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ABSTRACT
Web sites that accept and display content such as wiki ar-
ticles or comments typically filter the content to prevent
injected script code from running in browsers that view the
site. The diversity of browser rendering algorithms and
the desire to allow rich content make filtering quite diffi-
cult, however, and attacks such as the Samy and Yaman-
ner worms have exploited filtering weaknesses. This pa-
per proposes a simple alternative mechanism for preventing
script injection called Browser-Enforced Embedded Policies
(BEEP). The idea is that a web site can embed a policy in
its pages that specifies which scripts are allowed to run. The
browser, which knows exactly when it will run a script, can
enforce this policy perfectly. We have added BEEP support
to several browsers, and built tools to simplify adding poli-
cies to web applications. We found that supporting BEEP
in browsers requires only small and localized modifications,
modifying web applications requires minimal effort, and en-
forcing policies is generally lightweight.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection—unauthorized access,
invasive software

General Terms
Security

Keywords
Script injection, cross-site scripting, web application secu-
rity

1. INTRODUCTION
Many web sites republish content supplied by their user

communities, or by third parties such as advertising net-
works and search engines. If this republished content con-
tains scripts, then visitors to the site can be exposed to
attacks such as cross-site scripting (XSS) [2], and can them-
selves become participants in attacks on the web site and on
others [16]. The standard defense is for the web site to filter
or transform any content that does not originate from the
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site itself, to remove scripts and other potentially harmful
elements [23, 32, 21].

Filtering is complicated in practice. Sites want to allow
their users to provide rich content, with images, hyperlinks,
typographic stylings and so on. Scripts can be embedded in
rich content in many ways, and it is nontrivial to disable the
scripts without also disabling the rich content. One reason is
that different browsers parse and render content differently:
filtering that is effective for one browser can be ineffective
for another. Moreover, browsers try to be forgiving, and can
parse and render wildly malformed content, in unexpected
ways. All of these complications have come into play in
real attacks that have evaded server-side filtering (e.g., the
Samy [30] and Yamanner [3] worms).

We propose a new technique to prevent script injection
attacks, based on the following two observations:

Observation 1: Browsers perform perfect script detection.
If a browser does not parse content as a script while it
renders a web page, that content will not be executed.

Observation 2: The web application developer knows ex-
actly what scripts should be executed for the applica-
tion to function properly.

The first observation implies that the browser is the ideal
place to filter scripts. Indeed, for some web applications
(e.g., GPokr, S3AjaxWiki), most or all of the application
logic is executed in the browser, with the web site acting
only as a data store. For these applications, browser-side
filtering may be the only option.

The second observation implies that the web site should
supply the filtering policy to the browser—it can specify
which scripts are approved for execution and the browser
will filter the rest. In short, the web site sets the policy
and the browser enforces it. We call this strategy Browser-
Enforced Embedded Policies (BEEP).

There are many possible ways to implement BEEP. In
this paper, we have used a method that is easy to imple-
ment while still permitting very general policies. In our im-
plementation, the security policy is expressed as a trusted
JavaScript function that the web site embeds in the pages it
serves. We call this function the security hook. A suitably-
modified browser passes each script it detects to the security
hook during parsing (along with other relevant information)
and will only execute the script if the hook approves it.

Our implementation of BEEP has several advantages.

Flexible policies. The security hook can be any func-
tion that can be implemented in JavaScript. So far we have
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implemented two simple kinds of policies (but we are not
restricted to these policies).

Our first policy is a whitelist, in which the hook function
includes a one-way hash of each legitimate script appearing
in the page. When a script is detected in the browser and
passed to the hook function, the hook function hashes the
script and matches it against the whitelist; any script whose
hash is not in the list is rejected.

Our second policy is a DOM sandbox. Here, the web ap-
plication structures its pages to identify content that might
include malicious scripts. The possibly-malicious user con-
tent is placed inside of a <div> or <span> element that acts
as a sandbox:

<div class="noexecute">. . . possibly-malicious
content. . .</div>

Within the sandbox, rich content (typographic styling, etc.)
is enabled, but all scripts are disabled. When invoked, the
hook function will examine the document in its parsed rep-
resentation, a Document Object Model (DOM) tree. Be-
ginning at the DOM node of the script, the hook function
inspects all of the nodes up to the root of the tree, looking
for “noexecute” nodes. If such a node is found, the script is
not executed.1

While these policies are sufficient to stop injected scripts,
other policies are also possible. For example, the hook func-
tion could also notify the web site when an injected script is
found. A hook function could even analyze scripts and per-
mit only a restricted class of scripts to execute. Policies can
be easily modified over time: the new policy is simply em-
bedded in the site’s pages and will be enforced by browsers
from then on.

Complete coverage. With policies like the whitelist and
DOM sandbox, BEEP detects and filters all injected scripts,
under two conditions. First, to use these policies, all ap-
proved scripts must be identified by the web site in advance
either directly (by enumerating them) or indirectly (by iden-
tifying where scripts cannot occur); this is straightforward
for most applications (and is discussed in more detail in Sec-
tions 3.5 and 4.2). Second, the browser must install the secu-
rity hook before any other scripts on the page are executed,
to ensure complete mediation. This is easily accomplished:
defining the hook as the first script in the document head
ensures it will be parsed first. Together, these conditions
imply that any non-approved script will be rejected before
it has a chance to run.

