dependent; for example, in
OWL-based syndication of news feeds, it is clear that publication
matches are needed. In contrast, in the financial domain, ana-
lysts are generally interested with the actual information rather than
the documents themselves. If we consider our previous example
involving the concept RiskyCompany, we can observe that ana-
lysts are likely to be more interested in the actual instances of
riskycompany, rather than the articles that discuss them; this is in-
tuitive, as the actual query answer is the actionable information for
their purposes (e.g., stock trading). In this work, we address both
of these matches; however, our current evaluation focuses on in-
formation matches, leaving the remainder as future work. We now
define an information match:

Definition 8. (Information Match) Define a tuple of individuals
〈a1, ..., an〉 to be an information match at broker B for subscription
S at time t, if and only if the following holds:

〈a1, ..., an〉 ∈ B(In
Kt

) ∧ B(Kt) |= S(Qc[x1/a1, ..., xn/an])

Before defining a publication match, we present the notion of
minimal justifications for an entailment in DLs, which has been
formally investigated in literature [15].

Definition 9. (Minimal Justification) [15] Let K |= α, where α
is a DL axiom and K a DL KB. A fragment K′ ⊆ K is a minimal
justification for α in K if K′ |= α and K′′ 6|= α for every K′′ ⊂ K′.
Denote the set of minimal justifications for K |= α as Just(K, α).

Now we present the definition of a publication match which uti-
lizes minimal justifications to define to the publications responsible
for an information match:

Definition 10. (Publication Match) Let 〈a1, ..., an〉 be an infor-
mation match I at broker B for subscription S at time t. Let J be
the set of minimal justifications for I:

J = Just(B(Kt), S(Qc[x1/a1, ..., xn/an])})

Define a set of publications P to be a publication match at broker
B for subscription S at time t if there exists j ∈ J such that the
following holds:

∀P ∈ P( ∃a ∈ j ∧ a ∈ P(α) ) ∧ ∀a ∈ j( ∃P ∈ P ∧ a ∈ P(α) )

We conclude this section with a brief example demonstrating a
composite match (both information and publication matches), and
the framework in general. Assume a syndication broker B is com-
posed of one subscription and two publishers. Additionally, assume
that the broker’s local KB contains the axioms defined previously
in Table 1. The the broker is composed of the following:

S = {S 1}, P = {P1, P2}

Kl = { :movedToJunk, :onRecommendation, :RiskyCompany }

Assume subscriber S 1 has registered the following subscription for
all instances of the class RiskyCompany:

(RiskyCompany(x),∞) ∈ S 1(s)

where ∞ indicates that the subscription does not expire. Addition-
ally assume that P1 publishes that BOASellList (assumed to be
an instance of SellList) has a sell recommendation for Ford and
P2 publishes Moodys moved Ford credit to junk status. This is
formalized as follows:

PP1 = ({ :BOASellList :hasRecommendation :Ford },∞, 1)
PP2 = ({ :Moodys :movedToJunk :Ford },∞, 2)

where ∞ indicates that the publications do not expire. For ease of
exposition, assume that PP1 and PP2 arrive at the broker at time 1
and 2 respectively, and that the update function expands the explicit
ABox assertions in the broker’s KB with those contained in the
publication (see Section 4.1 for further details). When PP1 arrives
at the broker, PP1 (α) is integrated into B(Kl), resulting in a updated
broker KB K′. It is obvious that at this time the individual Fordwill
not satisfy the subscription; therefore, there will not be a match
for S 1 at time 1. However, when PP2 is published at time 2 and
integrated into K′, there is a composite publication match {PP1 , PP2 }

and an information match Ford for the subscription (due to various
OWL inferences).

4. REASONING FOR SYNDICATION
As discussed earlier, the main limitation in the proposed syn-

dication framework is related to DL reasoning through incremen-
tal changes to the underlying KB. Therefore, the remainder of this
paper addresses the two previously mentioned performance bottle-
necks, namely consistency checking and query answering through
updates. Before addressing these issues, we present the update
function adopted for this work.

4.1 Syntactic Updates
For the task of syndication, we propose an update function that

we refer to as syntactic updates, which supports syntactic changes
of KB assertions. Intuitively, syntactic updates can be described



as an update in which all new assertions are directly added (or re-
moved) to the asserted (base) axioms. For purpose of this work,
ABox assertions can take the form of individual equality (e.g.,
{:Ford owl:sameAs :FordMotorCorp}) and inequality assertions
(e.g., {:Moodysowl:differentFrom :SandP}), concept assertions (e.g.,
{:Ford a :Company}; note that complex concept assertions are pos-
sible as well), and role assertions (e.g., {:Ford :downgradedBy
:Moodys}). Formally, this is described as follows:

Definition 11. (Syntactic Updates) Let A be the ABox of an ini-
tial KB K. Then, under syntactic updates, updating K with an
ABox addition (respectively deletion) α, written as K + α (resp.
K − α), results in an updated ABox A′ such that A′ = A∪ {α} (resp.
A′ = A \ {α}). Denote by K ⊕ α the syntactic update of K with α.

