
CSurf: A Context-Driven Non-Visual Web-Browser

Jalal Mahmud Yevgen Borodin I.V. Ramakrishnan

Department of Computer Science
Stony Brook University

Stony Brook, NY 11794, USA
{jmahmud, borodin, ram}@cs.sunysb.edu

ABSTRACT
Web sites are designed for graphical mode of interaction.
Sighted users can “cut to the chase” and quickly identify
relevant information in Web pages. On the contrary, indi-
viduals with visual disabilities have to use screen-readers to
browse the Web. As screen-readers process pages sequen-
tially and read through everything, Web browsing can be-
come strenuous and time-consuming. Although, the use of
shortcuts and searching offers some improvements, the prob-
lem still remains. In this paper, we address the problem
of information overload in non-visual Web access using the
notion of context. Our prototype system, CSurf, embodying
our approach, provides the usual features of a screen-reader.
However, when a user follows a link, CSurf captures the
context of the link using a simple topic-boundary detection
technique, and uses it to identify relevant information on
the next page with the help of a Support Vector Machine, a
statistical machine-learning model. Then, CSurf reads the
Web page starting from the most relevant section, identified
by the model. We conducted a series experiments to eval-
uate the performance of CSurf against the state-of-the-art
screen-reader, JAWS. Our results show that the use of con-
text can potentially save browsing time and substantially
improve browsing experience of visually disabled people.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—natural language, Voice I/O ; H.5.4 [Information
Interfaces and Presentation]: Hypertext/Hypermedia—
architectures, navigation

General Terms
Algorithms, Design, Human Factors, Experimentation

Keywords
Context, Web Accessibility, Screen-Reader, Voice Browser,
Non-Visual, CSurf, HearSay, Partitioning, Semantic Blocks

1. INTRODUCTION
The Web has become an indispensable source of informa-

tion and we use it more and more in our daily activities. The
primary mode of interaction with the Web is via graphical

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

browsers, which are designed for visual interaction. As we
browse the Web, we have to filter through a lot of irrelevant
data. For example, most Web pages contain banners, ads,
navigation bars, and other data distracting us from the in-
formation. Sighted individuals can process visual data in no
time at all. They can quickly locate the information that is
most relevant to them. This task can be time-consuming and
difficult for people with visual disabilities. Consider a sce-
nario where graphical interaction is impossible, e.g. when
users are visually challenged individuals. Typically, such
people browse the Web with screen-readers [14, 2].

Many screen-readers process Web pages sequentially, i.e.
they first read through the menus, banners, commercials,
or anything else that comes before the desired information.
This makes browsing time consuming and strenuous. To
alleviate this problem, screen-readers provide shortcuts to
skip segments of text in the order they appear on the page.
Nevertheless, users may still have to listen or skip through
substantial page content before they get to the information.

To help users locate the information quicker, most screen-
readers allow keyword searching. This assumes that the
users know what they are looking for. In some cases search-
ing may help skip directly to the information. However,
simple searching has two problems: it works only for exact
string matching and it disorients users in case of a wrong
match. In both cases users have to start from the beginning
of the page. This begs the question: Is it possible to devise
techniques to get to the relevant information quickly?

Identification of relevant information on any distinct Web
page is subjective. However, as soon as the user follows a
link, it is often possible to use the context of the link to find
the relevant information on the next page and present it to
the user first. Consider an example when a blind person is
looking for an MP3 player at BizRate.com (Figure 1).

Using a standard shortcut-driven voice-browsing interface,
the user finds the MP3 category in the product taxonomy
in Figure 1(a). When he or she follows the link, shown by
the mouse cursor, we use the words of the link to find the
segment that contains the desired information, surrounded
by the box enclosing the two items in Figure 1(b). The
voice browser then starts reading the page from that po-
sition. After the MP3 player of interest has been found,
and the user follows the SanDisk link in Figure 1(b), the
words of the link and its context, enclosed by the dotted
rectangle, are used to find detailed description of the MP3
player, surrounded by the solid box in Figure 1(c). In this
paper we present a context-driven browsing system, CSurf,
that will make possible the use scenario described above.

WWW 2007 / Track: Browsers and User Interfaces Session: Smarter Browsing

31

(a) (b) (c)

Figure 1: Product Search Example

CSurf brings together Content Analysis, Natural Language
Processing (NLP), and Machine Learning algorithms to help
blind users quickly identify relevant information on following
a link, thus, considerably reducing their browsing time.

The rest of the paper is organized as follows: in Section
3.1, we describe a technique for partitioning Web pages,
based on their structural and visual organization, exploiting
the observation that semantically-related blocks of informa-
tion are often spatially aligned (e.g. see the alignment of
product items in Figure 1(b)). In Section 3.2, we explain our
context-collection algorithm, based on the cosine-similarity
topic detection method; and in Section 3.3 we describe rele-
vant information identification algorithm, based on the sta-
tistical model learned by a Support Vector Machine (SVM).
A thorough performance testing and a preliminary user eval-
uation is presented in Section 4. Related work appears in
Section 5, followed by concluding remarks in Section 6.

2. SYSTEM ARCHITECTURE
CSurf, our context-based browsing system, has its roots

in our previous work on HearSay [25] audio browser. CSurf
extends HearSay with a context analysis module, upgrading
or replacing most of the old modules. CSurf is composed
of the following modules: Interface Manager, Context An-
alyzer, Browser Object, Frame Tree Processor, and Dialog
Generator, see Figure 2.