Ease of deployment. Our method requires browser mod-
ifications, but has been chosen to minimize them. For ex-
ample, the places where browsers need to be modified are
easily identified: we simply locate places in the source code
where the browser invokes the JavaScript interpreter. These
are the points where the browser has identified a script in
a web page. At this point in the source code, the browser
has gathered together all of the information needed to in-
voke the JavaScript interpreter, and we only need to insert
code to invoke the interpreter on our security hook function
first. Depending on the result of this first invocation, we
will either execute the script from the page, or skip it. We
successfully modified the Konqueror and Safari browsers to
support security hooks, and we implemented partial support

1We must take care to prevent cleverly formatted content
from escaping its confines as discussed in Section 3.4.
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Figure 1: Script injection attack on a typical
Wiki/Blog-based site, like MySpace.

in the closed-source Opera browser. These changes required
just over 650 lines of code in the first two cases (compared
to several hundred thousand for the browsers’ rendering en-
gines), and just over 100 lines of JavaScript for Opera.

Web applications must also be modified to use BEEP,
but the changes are simple and localized. We will show
how we modified some existing web applications to embed
policies, and describe some simple tools we built to help in
this process.

Finally, deployment can proceed incrementally. Browsers
that do not support hooks will still render pages that de-
fine hooks, albeit without the protection they offer. Servers
can (and should) continue to filter user content, with BEEP
serving as a second line of defense against scripts that escape
detection. Moreover, while we intend that web sites be re-
sponsible for embedding appropriate policies, policies could
also be embedded by other means. For example, a third
party could generate a whitelist for an infected site, and a
firewall or other proxy could insert the whitelist policy into
pages served from that site.

Moderate overhead. When a browser renders a BEEP-
enabled web page, there is some additional overhead for
parsing the security hook function and executing the hook
function whenever a script is parsed. After running some
simple experiments we found that rendering overheads aver-
aged 14.4% for whitelist policies and 6.6% for sandbox poli-
cies, typically amounting to a fraction of a second. These
percentages do not include network time, which would fur-
ther reduce overhead if accounted for.

The next section presents some background, and the re-
mainder of the paper explains our BEEP technique and poli-
cies, describes our implementation, and presents experimen-
tal results. The paper concludes by comparing BEEP to
related work.

2. BACKGROUND
Script injection, or cross-site scripting, is a very common

vulnerability: according to MITRE’s CVE list [20], it is the
most common class of reported vulnerabilities, surpassing
buffer overflows starting in 2005. Here we review script
injection attacks and illustrate why it is difficult to filter
scripts using standard server-side techniques.

2.1 Script Injection
We are concerned with attacks that cause a malicious
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1. <html><head>

2. <script src="a.js"></script>

3. <script> ... </script>

4. <script for=foo event=onmouseover> ... </script>

5. <style>.bar{background-image:url("javascript:alert(’JavaScript’)");}</style>

6. </head>

7. <body onload="alert(’JavaScript’)">

8. <img id=foo src="image.jpg">

9. <a class=bar></a>

10. <div style="background-image: url(javascript:alert(’JavaScript’))">...</div>

11. <XML ID=I><X><C><![CDATA[<IMG SRC="javas]]><![CDATA[cript:alert(’XSS’);">]]>

12. <meta http-equiv="refresh"

content="0;url=data:text/html;base64,PHNjcmlwdD5hbGVydCgnWFNTJyk8L3NjcmlwdD4K">

13. <img src=&#106;&#97;&#118;&#97;&#115;&#99;&#114;&#105;&#112;&#116;

&#58;&#97;&#108;&#101;&#114;&#116;&#40;&#39;&#88;&#83;&#83;&#39;&#41;>

14. <img src=javascript:alert(&quot;3&quot;)>

15. </body></html>

Figure 2: Ways of embedding scripts in web pages.

script, typically written in JavaScript, to be injected into
the content of a trusted web site. When a visitor views a
page on the site, the injected script is loaded and executed
in the visitor’s browser with the trusted site’s privileges.
The injected script can leak privileged information (cookies,
browsing history, and, potentially, any private content from
the site) [2]. The script can also use the visitor’s browser to
carry out denial of service attacks or other attacks on the
web site, or on others. If the web site is very popular, the
attack can be greatly amplified [16].

Script injection can be achieved in many ways. In cross-
site scripting (XSS), the attacker often exploits web sites
that insert user-provided text into pages without properly
filtering the text. For example, members of on-line commu-
nities like MySpace, Blogger, and Flickr can enter their own
content and add comments to the content of others. This
content is stored on the site and may be viewed by anyone.
If a malicious member manages to include a script in his
content, any viewers of that content would run the script
with the privileges of the site. And if a viewer were also
a member of the site, the script could access or modify the
viewer’s content, including private information stored at the
site or at the browser (e.g., as a cookie). Such an attack is
shown in Figure 1.

Another way of injecting a script is by “reflection.” For
example, when asked for a non-existent page, many sites try
to produce a helpful “not found” response that includes the
URL of the non-existent page that was requested. There-
fore, if the site is not careful, an occurrence of the text
<script>...</script> in the URL can be executed in the
visitor’s browser when it renders the “not found” page. To
exploit this, an attacker can try to entice victims to follow
URLs with targets that include scripts, e.g.,

http://trusted.site/<script>document.location=
’http://evil.site/?’+document.cookie</script>

The attacker could place the URL in a spam e-mail, in a
blog comment or wiki entry on trusted.site, or even on
another site. If a victim follows the link, the script will run
in the “not found” page served by trusted.site, retrieve
the user’s trusted.site cookie, and send it to evil.site.