This type of update is different when compared to related work
in update semantics [18] and belief revision [6] for DLs; however,
it is clearly applicable to syndication applications. Further, there
have been negative results with respect to other candidate update
semantics for DL KBs. In particular, [18] shows that the standard
(minimal change) model-based update semantics cannot be repre-
sented in the DLs considered in this paper. [6] shows that many
DLs, including those considered here, cannot satisfy the rationality
postulates proposed in the AGM theory of belief revision. It is clear
that under syntactic updates, the resulting KB can be inconsistent
after an update; however, as required by Definition 7, the update
function must result in a consistent KB. For this work, we assume
that if the resulting KB is inconsistent, then the newly published
information is rejected (i.e., removed from the KB). While discard-
ing the recent publication may not be the ideal course of action in
all syndication systems, addressing this issue further is out of the
scope of this paper. However, we plan to address this issue in future
work and provide some initial insights in Section 6.

4.2 Incremental Consistency Checking
After newly published information is integrated in the broker’s

KB, consistency must be rechecked. As stated earlier, with large
ABoxes, checking consistency introduces substantial overhead. In
this case of syndication, this problem is compounded, as the bro-
ker’s KB will become substantially large because the KB can con-
tain permanent domain knowledge, as well as publications that re-
main valid for substantial time periods.

To address this issue, we have recently investigated incremen-
tal consistency checking in OWL KBs. In particular, in [12] we
present an approach for incrementally updating tableau comple-
tion graphs under syntactic ABox updates in the description logics
SHIQ and SHOQ [12], which encompass the portion of OWL-
DL addressed later in this work. In [12] the update algorithm adds
new (removes existing for deletions) components (edge, nodes, or
labels) introduced by the update to a (cached) completion graph
from the consistency check prior to the update; after this, standard
tableau completion rules are re-fired to ensure that the model is
complete. Therefore, the completion graph built prior to the up-
date (e.g., during the initial consistency check) is cached and up-
dated such that if a model exists (i.e, the KB is consistent after the
update), a new completion graph will be found. It was observed
that updates did not have a large effect on the existing completion
graph; therefore, orders of magnitude performance improvements
are achieved. Due to space limitations, further details regarding the
approach are omitted here; however, they can be found in [12].

4.3 Continuous Query Answering
After guaranteeing consistency of an updated KB, the various

subscriptions registered with the broker can be (re)evaluated. In

the remainder of this section, we present an approach for more effi-
cient continuous query answering for a subset of OWL-DL, specifi-
cally unfoldable SHI. Two restrictions are imposed on the queries
supported in the approach, namely that only simple roles (i.e., no
transitive roles or super-roles of a transitive role) can be used in the
query, and the query must contain at least one distinguished vari-
able (note that more frequently in realistic scenarios, queries con-
tain some number of distinguished variables). These restrictions
enable the techniques presented in the following sections; further
query answering in the presence of transitive roles is a relatively
open problem (however, see [7]). In the following sections we as-
sume that all concepts are in negation normal form (i.e., negation
only occurs in front of concept names), and all concepts are fully
unfolded such that they are composed of only primitive (base) con-
cepts [3].

Before discussing the overall goal of the approach, we make a
few simplistic observations: by montonicity of SHI (and OWL-
DL in general), continuous query answering in the event of ABox
additions reduces to determining any new bindings that are entailed
by the KB, whereas handling deletions reduces to guaranteeing that
previous bindings are still entailed.

4.3.1 Localizing Effects of Updates
When querying very large ABoxes, one of the main problems is

that a large number of individuals in the KB must be considered
as potential variable bindings. However, we propose that under
the types of updates considered in this work, the candidate query
bindings can be drastically pruned. A key insight is demonstrated
if we consider a simple query such as 〈x〉 ← Company(x). Intu-
itively, in the event an update is an addition, we would only like to
consider affected named individuals not previously bound to x as
potential new bindings (i.e., answers); in contrast if the update is a
deletion, only individuals previously bound to x that were affected
by the update need to be re-checked. Therefore, the main goal of
the approach presented here is to localize the named individuals in
the KB that are affected by the update in such a way that they may
impact the previous query results.

Before discussing this further, we define the notion of explicitly
affected individuals, which intuitively are the individuals manipu-
lated during the incremental update of all completions for a KB.