Another possible attack scenario [14] exploits the dynamic

nature of JavaScript-enabled web pages, where the HTML
content served from the web server is altered in the browser
by the execution of scripts. For instance, a site might be
constructed so that a URL of the form

http://vulnerable.site/welcome.html?name=Joe

produces personalized content using a static HTML page in
combination with an embedded script. In particular, the
script can use features like innerHTML and document.write

to modify the content of the page at the browser, personal-
ized according the value of “name.” This opens the possibil-
ity that a malicious script can be constructed entirely in the
browser, as a combination of “name” and other parameter
values, as well as the text of the page itself.

This can be taken to an extreme: web applications like
S3AjaxWiki [22] have no server-side logic at all. The ap-
plication logic consists entirely of JavaScript code that exe-
cutes in the browser, and the server is used solely as a data
store. In this case, clearly any measures to combat mali-
cious scripts must be taken in the browser (and S3AjaxWiki
currently provides no such measures).

2.2 Script Detection
The standard solution to script injection is for the web

site to filter or transform all possibly-malicious content so
that scripts are removed or made harmless, as shown in Fig-
ure 1. The simplest kind of filter is to escape the special
characters in the content to prevent scripts, if any, from
executing in the browser. For example, if some content con-
tains “<script>”, the special characters ‘<’ and ‘>’ can be
escaped as HTML entities ‘&lt;’ and ‘&gt;.’ This will cause
the browser to display the text “<script>” instead of exe-
cuting the script. When combined with technologies like
tainting [21] that track potentially-malicious content, this is
an excellent defense. Unfortunately, this simple approach
can prevent users from creating rich content. It renders
<script> elements harmless, but also disables features like
typographic styling (<b>, . . . ), lists (<ul>, <li>, . . . ), etc.,
from appearing in user content.

Therefore, many sites attempt to detect scripts within
possibly-malicious content, and filter only those portions of
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the content. Unfortunately, detecting scripts is hard, for
several reasons:

Multiple vectors. Scripts can be embedded in a web page
in many ways; Figure 2 shows some examples. Line 2 em-
beds a script contained in a separate file. Line 3 is an inline
script. Line 4 is an event handler that will be attached to
the img element on line 8, and which will be invoked when
the user moves the mouse over the element. Line 5 is an
inline CSS style declaration that says that the background
of elements in class “.bar” should be obtained by executing
a script. The script is invoked by the browser as it renders
line 9. The script is contained in a javascript:URL; such
URLs can appear in a document wherever any other URL
can appear. Line 7 is an inline event handler that will ex-
ecute when the body of the document has finished loading.
Line 10 is an element that uses an inline CSS style to invoke
a script. Line 11 embeds script in XML appearing in HTML;
note that the script can be broken across multiple CDATA
sections. Line 12 is a refresh directive that indicates that
the page should be refreshed by loading a data:URL. The
data:URL is the base64 encoding of a javascript:URL, and it
is executed on page refresh. Of course, this is only a partial
list of how scripts can be embedded in web pages, and we
are currently in a phase where browsers are actively being
developed to enable more scripting.

Encodings and quoting. Quotes that delimit content and
encodings of special characters add further complications.
There are multiple kinds of quoting and escaping (for URLs,
HTML, and JavaScript), which must be stripped at multi-
ple stages. There are multiple quote characters, plus cases
in which quotes can be omitted. The base64 encoding of
line 12 in Figure 2 is one example; others are line 13, which
uses a javascript:URL that has been character encoded, and
line 14, which uses HTML entity encoding to hide quote
characters in a script (this can confuse filters that look for
literal quote characters).

Browser quirks. Script detection is also complicated by
the fact that the process of rendering in the browser is ill-
defined. Different browsers can render pages in very differ-
ent ways, so, what one browser sees as a script may not be
a script to another browser. Furthermore, browsers make a
best effort to render all pages, no matter how ill-formed: bet-
ter to render something than show a blank page or an error
message. This leads to some surprising script embeddings.
For example, some browsers allow newlines or other non-
printing characters to appear in the “javascript:” portion
of a javascript:URL, so that

<img src=’java
script:alert(1)’>

will result in script execution. For another example,

<img src=‘javascript:alert("Hello ’world’")‘>

can execute in some browsers, even though backquote (‘)
is not a standard quote character in HTML or JavaScript.
Even something completely malformed such as

<img """><script>alert("ack")</script>">

executes in some browsers.

2.3 Real world examples
All of these issues—multiple vectors, encodings, and quirks

in browsers—make script detection a hard problem, and give
rise to dozens of techniques for hiding scripts from detection,

available on public sites, e.g., ha.ckers.org [26]. These
techniques are effective in practice. For example, the Samy
worm defeated script filtering on MySpace in October 2005.
The worm caused over a million users to add “Samy” to
their MySpace “friends” list, and portions of the site had
to be closed down for several hours to repair the infection.
The worm’s author has written a nice description of how he
developed the worm and got it past the filters [30].

The Yamanner worm is another example. Yamanner at-
tacked Yahoo! Mail in June 2006 and infected almost 200,000
users [3]. It injected a script into HTML email, and prop-
agated when users read their mail. Yahoo! had filtering in
place, but Yamanner defeated it with input looking some-
thing like this:

<img src=". . . " target="onload="malicious script">

This input is completely harmless as-is, but Yahoo!’s filter
deleted the target attribute (which can be used for certain
information-disclosure attacks). This produced an injected
script in an onload event handler:

<img src=". . . " onload="malicious script">

So, an effective filter must not only detect scripts, but also
ensure that it does not introduce scripts.