Definition 12. (Explicitly Affected Individuals): GivenSHI KB
K and ABox update α, define the explicitly affected individuals, de-
noted EI(K, α), to be the set of all named individuals a ∈ IK ∪ Iα
such that either:

1. a ∈ Iα
2. during the update of some G ∈ Comp(K) with α (as in Sec-

tion 4.2), a has some label change, or outgoing/ingoing edge
that is added/removed with the following constraints

(a) if the update introduces non-deterministic choices, each
completion is saturated

(b) if a node is reached, then the expansion rules are re-
applied to all of the node labels

3. if a clash occurs on node z when updating G ∈ Comp(K) then
for any node zi s.t. there exists a path z0, ..., zi (i ≥ 1) in G
where z = z0, zk a P-neighbor of zk−1 (1 ≤ k ≤ i), P v∗R
and {∀R.C,∀R−.C} ∩ L(zk) , ∅ (1 ≤ k ≤ i), C and P,R some
concept and roles respectively, it is the case that either

(a) a = zi

(b) a is reached by reapply the expansion rules to labels
of zi and any subsequently reached node in some G ∈
Comp(K ⊕ α)



Additionally, we introduce the notion of a root path between two
individuals:

Definition 13. (Root Path): Define there to be a root path of
length D between two nodes x and y of a completion graph if they
are reachable by at most D edge traversals where:

1. edge direction is ignored
2. successive traversal of edges labeled with roles that are not

simple is only counted once
3. if there exists more than one label for an edge, one of which

is not a simple role, then the non-simple edge is traversed
and condition 2 is assumed

We now define the general notion of affected individuals adopted
for the purpose of this work; given these individuals, we show that
all new (resp. invalidated) bindings for a query can be found.

Definition 14. (Affected Individuals): Given SHI KB K, con-
junctive query Q, and ABox update α, define an individual a ∈
IK ∪ Iα to be in the set of affected individuals, denoted AI(K, α), if
either:

1. a ∈ EI(K, α)
2. for some b ∈ V s.t. D ∈ L(b), D is of the form ∀R.C, and b

does not have a P-neighbor (P v∗R), it is the case that there
is a root path of at most length Depth(Q) between a and b in
some G ∈ Comp(K + α) (resp. G ∈ Comp(K) for deletions)

3. for some b ∈ EI(K, α) there is a root path of at most length
Depth(Q) between a and b in some G ∈ Comp(K + α) (resp.
G ∈ Comp(K) for deletions).

It can be shown that for there to be a new (resp. invalidated)
binding after an update, at least one named individual in the binding
must be in AI(K, α).

P 1. Let K be a SHI KB, Q a conjunctive query,
and α an ABox update. If K 6|= Q[x1/a1, ..., xn/an] and K ⊕ α |=
Q[x1/a1, ..., xn/an] (resp. K |= Q[x1/a1, ..., xn/an] and K ⊕ α 6|=
Q[x1/a1, ..., xn/an]), then there exists some named individual b ∈
IK ∪ Iα that is bound to some y ∈ V(Q) such that b ∈ AI(K, α).

Proposition 1 is intuitive as it states that for there to be a new
(resp. invalidated) binding, then there must exist some individual
in that binding that either is directly affected by the update in some
completion graph or is in the proximity of some other individual
that was directly affected. We are able to show that the notion of
proximity introduced in Definition 14 (conditions 2 and 3) is suffi-
cient (observe that currently we do not take into account the struc-
ture of the concepts in the query; however, we plan to address this in
future work). More importantly, Proposition 1 implies that in order
to find the affected individuals, one can update all G ∈ Comp(K)
and gather the individuals that satisfy the properties provided.

It is clear, however, that incrementally maintaining all comple-
tion graphs for a given KB is not practical; further in the presence
of a reasonable degree of non-determinism in a KB, saturating the
tableau is a very expensive process. To avoid performing a full sat-
uration of the initial KB, we propose building a structure that we
refer to as a summary root graph.

Definition 15. (Summary Root Graph): Let G be the completion
graph built for SHI KB K by applying all tableau expansion rules
to K as normal, however with the following modifications:

1. if a non-deterministic choice is encountered, add all labels in
the disjunction to the node without creating a new branch

2. if a clash is encountered, it is ignored
Define the summary root graph S G as S G = Roots(G)

Observe that condition 2 is required, as adding all labels from a
disjunction can obviously introduce clashes; also note that only the
structure for root nodes and their edges is kept to reduce memory
overhead. It can be seen that the summary root graph does not
correspond to a model of the KB; however, the approach guarantees
that if a root node or edge between root nodes has a label in some
completion graph corresponding to a model for the KB, then that
label will be in the label set for that individual in the summary
root graph. The aim behind the approach is to use this structure
to localize an overestimate of the explicitly affected individuals; an
overestimate is acceptable as, in the end, we are trying to find only
candidate distinguished variable bindings.

Using the summary root graph, an overestimate for EI(K, α) can
be provided; we first note that in the case of ABox deletions, we
propose using axiom tracing [2, 15, 12] during the application of
expansion rules, effectively tracking the asserted axioms respon-
sible for changes to the summary root graph. We also note that
there is a simple modification when checking if the expansion rules
can be applied to a node (to guarantee completeness). Specifically,
node labels are marked when they have had a completion rule ap-
plied to them during the overestimate procedure; if the label is not
marked, then the expansion rule is applied. Details are omitted
here, however they can be found in Table 2 of [10].