3. Browser-Enforced Embedded Policies
We have argued that it is difficult for the web site to detect

and filter malicious scripts. We now present our alternative
approach in detail. The idea is for the web site to specify,
for each page, a security policy to allow or disallow script
execution. The policy is embedded in the pages and en-
forced by the browser during page rendering. We call this
approach Browser-Enforced Embedded Policies (BEEP). In
the rest of this section, we describe one possible implementa-
tion of BEEP that provides complete coverage against script
injection attacks under typical assumptions.

3.1 Attacker Assumptions
We assume that the adversary has no special access to

served content, and attempts to inject malicious scripts oc-
cur as described in the previous section, e.g., by upload-
ing malicious content to a wiki or phishing with creatively-
formed URLs. Therefore, we assume that the web site is
trusted by site visitors, up to the limits of the same-origin
policy [28]: visitors are willing to execute scripts in site con-
tent, since they assume scripts to be tacitly endorsed by
the site. Likewise, visitors expect that the site will not dis-
tribute private information to a malicious third party. We
also assume that the attacker cannot modify content that is
en route from the web site; depending on the attacker, this
may require HTTPS for transport.

3.2 The Security Hook
In our implementation of BEEP, a web site specifies its

policy through a security hook that will be used to approve
scripts before execution in the browser. The hook is com-
municated to the browser as the definition of a JavaScript
function, afterParseHook. A specially-modified browser in-
vokes afterParseHook whenever it parses a script while ren-
dering pages. (The necessary browser modifications will be
described shortly.) If the hook function returns true then
the script is deemed acceptable and will be executed; other-
wise it will be ignored.
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The security hook must implement complete mediation to
be an effective defense: no script may escape scrutiny by the
security hook before the script runs. This implies that the
hook function must be installed before any malicious scripts
are parsed and executed. While the HTML standard does
not specify the order of parsing and execution, we have ver-
ified that in practice the major browsers parse and execute
the first <script> element in the head first. We rely on
this behavior of the browser by defining the hook function
as the first script in the <head> element of the document.
(It is straightforward to structure a web application so that
no dynamic content is ever included prior to the security
hook definition in the <head> of each web page.) Note that
putting the security hook function first also ensures that it
is tamper-proof: any malicious scripts that would modify
the hook will be parsed after the hook is installed, and so
be filtered by the hook and prevented from running.

When a modified browser parses a script, it invokes the
afterParseHook function with two arguments: the text of
the parsed script and the DOM element of the parsed script.
Thus when rendering the document fragment

<body onload="alert(’hello’)"> ... </body>

the browser invokes afterParseHook on the text of the script,
i.e., "alert(’hello’)" and the DOM node of the <body> el-
ement. The policy implemented by the hook function can
be any boolean function that can be programmed in Java-
Script. We have experimented with two kinds of policies:
whitelists and DOM sandboxes. We discuss these next.

3.3 Whitelists
Most current web applications embed scripts in their web

pages. Typically, the web application developer knows pre-
cisely which scripts belong in each page (but see Section 3.5).
Therefore, the developer can write a security hook that
checks that every script encountered by the browser is one
of these known scripts; in other words, a whitelist policy.

We implement a whitelist in JavaScript as an associative
array indexed by the SHA-1 hashes of the known scripts.
When afterParseHook is invoked on a script, it hashes the
script and checks whether the hash appears in the array.
For example, if the script <script>alert(0)</script> is
known, then whitelist [SHA1("alert(0)")] should be de-
fined; if an included script such as <script src="aURL"/> is
known, then whitelist [SHA1("aURL")] should be defined.

Here is a sample implementation:

if (window.JSSecurity) {
JSSecurity.afterParseHook =

function(code, elt) {
if (whitelist[SHA1(code)]) return true;
else return false;

};
whitelist = new Object();
whitelist["478zB3KkS+UnP2xz8x62ugOxvd4="] = 1;
whitelist["AO0q/aTVjJ7EWQIsGVeKfdg4Gdo="] = 1;
... etc. ...

}

The SHA1 function could be defined as part of the script
in which the above code appears, or it could be part of li-
brary provided by the browser to security hooks. The latter
is clearly preferable: while JavaScript versions of crypto-
graphic functions exist [12], they perform far worse than
native implementations (cf. Section 5.2).

Since the whitelist is indexed by hashes, which must change
every time a script changes, whitelists clearly demand some
automated support in the web development process. We
have built some simple tools to help with this process, and
we describe them in Section 4.2.

We have also experimented with an alternative whitelist
implementation in which the array is indexed not by cryp-
tographic hashes, but by the entire content of the approved
script. This results in larger pages and better security (by
avoiding collisions) but eliminates the overhead of hashing.

3.4 DOM sandboxing
Our second kind of policy, DOM sandboxing, takes a black-

list approach: instead of specifying the approved scripts, we
specify the scripts to be rejected. The web application is
written to produce web pages in which the parts that con-
tain possibly-malicious content are clearly marked, and the
security hook prevents scripts in those parts from executing.
This is useful if some parts of the page should be allowed to
contain unknown scripts, e.g., for third-party ads.

As a first attempt, we suggest that a web application place
possibly-malicious content within <div> or <span> elements
that are marked as “noexecute,” and which act as a sandbox.

<div class="noexecute">. . . possibly-malicious
content. . .</div>

The web application would then supply a security hook that
receives the DOM node of a script as input, and walks the
DOM tree from that node towards the root. If a “noexe-
cute” element is found, the hook function will return false,
preventing execution.