Definition 16. (Overestimate of Explicitly Affected Individuals):
Let S G be the summary root graph for SHI KB K and α an ABox
update. Define the overestimate of explicitly affected individuals,
denoted EIS G (K, α), to be defined by the following procedure:

1. (a) α an addition: add the structure introduced by the up-
date to S G (as in [12]) and apply the tableau expansion
rules to all labels of individuals x of S G such that x ∈ Iα

(b) α a deletion: remove all structures from S G solely de-
pendent on the deleted assertion (determined as in [12])
and apply the expansion rules to all individuals and
their neighbors if the node was affected by the initial
retraction of structures dependent on α

2. apply the expansion rules to all labels of individuals (named
or un-named) reached by subsequent rule firings

3. use the modifications to the tableau expansion rules in Defi-
nition 15 and Table 2 of [10]

4. if a clash is found, then condition 3 of Definition 12 is checked
however, the S G is used rather than all G ∈ Comp(K).

EIS G (K, α) is then composed of all root nodes that are reached dur-
ing the application of expansion rules, have a label change, or are
adjacent to an edge or edge label that changed.

Note that after the application of expansion rules finishes, it is as-
sumed that un-named nodes and their edges are discarded from the
summary root graph (which has therefore been updated). Addition-
ally, when the summary root graph is updated during an addition,
axioms traces are updated using the same approach as in [12]. It
can be shown that after the update, the overestimate of the explic-
itly affected individuals satisfies the following property:

P 2. Given a SHI KB K, ABox update α and sum-
mary root graph S G for K, then the approach for finding EIS G (K, α)
is terminating and EI(K, α) ⊆ EIS G (K, α).

Proposition 2 implies that we can use S G to locate a superset of
the affected individuals (defined below).



Definition 17. (Overestimate of Affected Individuals): Let K be
a SHI KB, Q a conjunctive query, S G the summary root graph for
K, α an ABox update and AIP(K, α) the set of individuals satisfying
conditions 2 or 3 from Definition 14 s.t. b ∈ EIS G (K, α) is used
rather than b ∈ EI(K, α). Define the overestimate of affected indi-
viduals, denoted AIO(K, α), as AIO(K, α) = EIS G (K, α) ∪ AIP(K, α).

Discussion. It is clear that there are possible limitations to the
current approach for determining the overestimate of individuals
affected by updates. In particular, if the approach produces an over-
estimate that is too large, the value of the approach may degrade
(note that in the worse case, the number of individuals one would
have to check is the same as in the non-incremental case). However,
our initial results indicate that the approach is extremely effective.
An additional limitation of the approach is the memory overhead
imposed by maintaining the summary root graph, which is clearly
a trade-off in the approach. One last issue is related to the applica-
tion of expansion rules on the summary root graph with respect to
the update. We point out here that in the worst case this could im-
pose overhead that is not practical for the performance demands of
some syndication applications; however, our initial results demon-
strate that this is not the case. This is because the expansion rules
are applied with respect to only the update and not the entire KB.
This is actually quite intuitive, as one would expect for updates
to only affect a small portion of the KB. Further, if we consider
syndication of news feeds for example, one would expect updates
to be generally focused on a small number of individuals. This
is clearly evident in the financial domain; for example, the Dow
Jones Newswires disseminates on average 10,000 news feeds per
day2, which are typically terse and focused on specific companies,
industries, etc.

4.3.2 Query Impact on Candidate Individuals
When a query contains roles and more complex query patterns,

considering only directly affected individuals as potential new bind-
ings (resp. invalidated bindings for deletions) will not suffice. For
example, consider the following query for all companies that have
sell recommendations: 〈x,y〉 ← onRecommendation(x,y) ∧ Com-
pany(x) ∧ SellList(y). Also assume that there is an ABox addition
that Ford is a Company and that after the update, AIO(K, α) only in-
cludes Ford. It is clear we cannot simply consider Ford as the only
candidate binding for the variables in the query, as there could ex-
ist any number of individuals (i.e., instances of SellList) related to
Ford by an onRecommendation role. Therefore, it can be observed
that the query structure/shape impacts the affected individuals that
must be considered as bindings for distinguished variables; we re-
fer to this as the query impact.

We now introduce a technique for determining the query impact
on the affected individuals, which is a straightforward approach that
induces very little overhead. The key insight is that for a new query
binding to be entailed (or invalidated in the case of deletions) un-
der syntactic ABox updates in SHI, at least one named individual
that is bound to some x ∈ V(Q) must be in AIO(K, α). This, along
with the facts that the query is assumed to be connected and only
simple roles are used in queries, implies that given an addition up-
date, the query impact on the original affected individuals can be
taken into account by also considering all named individuals in the
updated completion graph (discussed in Section 4.2) that are reach-
able from some x ∈ AIO(K, α) by at most n edge traversals (with the
direction ignored), where n is the longest path in the query graph.
Given this, under additions only the various combinations of in-
dividuals in this expanded set of affected individuals need to be
2Source: http://www.djnewswires.com/us/djtotalcoverageinfo.htm

considered as possible new bindings for distinguished variables. A
similar approach can be used to take into account the query impact
under deletions, however the original completion graph (prior to its
update) must be used for the search of depth n (i.e., deletions can
remove structures from the completion). In the case of deletions,
one then needs to recheck any previous binding that contains some
individual in the expanded set of affected individuals. Denote by
query impact(AIO(K, α),Q) the extended set of affected individu-
als under this approach for taking into account the query impact.