Unfortunately, this implementation of DOM sandboxing
is too simplistic. An attacker can cause a malicious script to
break out of the sandbox by injecting content of the form:

</div><script>malicious script</script><div>

We call this trick node-splitting ; similar tricks are used to
illegally access hidden files in web servers (using .. in URLs)
and to perform SQL injections.

A simple variation solves the problem. The web appli-
cation arranges for all possibly-malicious content to be en-
coded as a JavaScript string, and to be inserted as HTML
into the document by a script, using innerHTML:

<div class="noexecute" id="n5"></div>
<script>

document.getElementById("n5").innerHTML =
"quoted possibly-malicious content "

</script>

Here the “noexecute” node is created separately from its
contents, so that there is no possibility of the contents split-
ting the node. The assignment of the string to the innerHTML
property of the node causes the browser to parse and ren-
der the string as HTML, producing a DOM tree with the
node as parent, even when the string contains a </div> that
attempts to prematurely close the <div> tag of the “noex-
ecute” node. The rules for quoting special characters in
JavaScript strings are simple, so there is no possibility of
malicious content escaping from the string.

HTML frames cause an additional complication. A frame
in a document introduces a child document. If an attacker
injects a script included in a frame, our hook reaches the
top of the frame without encountering the sandbox node,
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and must continue searching in the parent document. The
DOM does not provide easy access from the child to its place
in the parent, so our hook must do some searching in the
parent document to find the frame element. The complete
implementation is available at the BEEP web site [10].

3.5 Discussion
Using BEEP policies, the web site and the browser can co-

operate to provide complete coverage against injected scripts.
This is because (1) the hook function implements complete
mediation, scrutinizing all scripts before execution, and (2)
the unapproved (and possibly injected) scripts are clearly
distinguished from approved scripts by the policy and will
therefore be rejected.

There may be cases in which a web site wishes to approve a
script provided by a third party. For example, web sites may
use ad networks like AdBrite [1] to display advertisements on
their pages. Typically, the ad network will provide a snippet
of JavaScript for the web site to include in its pages. When
the page is displayed in the user’s browser, the JavaScript
will then retrieve content to display the ad, overwriting the
original JavaScript. This can be accommodated by BEEP;
the web site simply needs to approve this “ad-retrieving”
script along with its own—it would either place it in the
whitelist, or outside any sandbox. However, blindly trusting
this third-party script is not without risk: the script may
actually be malicious, e.g., part of a scheme to perform click-
fraud [5]. BEEP does not provide any guidance on whether
to trust a third party.

Scripts can also dynamically create new scripts and insert
them into the page using DOM operations; e.g., some ads are
implemented this way. If a script is trusted, BEEP implicitly
trusts the scripts it installs. Given that trusted scripts are
already quite powerful (e.g., the script can modify any part
of the document, including the security hook) this is not an
additional risk. Indeed, BEEP does not suggest whether a
user should trust a particular site or the scripts it provides.
Rather, BEEP ensures that a browser only runs those scripts
actually endorsed by a given trusted site.

4. IMPLEMENTATION
Our implementation of BEEP requires changes in brows-

ers to support security hooks, and changes in web applica-
tions to embed policies as hooks in web pages. We success-
fully modified several browsers and web applications and
found the changes to be small and straightforward, present-
ing little barrier to adoption. Code for our browser modifi-
cations, benchmarks, and test cases is available online [10].

4.1 Browser modifications
Konqueror and Safari. We modified the Konqueror

and Safari browsers to support security hooks. The brows-
ers are related: Safari’s rendering engine was forked from
Konqueror’s in 2002. Konqueror’s engine currently consists
of approximately 200,000 lines of C++, while Safari’s consists
of about 350,000 lines of C++. We changed or added roughly
650 lines of code in both cases, and we added another 650
lines for a standard SHA-1 implementation.

In both browsers, each frame in an HTML document is
handled by a single instance of the HTML parsing and ren-
dering engine which in turn is associated with an instance of
the JavaScript interpreter. As might be expected, most of
the required changes were limited to the interface between

the HTML and JavaScript engines. This interface is bidirec-
tional—the HTML engine invokes the JavaScript interpreter
to execute scripts that it encounters while parsing the doc-
ument, and a JavaScript function can modify the document
tree that is managed by the HTML engine.

To implement afterParseHook, we had to take special
care to ensure that certain modifications to the document
tree that occur due to the execution of JavaScript do not
result in invocations of the hook function. For instance, if a
JavaScript function (already authorized by afterParseHook)
chooses to insert a dynamically-generated script into the
document we must ensure that the hook function is not
called once again. The majority of changes (in terms of
lines of code) in both browsers were due to a small refactor-
ing that was necessary to handle this case.

DOM sandboxing required some additional changes. To
enforce DOM sandboxing, the afterParseHook must tra-
verse the document tree from the location of the script to-
wards the root of the tree. However, in a few cases the
HTML parsers in Safari and Konqueror do not maintain a
well-formed document tree when parsing JavaScript. This
occurs, for instance, when parsing scripts that appear in the
attributes of HTML elements, and this prevents the hook
from determining whether or not a script is contained within
a “noexecute” node. Therefore, we changed the HTML
parsers to make the DOM tree well-formed in these cases.
Note that the ECMA and DOM standards for JavaScript
and HTML do not require the document tree to be well
formed during parsing.

Opera. We also implemented partial support for our hooks
in a closed-source browser, Opera. Opera supports a feature
called User JavaScripts intended to allow users to customize
the web pages of arbitrary sites. For example, if a web
site relies on non-standard behavior of Internet Explorer, an
Opera user can write a User JavaScript that is invoked when-
ever a page from the site is rendered, and which rewrites
the page content so that it renders correctly in Opera. The
User JavaScript programming interface permits registering
JavaScript callback functions to handle events that occur
during parsing and rendering. Crucially, User JavaScript
is executed before any scripts on the web page, and it can
prevent any script on the web page from executing.

We have written a User JavaScript for Opera that does
two things. First, it defines a JSSecurity object for ev-
ery web page, within which a web page can register its
afterParseHook function. Second, it registers a handler
function that calls the user’s JSSecurity.afterParseHook

(if it exists) on script execution events. The Opera im-
plementation handles <script> elements perfectly. Opera
does not invoke callbacks when parsing a script within an
event handler, but we can insert a callback just before an
event is delivered to a listener. Similarly, we can insert a
callback just before a javascript:URL is executed; however,
in this case, Opera does not make the DOM node of the
URL available, so we cannot implement DOM sandboxing
for javascript:URLs in Opera. The complete User JavaScript
is 79 commented lines of code, plus 137 lines for a SHA-1
implementation in JavaScript.

Mozilla Firefox and Internet Explorer. We have be-
gun to explore an implementation of security hooks in the
Firefox browser. We have not yet investigated Internet Ex-
plorer. Both browsers have extensions (Greasemonkey for
Firefox and Trixie for IE) that can function something like
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the User JavaScript provided by Opera. However, these
extensions are not sufficient to implement BEEP because
scripts embedded in a page can execute before the exten-
sions are triggered.

4.2 Web application modifications
Adding BEEP security policies to web application pages

is fairly straightforward. For the whitelist policy, this can
be done with some simple tool support, depending on how
the application was written. For the DOM-based policy, the
application developer must author the pages according to
the required structure.

Whitelist policies. For applications written directly in a
mixture of HTML and JavaScript, a simple tool can identify
the scripts on each page, calculate their hashes, and insert
the whitelist and security hook into the document’s head. A
web developer could use such a tool to add policies to pages
prior to deployment—i.e., when the pages do not contain
any user content all scripts are legal.

We have written such a tool based on the Tidy HTML
parser [33]. Currently, the tool searches for scripts where
they most frequently occur: in <script> elements, in event
handlers, and in the URLs of hyperlinks. Though parsing
page content is a difficult problem in general, in this case the
parsed content is non-malicious, and thus presumably non-
obfuscated. Any legitimate scripts that are missed by this
process will cause missing functionality, and hence should
be quickly discovered; and illegitimate scripts will not be
added to the whitelist through this process. Support for ap-
plications that use uncommon combinations of HTML and
JavaScript might be better provided by adapting a sophisti-
cated server-side filter to identify and hash all scripts in the
static content of a page.

Web applications can also be developed from higher-level
languages and/or specifications, in lieu of authoring HTML
and JavaScript directly. For example, Links [18], Hop [8],
and Google Web Toolkit (GWT) [6] are all systems that
compile web applications into server- and client-side pro-
grams, where the client-side programs consist of HTML and
JavaScript. To show that systems like these can automati-
cally compile security hooks into each web page, we modified
Links to generate and insert the whitelist for the emitted
scripts; the changes to the compiler were fairly small—only
60 LOC. We did not attempt similar modifications to Hop
or GWT due to time constraints.

Finally, for applications that generate HTML dynamically
(e.g., by using server-side PHP, JSP, etc.), the generated
HTML must include the policy. Fortunately, emitted scripts
often appear directly in the page-generating code, so it is
straightforward to copy them into a document on which to
run our script identification tool. One could imagine au-
thoring language-specific tools to do this automatically.

DOM sandboxing. To apply DOM sandboxing to a web
application we first need to identify all portions of web pages
where user-provided content can appear. This can be solved
by known techniques (such as tainting) and in any case is
routine for any web application that already applies filtering.
Next, we need to escape the content as a JavaScript string
and insert boilerplate code from Section 3.4. This just re-
quires some minimal support from web authoring tools.

For example, we modified Blixlwiks, a custom blog and
wiki engine that we use to run cyclone.thelanguage.org,
to implement DOM sandboxing. This involved writing one

<html><head>

<script src="hook.js"></script>

...

</head><body> <h1 id="page_title">StartPage</h1>

<div id="content">

<p>This is the default page content.

You should edit this.</p>

<!-- The injected attack vector -->

<SCRIPT SRC=xss.js></SCRIPT>

</div>

</body></html>

Figure 3: Page of a web application containing a
BEEP policy (hook.js) and an injected script.

function to escape JavaScript strings, another to output
sandboxed content, and a third to output the hook func-
tion in each page. In total we added about 40 lines of code,
plus the 34-line hook function. We also enlisted the aid of
the authors of Continue [15], a web application for manag-
ing conferences; they added DOM sandboxing to Continue
in 10 lines of code. It should be just as easy to modify a web
application written in a templating language such as PHP.
Templating languages make it easy to insert content into
boilerplate HTML, and also provide functions for quoting
content as strings.

5. EXPERIMENTAL EVALUATION
We conducted experiments to verify the effectiveness of

our BEEP implementation and to measure its overhead. We
found that, as expected, our implementation defeated a wide
array of known attacks, and imposed a low to moderate
overhead for typical web sites.

5.1 Effectiveness
BEEP as described in Section 3 should provide complete

protection against injected scripts, assuming we have inter-
cepted all invocations of the JavaScript interpreter in the
browser source code. To verify this, we constructed a test
suite of attack vectors, each of which is a snippet of HTML
and JavaScript which might be injected into user-provided
content as the first step of an attack. BEEP-enhanced ver-
sions of S3AjaxWiki, Blixlwiks and Continue defeated all of
the attacks.