It is clear that the previous technique does not leverage the actual
structure of the query (i.e., concepts and roles in the query); there-
fore, we now introduce a more effective approach that exploits such
information, but also introduces additional overhead. In this dis-
cussion, the approach is only presented for additions, as in typical
syndication systems, updates are much more frequently additions;
further, extending the approach to deletions is straightforward. We
first point out that it has previously been shown that a conjunctive
query can be answered be syntactically mapping the query into all
completion graphs for the KB [20]. More specifically for the DL
SHIQ (also applicable to SHI), [20] shows that given a com-
pletion graph G and a query Q, the query can be mapped into G,
denoted Q ↪→ G. If the query can be mapped into all completions,
then the KB satisfies the query. It can be seen that such a map-
ping is usable when of taking into account the query impact under
additions. We note, however, that such a mapping introduces over-
head, as it requires that the KB must be extended with > v C t¬C
for each concept C ∈ Con(Q). In order to further reduce the new
candidate bindings, each individual in AIO(K, α) can be iteratively
substituted into variables in the query; neighbor nodes in the up-
dated completion graph can then be inspected to see if they can be
mapped into the remaining nodes (via roles whose labels match the
query graph) in the query graph (note that distinguished variables
in the query graph are mapped into nodes corresponding to named
individuals). If there does not exist a mapping in which a given
named individual can be mapped into a particular distinguished
variable, then this individual does not need to be considered in the
candidate distinguished variable set for this variable; this is because
we have just found a completion graph (i.e., model) in which the
query cannot be mapped [20]. However, if a named individual can
be mapped into a distinguished variable, then we must consider this
individual as a candidate binding.

Definition 18. (Query Impact on Candidate Bindings): Let K be
a SHI KB, Q a conjunctive query, α an ABox addition and G ∈
Comp(K⊕α). Define the set of candidate bindings for distinguished
variable x under query impact, denoted AQI(x), as follows:

AQI(x) = {a | a ∈ AIO(K, α) ∧ Q ↪→{x←a} G}∪
{a | b ∈ AIO(K, α) ∧ Q ↪→{x←a,y←b} G}

where Q ↪→{x←a} G denotes a mapping of Q into G with the re-
striction that the distinguished variable x must be mapped into the
named individual a in the completion graph.

4.3.3 Continuous Query Answering Algorithm
We now describe the algorithm for answering continuous ABox

queries. Similar to the discussion presented above, the algorithm
is presented in terms of a single query. Note that the algorithm
utilizes a combination of both techniques for taking into account
query impact. It is assumed the KB is first preprocessed such that
for each C ∈ Con(Qc), an axiom > v C t ¬C is added to the KB;
this is necessary only in the cached completion graph for consis-
tency checking and not in the summary root graph. Additionally,
it is assumed the summary root graph is created at startup and that
the initial set of answers for Qc is previously determined.



Algorithm 1 presents the main continuous query answering al-
gorithm. The approach first locates the affected individuals; this
is denoted by localize effects(S G, α) and takes as input an initial
summary root graph S G and update α and is assumed to both up-
date S G and return the affected individuals. Additionally, the ex-
tended set of affected individuals is found using the simple query
impact. If the update is an addition, the set of candidate distin-
guished variable bindings (determined using Definition 18) is iter-
ated over and checked for entailment. It is assumed that standard
techniques for query answering are used (e.g., see [14]). If the
update is a deletion, each tuple in the previous answer set is it-
erated over. Previous tuples that do not contain some individual
in query impact(AIO(K, α),Q) are still valid, as the update did not
affect any of the bound individuals; otherwise, the tuples are re-
checked for entailment.

P 3. Algorithm 1 is sound, complete, and terminat-
ing.

Algorithm 1 update query results(K, S G,Qc,R, α)
Input:

K: initial KB
S G: summary root graph for K
Qc: continuous conjunctive query
R: set of all current bindings (answer set)
α: ABox update

Output:
K: updated KB
S G: updated summary root graph
R: updated bindings (answer set)

1: K← K ⊕ α
2: if K is not consistent then
3: K← Retract α from K
4: return K, S G,R
5: end if
6: AIO(K, α)← localize effects(S G, α)
7: QIS ← query impact(AIO(K, α),Q)
8: if α is an addition then
9: for all a1 ∈ AQI(x1), ..., an ∈ AQI(xn) s.t. x ∈ DV(Qc) do