Our test suite is based on 61 XSS attack vectors published
by ha.ckers.org [26]. The vectors incorporate obfuscation
to evade common server-side filters, and they have been
tested to ensure execution on at least one major browser.
Of the 61 vectors, 17 can be used to mount a successful
attack against Konqueror, 9 against Safari, and 33 against
Opera. The remaining vectors can be used to attack other
browsers.

To model a script injection attack on a web site, we man-
ually inserted each attack vector into the user-content of
the target application. In addition, we added whitelist poli-
cies to S3AjaxWiki and static pages of Continue, and we
modified Blixlwiks and Continue to insert DOM sandboxing
policies. Then we verified that BEEP detected and nullified
every injected attack vector.

A fragment of an S3AjaxWiki page with a whitelist pol-
icy, as used in our test suite, is shown in Figure 3. Each
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S3AjaxWiki page is derived from a common template for all
wiki pages. The template includes a whitelist security hook
function (generated by our tool) that appears as the first
script in the head of the document. The script that appears
in the body of the page is the injected attack vector. A
similar scheme was used to specify whitelist policies in web
pages of Continue.

The changes to support DOM sandboxing policies in Blixl-
wiks and Continue were described in Section 3.4.

5.2 Overhead
We used our BEEP-enabled Safari browser to measure the

page load time for the thirty most popular US web sites (ac-
cording to alexa.com), both with and without our policies
installed. Repeated timings for four of the sites varied con-
siderably, in both the modified and unmodified Safari, so we
eliminated them from consideration; the statistics we report
here are for the remaining twenty-six sites. All claims of
statistical significance are made here with probability of the
null-hypothesis p < 0.05. Overheads were low to moderate,
and indicate that, on average, DOM sandboxing policies are
less expensive than whitelist policies.

Whitelist policies. For our whitelist experiments we au-
tomated the following process. First, we retrieved the front
page of each of the 26 sites, along with all elements needed
for proper rendering, and stored them locally, to remove the
variability of the network from our measurements. Next, we
used our script identification tool (cf. Section 4.2) to com-
pute a SHA-1 hash of each script that appeared within a
page. We then inserted a script defining an afterParseHook

function as the first element in the <head> of each document.
We benchmarked Safari version 2.0.4 linked with our mod-

ified version of the WebKit HTML engine, revision 16269
running on MacOS X 10.4. All experiments were conducted
on a 1.67 GHz G4 PowerBook laptop with 1.5GB of main
memory. Each of the 26 web pages was loaded in the browser
twenty times, and we measured the total time taken by the
browser to load each document, using Safari’s loading-time
measurement feature [29]. The total time to load the 520
unmodified pages was 698.2 seconds, compared to 798.6 sec-
onds to load the pages that included whitelist policies, for an
average overhead of 14.4%. The slowdown due to whitelist
policies was statistically significant in 19 of the 26 pages.
The greatest overhead was 40% for the megaupload.com

front page, which includes several large scripts inline. Re-
call that these measurements do not include network latency,
which would tend to mask the overhead of BEEP. Further-
more, the average increase in mean page load time was only
0.2 seconds per page.

We also measured the performance of policies in which the
whitelist array is indexed using the content of an approved
script rather than its hash. We found this approach to in-
crease the size of each web page by 8KB or 13% on average.
We found no clear difference in the load times of pages that
used content-based whitelists and hash-based whitelists. Of
the 26 web pages, the difference in load times was not statis-
tically significant in 13 cases; 7 showed a statistically signif-
icant speedup when using content-based whitelists, while 6
showed a statistically significant speedup when using hash-
based whitelists. Note, however, that native support for
hashing is critical for acceptable performance of a hash-
based whitelist policy. For example, using a purely Java-
Script implementation of SHA-1 caused megaupload.com to

take nearly 10 times longer to load than when using a native
implementation.

DOM Sandbox policies. We also modified the 26 web
pages to include a trivial DOM sandboxing policy where no
<div> or <span> in the page is marked with a “noexecute”
tag. The purpose here is to measure the cost of traversing
the DOM to validate scripts for the common case in which
no malicious script has been injected in a page. It took 744.0
seconds to load the 520 DOM-sandbox enabled web pages
in Safari, a 6.6% average overhead compared to the unpro-
tected case. The maximum overhead of 25.9% was observed
for youtube.com. The slowdown due to DOM policies was
statistically significant in only 13 of the 26 cases.

Our measurements showed that the difference in load times
between whitelist policies and DOM sandboxing policies are
statistically significant in only 17 of 26 cases. On average
whitelist policies are 7.3% slower than DOM sandboxing
policies, ranging from a maximum of a 28% slowdown to
a 7.8% improvement in load time performance. Over all
the top 30 web pages, we found that the average depth of
a script in the DOM is only about 11. This indicates that
traversing the DOM to authorize a script is often likely to be
cheaper than computing cryptographic hash functions over
the text of a script.

6. RELATED WORK
We are not aware of any other implementation of BEEP,

but we have seen discussion of a related idea in the Mozilla
forums: Markham has proposed communicating some poli-
cies on scripts from web site to browser in an HTTP header
[19]. In comparison to our work, his selection of policies
is fixed, e.g., “only scripts in the header are allowed to exe-
cute,” and do not seem to include policies that could, for ex-
ample, allow some event handlers in a page to execute, while
preventing others. Our implementation is more flexible and
can accommodate such policies, which appear needed to
handle common practice in web applications. Using HTTP
headers also seems to require more intrusive changes to web
applications and browsers than our work. Relative to that
proposal, Schmidt suggested the idea of using a DIV element
as a DOM sandbox, but did not address node-splitting [31].