10: if K |= Qc[x1/a1, ..., xn/an] then
11: R← R ∪ {〈a1, ..., an〉}
12: end if
13: end for
14: else if α is an deletion then
15: for all 〈a1, ..., an〉 ∈ R do
16: if QIS ∩ {a1, ..., an} = ∅ then
17: continue
18: else if K 6|= Qc[x1/a1, ..., xn/an] then
19: R← R \ {〈a1, ..., an〉}
20: end if
21: end for
22: end if
23: return K, S G,R

5. EMPIRICAL RESULTS
We have implemented the basic functionality of the framework

defined in Section 3 and the algorithm presented in Section 4. In the
current implementation, publishers can register and publish infor-
mation (currently all information remains indefinitely valid). Ad-
ditionally, subscribers can register subscriptions in the form of con-
tinuous conjunctive queries that can remain valid for varying amounts
of time. In the evaluation, we have focused on information matches
as the technical contributions of this work mainly address scalabil-
ity issues with respect to this problem. Further evaluation of publi-
cation matches is left as future work.

We have performed an emperical evaluation using the Lehigh
University Benchmark (LUBM) [8] (SHI expressivity), as it pro-
vides a large ABox, therefore simulating a broker with large num-
bers of persistent publications; additionally, it supplies queries with
similar complexity as those used in the examples throughout this
paper. It should be noted that 8 OWL equivalent class axioms
were changed to subclass axioms, so that the KB was unfoldable.
Three queries from LUBM were selected as sample subscriptions
and continuously run over a dataset comprised of one university,
containing 16,283 individuals and 78,094 assertions. The follow-
ing three queries were used in the evaluation (LUBM queries 1, 3,
and 13 respectively):

〈x〉←GraduateStudent(x)∧takesCourse(x,GraduateCourse0)
〈x〉←Publication(x)∧publicationAuthor(x,AssistantProfessor0)
〈x〉←Person(x)∧hasAlumnus(University0,x)

In the evaluation, the queries were run over the KB, which was
updated with a collection of ABox assertions, simulating newly
published information; updates were randomly selected individual
type (atomic) and/or role assertions, as this aligns with the types of
updates one would expect in syndication systems. Each published
document was indefinitely valid. To ensure that some of the up-
dates affected the query results (i.e., subscriptions), there was a 50-
percent probability that the update referred to one of the individu-
als bound to a distinguished variable; therefore, approximately half
of the selected updates actually affected the subscriptions. Tests
were performed for each update type (additions and deletions) us-
ing varying update sizes; namely 1, 5, 10, 15, and 25 assertions.
Each test was performed 25 times, and the results were averaged.
Lastly, the experiments were performed using a 1.5 GHz processor
with 1GB of memory.

In the evaluations, two versions of the DL reasoner Pellet 3 were
used; a regular version of the reasoner and an optimized reasoner
that used the techniques presented in this paper. In the regular ver-
sion of the reasoner, the standard query answering algorithm was
performed after each update. Additionally, the KAON24 OWL-DL
reasoner was used in the evaluation. KAON2 reduces OWL KBs
to disjunctive datalog and is optimized for query answering. Addi-
tionally, KAON2 was used as it provides functionality to add and
remove assertions and re-run queries after a KB has been updated
(we do note that it is unclear whether KAON2 currently performs
view maintenance). Using this as a comparison, we aimed to pro-
vide interesting insights into tableau-based algorithms for syndica-
tion purposes when compared to other possible approaches.

Results for continuous query answering for the various LUBM
queries are presented in Figure 1. Note that the optimized version
of Pellet is denoted as “Pellet-C”, and the “0” update size value
represents the time to run the initial query prior to performing an
update (this includes the start-up cost for the continuous query an-
swering approach). In all three queries, the initial query answering
times (prior to any update) in both the regular version of Pellet
and the optimized version were comparable. This is because the
generation of the summary root graph introduced little overhead;
specifically, the average time to build the summary root graph was
only 2.7 seconds (on average 500 milliseconds larger than the initial
consistency check). We note that there is little overhead because
of the small amount non-determinism in LUBM (primarily due to
making the KB unfoldable). For exposition, however, we investi-
gated the time to build the summary root graph for the original ver-

3Pellet project homepage: http://www.mindswap.org/2003/pellet/
4KAON2 project homepage: http://kaon2.semanticweb.org/



sion of LUBM, which induce a large amount of non-determinism.
It was observed that the average time to build the summary root
graph took approximately 26.1 seconds. This demonstrates the ex-
pected impact of a substantial amount of non-determinism on the
approach; while this introduces overhead, we argue that this is ac-
ceptable, as it is only performed once at startup. Further, the gen-
eration of the summary root graph was far more efficient than the
alternative of saturating the initial KB, as this would not terminate.

For both update types, approximately one to three orders of mag-
nitude performance improvements are achieved over the regular
version of Pellet by using the optimized matching algorithm as
updates are received. This is due to the incremental consistency
checking approach and the reduction of candidate variable bind-
ings. In the evaluation we observed that in all queries, the average
incremental consistency checking time was approximately 7 mil-
liseconds, where the normal consistency checking time in Pellet
was approximately 2,200 milliseconds. This illustrates the utility of
the incremental consistency checking approach for the purpose of
syndication. Additionally, in the three queries the actual query an-
swering time (excluding consistency checking) for the regular ver-
sion of Pellet was on average between 500 to 1,000 milliseconds.
In contrast, using the optimizations presented in this work, the av-
erage query answering time (excluding consistency checking) was
approximately 33 milliseconds; this demonstrates the effectiveness
in the reduction of in the number of candidate variable bindings.

With regard to the individual techniques, the evaluation demon-
strated the following: given an update of size 1, the average time
to apply the completion rules to the updated summary root graph
and localize the affected individuals took approximately 0.23 mil-
liseconds. This clearly confirmed our hypothesis that the expan-
sion rules would be applied to only a very small portion of the
summary root graph. Even more promising was that the number
of affected individuals was proportional to the number of individu-
als referenced in the update; in particular, for updates of size 1, on
average, only 11.144 individuals are affected, amounting to only
.068-percent of the entire KB (for increased update size, the num-
ber of affected individuals scaled proportionally to the number of
individuals referenced in the update). This demonstrates a dramatic
reduction in the number of individuals that needed to be considered
after each update and shows that the overestimation approach may
be usable in practice. Additionally, it can be seen that the optimized
version of Pellet outperforms, or performs as well as, KAON2 in all
cases. Even more promising is that in query 13, Pellet outperforms
KAON2 by almost an order of magnitude.

6. DISCUSSION AND FUTURE WORK
Our preliminary results demonstrate that the matching approach

presented in this paper can scale to a few hundred subscriptions un-
der publish frequencies similar to that of the Dow Jones Newswire
(i.e., 10,000 per day ∼ approximately 7 per minute). While this may
be an acceptable workload for a wide range of syndication appli-
cations (e.g., filtering financial news feeds within small to medium
investment banks), for larger scale applications, additional research
is necessary. One direction that we plan to investigate is leveraging
the overlap and/or subsumption between registered subscriptions.
Additionally, we plan to investigate distributed OWL-based syndi-
cation frameworks (i.e., more than one broker), as this will provide
increased scalability.

In this paper, we have primarily addressed providing a more
practical approach for finding information matches in OWL-based
syndication systems. As mentioned earlier, there has been exten-
sive work on finding minimal justifications in OWL KBs [15]. Us-
ing such an approach, it is easy to extend information matches to

publication matches. Further, initial results presented in [15] for
finding justifications demonstrates that such an approach may be
practical. In future work, we will explore the usage of these tech-
niques for extending our current work.

We also feel that there is substantial room extending the current
reasoning approaches. This includes developing additional opti-
mizations for reasoning through changing KBs, as well as extend-
ing the current techniques to a larger portion of OWL; in particular,
we feel it is certainly possible to lift the restriction that the KB
be unfoldable, and we will address this in future work. Addition-
ally, while our initial results demonstrate that the overhead of the
advanced form of query impact is acceptable, we plan to further
investigate the tradeoffs between the two variants presented here.

Lastly, in real world domains, it is often the case that conflict-
ing information is disseminated. Depending on the ontologies used
within such a syndication framework, this could lead to inconsis-
tencies. Currently, we are working on developing revision tech-
niques for OWL-DL KBs and hope to apply such efforts to resolv-
ing inconsistencies encountered in syndication systems [11].

7. RELATED WORK
There has been substantial research on syndication systems, with

a transition to more expressive approaches for representing sub-
scription requests and published information. These have included
keyword-based approaches (e.g., [19]), attribute-value pairs (e.g.,
[1]), XML (e.g., [4]) and recently RDF-based approaches (e.g.,
[23]). The approach presented here provides increased expressivity
for representing published information (i.e., complex logic descrip-
tions of published content can be defined that are not representable
using previous techniques).

[22, 17] proposes a DL-based approach for syndication in which
DL concepts are used for both subscription requests as well as pub-
lished documents/data. [9] presents a DL-based syndication ap-
proach in which the subscriber registers queries (restricted to sin-
gle, named concepts) that model their interests and published data
is modeled as ABox assertions. [9] also presents two optimiza-
tions. Frst, the authors propose inducing a partial ordering upon
all registered queries by their subsumption relations; more general
queries are answered first, thereby reducing the number of individ-
uals that must be considered for more specific queries. [9] also
proposes disregarding previous individuals that satisfied registered
queries when data is published. Our approach differs as we sup-
port complex conjunctive queries, allow subscription and published
document expiration times, etc. Additionally, we address the per-
formance bottlenecks of DL-based syndication further.

There has been substantial work in continuous query answering
in relational databases and datalog (e.g., [21, 5]). While related, the
work presented here addresses a more expressive formalism.