Mozilla has a feature called signed scripts [27]. Digital sig-
natures could be used as a basis for BEEP, providing a way
to distinguish between approved and non-approved scripts,
but Mozilla’s signed scripts cannot be used this way. In-
stead, scripts are signed when they require additional priv-
ileges, such as writing to local files, and the absence of a
signature does not constrain scripts.

Server-side techniques to protect against script injection
attacks have been reported extensively in the literature. A
systematic approach to filtering injected attacks involves
partitioning trusted and untrusted content into separate chan-
nels and subjecting all untrusted content to application de-
fined sanitization checks [23]. Su and Wassermann [32] de-
velop a formal model for command injection attacks and
apply a syntactic criterion to filter out malicious dynamic
content. Applications of taint checking to server programs
that generate content to ensure that untrustworthy input
does not flow to vulnerable application components have
also been explored [21, 11, 35].

While insights borrowed from server-side filtering can, in
principle, be brought to bear in the design of security hook
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functions, our work is most closely related to other client-
side techniques to protect users from malicious web content.

Noxes [13] is a purely client-side method that aims to de-
fend against cross-site scripting by disallowing the browser
from contacting “bad” URLs. It has general rules for black-
listing and whitelisting web sites in which links that are
statically present in the page are placed in the whitelist,
while dynamically-generated links are disallowed. Because
Noxes policies blacklist script-generated links, they can be
restrictive for applications with substantial client-side logic,
e.g., in Ajax-enabled applications. Moreover, link blacklist-
ing is not enough to prevent all attacks, e.g., those not in
violation of the same origin principle, as was the case of the
Samy worm. By contrast, our policies either permit or deny
execution of entire scripts, as determined by the host site.

BrowserShield [25] and CoreScript [36] propose to defeat
JavaScript-based attacks by rewriting scripts according to a
security policy prior to executing them in the browser. In
BrowserShield, the rewriting process inserts trusted Java-
Script functions to mediate access to the document tree by
untrusted scripts. CoreScript policies are specified as a kind
of edit automata [17]. BrowserShield and CoreScript poli-
cies are far richer than ours, as they can mediate individual
script actions, whereas we consider only whether to run the
script at all. As a result, these systems have a correspond-
ingly higher implementation (and trust) burden, especially
since parsing HTML and JavaScript are non-trivial when
accommodating many possible browsers, as we have argued,
and since rewriting may need to be applied during script ex-
ecution [36]. Finally, and perhaps most importantly, in the
main usage mode for these systems, the policy is expected to
be specified independently of the site that serves the content.
In this mode, it is unclear how a policy might distinguish
between malicious republished content that, say, accesses a
document’s cookie from a server-trusted script that does the
same. Combining BEEP with client-side rewriting policies
might result in the best of both worlds: BEEP would accu-
rately filter illegal scripts, while client-side rewriting could
police server-provided scripts for less-trusted sites.

Hallaraker and Vigna [7] modified Mozilla to monitor the
JavaScript operations of a web page and invoke countermea-
sures against malicious behavior. This permits fine-grained
policies on JavaScript execution in the browser. However,
the work does not address communicating policies from the
web site to the browser.

Jackson et al. [9] describe several unexpected repositories
of private information in the browser’s cache that could be
stolen by XSS attacks. They advocate applying a refinement
of the same-origin policy [28] to cover aspects of browser
state that extend beyond cookies. By allowing the server
to explicitly specify the scripts that it intentionally includes
in the document, our approach can also be thought of as
an extension of the same-origin policy. In particular, our
policies ensure that all scripts that executed in the page
are trusted by the site from which the page originated; we
believe this is actually the assumption of most users.

There are some analogies between our BEEP policies and
intrusion detection systems (IDS). Filtering is a problem in
network intrusion detection (IDS) systems [24] too. In par-
ticular, just as different browsers accept and render HTML
differently, different operating systems may accept and pro-
cess packets slightly differently, even packets that are ill-
formed. As a result, the IDS might think a packet is harm-

less because it is ill-formed, but in fact a particular OS might
accept it and thereby be exploited. Our solution is analogous
to a host-based intrusion detection system (HBIDS) [34, 4].
In these systems, a program’s correct behavior is character-
ized in advance in terms of actions like system calls, and
an execution monitor detects when a program deviates from
its allowable behavior. In BEEP, the allowable behavior
is defined by the web site in terms of whitelisted (or non-
sandboxed) scripts, and attempts to deviate from it are pre-
vented by the browser.

7. CONCLUSIONS
This paper has presented Browser-Enforced Embedded

Policies (BEEP), a simple technique for defeating script
injection attacks on web applications. The broad diver-
sity of browser rendering algorithms makes it difficult for
server-side techniques to detect potential scripts within rich
user-provided content. In contrast, any web browser knows
perfectly well what content it considers a script. We ex-
ploit this insight by having web applications embed a secu-
rity hook function in their pages that will be executed in a
suitably-modified browser before executing any other script.
When instantiated with a suitable server-provided whitelist
or sandbox policy, the hook function can remove malicious
scripts with perfect precision. We found that the required
changes to web applications and browsers are small and lo-
calized, and performance overhead is low, making deploy-
ment practical. We plan to further explore the possibilities
of BEEP, experimenting with additional policies and greater
policy language support. Code, patches, and experimental
data are available from our web site [10].
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