8. CONCLUSION
In this paper, we have formalized a OWL-based syndication frame-

work in which DL reasoning is the primary means for matching
newly published information with subscription requests. We then
addressed one of the main limitations with such a syndication frame-
work, namely efficiently matching new information with registered
subscriptions; to this end, we formally defined continuous queries
(i.e., subscriptions) for DL KBs and presented a novel algorithm
for continuous query answering. Lastly, an evaluation of the query
answering approach for syndication purposes has been presented,
demonstrating dramatic performance improvements.

We would like to thank Jennifer Golbeck, Yarden Katz, Vladimir
Kolovski, Bijan Parsia, Evren Sirin, and Taowei Wang for all of



Figure 1: Continuous query answering for LUBM queries. Times (log.) in milliseconds along Y-axis. Update size along X-axis.

their contributions to this work. This work was supported by grants
from Fujitsu, Lockheed Martin, NTT Corp., Kevric Corp., SAIC,
the National Science Foundation, the National Geospatial-Intelligence
Agency, DARPA, US Army Research Laboratory, and NIST.

9. REFERENCES
[1] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and

T. D. Chandra. Matching events in a content-based
subscription system. In Symposium on Principles of
Distributed Computing, 1999.

[2] F. Baader and B. Hollunder. Embedding defaults into
terminological representation systems. Journal of Automated
Reasoning, 14:149–180, 1995.

[3] F. Baader and W. Nutt. Basic description logics. In The
Description Logic Handbook: Theory, Implementation, and
Applications, pages 43–95. 2003.

[4] Y. Diao, S. Rizvi, and M. Franklin. Towards an internet-scale
xml dissemination service. In Proc. of Int. Conf. on Very
Large Data Bases, 2004.

[5] G. Dong and R. W. Topor. Incremental evaluation of datalog
queries. In Proc. of Int. Conf. on Database Theory, 1992.

[6] G. Flouris, D. Plexousakis, and G. Antoniou. On applying
the agm theory to dls and owl. In Proc. of Int. Semantic Web
Conf., 2005.

[7] B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive
query answering for the description logic SHIQ. In Proc. of
Int. Joint Conf. on Artificial Intelligence, 2007.

[8] Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark for owl
knowledge base systems. Journal of Web Semantics,
3(2):158–182, 2005.

[9] V. Haarslev and R. Möller. Incremental query answering for
implementing document retrieval services. In Proc. of Int.
Workshop on Description Logics, 2003.

[10] C. Halaschek-Wiener and J. Hendler. Expressive logic-based
syndication on the web. In UMIACS Technical Report.
http://www.mindswap.org/∼chris/publications/Syndication-
OWL-TR2006.pdf.

[11] C. Halaschek-Wiener, Y. Katz, and B. Parsia. Belief base

revision for expressive description logics. In Proc. of
Workshop on OWL Experiences and Directions, 2006.

[12] C. Halaschek-Wiener, B. Parsia, and E. Sirin. Description
logic reasoning with syntactic updates. In Proc. of Int. Conf.
on Ontologies, Databases, and App. of Semantics, 2006.

[13] I. Horrocks and U. Sattler. A tableaux decision procedure for
SHOIQ. In Proc. of Int. Joint Conf. on Artificial Intelligence,
2005.

[14] I. Horrocks and S. Tessaris. Querying the semantic web: a
formal approach. In Proc. of Int. Semantic Web Conf., 2002.

[15] A. Kalyanpur. Debugging and repair of owl ontologies. In
Ph.D. Dissertation, University of Maryland, College Park,
2006.

[16] L. Lakshmanan and S. Parthasarathy. On efficient matching
of streaming xml documents and queries. In Proc. of Int.
Conf. on Extending Database Technology, 2002.

[17] L. Li and I. Horrocks. A software framework for
matchmaking based on semantic web technology. In Proc. of
Int. World Wide Web Conf., 2003.

[18] H. Liu, C. Lutz, M. Milicic, and F. Wolter. Updating
description logic aboxes. In Int. Conf. of Principles of
Knowledge Representation and Reasoning, 2006.

[19] B. Oki, M. Pfluegl, and D. Skeen. The information bus: An
architecture for extensible distributed systems. In Proc. of
Symposium on Operating Systems Principles, 1993.

[20] M. Ortiz, D. Calvanese, and T. Eiter. Characterizing data
complexity for conjunctive query answering in expressive
description logics. In Proc. of Nat. Conf. on Artificial
Intelligence, 2006.

[21] D. B. Terry, D. Goldberg, D. Nichols, and B. M. Oki.
Continuous queries over append-only databases. In Proc. of
Int. Conf. on Management of Data, 1992.

[22] M. Uschold, P. Clark, F. Dickey, C. Fung, S. Smith, S. U. M.
Wilke, S. Bechhofer, and I. Horrocks. A semantic infosphere.
In Proc. of Int. Semantic Web Conf., 2003.

[23] J. Wang, B. Jin, and J. Li. An ontology-based
publish/subscribe system. In Proc. of Int. Conf. on
Middleware, 2004.