Users interact with CSurf Web Browser through the In-
terface Manager, which is an extended VoiceXML inter-
preter, VXMLSurfer [3], that we have developed. The mod-
ule uses VoiceXML1 dialogs to communicate with its users,
process user input, and present Web page content. The
Interface Manager provides both basic and extended screen-
reader navigation features, such as shortcuts, voice controls,
etc. The system allows both keyboard and voice inputs,
and can process commands along with keyboard shortcuts.
Text-to-speech and speech recognition engines are accessed
through the Java Speech API (JSAPI) [16], providing a
flexible interface capable of supporting different speech en-
gines. In its current configuration, the Interface Manager
uses freely available engines: FreeTTS [7] and Sphinx [30].

1V oiceXML (VXML) is the W3C’s standard XML format
for specifying interactive voice dialogues between a human
and a computer (www.w3.org/TR/voicexml20).

Interface Manager

Browser Object

Context Analyzer

Frame Tree Processor

VXML

Dialog Generator

Frame Tree

HTTP
request

WEB

HTTP
request

HTML

Frame Tree

Frame Tree

HTTP
request

Figure 2: Architecture of CSurf

Context Analyzer is called twice for each Web page
access. When the user follows a link, e.g. indicated by the
arrow in Figure 1(b), the module collects the context of the
link, enclosed by the dotted rectangle. When a new page
is retrieved, the module executes our SVM-based algorithm
to locate the content segment estimated to be most relevant
with respect to the context of the followed link. The context
processing algorithms are described in detail in Section 3.

The Browser Object module downloads Web content
every time the user requests a new page to be retrieved.
The module is built on top of the Mozilla Web Browser [18]
coupled with JREX [15] Java API wrapper. Mozilla engine
takes care of all the standard browser functionalities such
as support for cookies, secure connection, history, pop-up
blocking, etc. We have extended JREX to extract a Frame
Tree, Mozilla’s internal representation of a Web page, after
the Web page has been rendered on the screen. This way,

WWW 2007 / Track: Browsers and User Interfaces Session: Smarter Browsing

32

Mozilla takes care of any dynamic content, cascading style-
sheets, malformed HTML, and other rendering problems.
This relieves CSurf browser from having to deal with heavy
DOM-tree objects, while giving it even more information
about the content and the style.

Frame Tree Processor uses JREX API to extract a
Frame Tree representation of Web pages (Figures 3, 4) from
the Browser Object. We define a Frame Tree as a tree-like
data structure that contains Web page content, along with
its 2-D coordinates and formatting information, that spec-
ifies how the Web page has to be rendered on the screen.
Frame coordinates refer to the upper-left corners of the cor-
responding Web page segments displayed on the screen.

A frame tree is composed of nested frames2, so that the
entire page is a root frame, containing other nested frames
down to the smallest individual objects on the page. For
example, Figure 3(a), section 1, shows a snapshot of the New
York Times front page, with rounded rectangles illustrating
the frames. In Figure 3(b), the corresponding frame-tree is
partially expanded to demonstrate the types of frames. We
distinguish between the following classes of frames: text,
links, images, image-links, and non-leaf frames. We will
continue referring to any node of a frame tree as a frame.

Frame Tree Processor uses a number of heuristic algo-
rithms to clean, reorganize, and partition the frame tree.
The module also detects blocks representing semantic clus-
ters of information in a Web page. Figure 3(a) shows the
New York Times Web page split into four sections (clus-
ters). The frame tree nodes corresponding to these sections
are marked with 3-D block icons in Figure 3(b). Block 1
contains a banner, block 2 contains a search bar, block 3
has a taxonomy, and block 4 - the news headlines. Subse-
quently, the Context Analyzer identifies the most relevant
block, before passing the frame tree to the Dialog Generator.
Section 3 describes the corresponding algorithms in detail.

The Dialog Generator module uses a collection of Voice-
XML dialog templates to convert the frame tree into Voice-
XML dialogs. The latter are then delivered to the Inter-
face Manager. A number of sub-dialogs are also used to
present history, help, lists of (un-)visited links in the page,
etc. The Dialog Generator module currently supports only
basic screen-reading dialogs. More research is needed to
determine the optimal structure and representation for the
zooming, customizable, and domain specific dialogs, which
can be also expressed using VoiceXML and processed by the
Interface Manager.

3. CONTEXTUAL BROWSING
This section presents the core of CSurf’s Context Ana-

lyzer module, that drives contextual browsing. The two main
algorithms enabling contextual browsing are Context Iden-
tification and Relevant Block Identification. Both of these
algorithms utilize a Geometrical Clustering algorithm used
by the Frame Tree Processor module to partition Web pages
into segments, containing semantically related content.

To collect the context, a topic-detection algorithm is ap-
plied to the information surrounding the followed link. We
gather the text that shares a common topic [1] with the link,
and use this context to identify the relevant information on
the destination Web page. Then, a support vector machine
[32] is used to compute the relevance score of these sections

2Note, this is different from HTML frames.

with respect to the context. Subsequently, the Web page
is presented to the user starting with the highest ranking
section. If the relevant section was not identified correctly,
the user can always skip to the beginning of the page. The
following subsections discuss the algorithms in detail.

3.1 Geometric Clustering
As described in Section 2, instead of implementing its own

segmentation algorithm, CSurf utilizes a data structure cre-
ated by the Mozilla’s rendering engine. While rendering a
page on the screen, Mozilla creates a tree-like structure of
nested frames that holds the content of the Web page: the
leaf frames of the tree contain the smallest individual ele-
ments, e.g. a link, an image, etc.; non-leaf frames “enclose”
one or more leaf frames and/or other non-leaf frames; and
the root frame “contains” the entire page. We refer to this
data structure as a frame tree. Figure 3(b) shows an ex-
ample of graphical representation of the frame tree.

We use an observation that semantically related informa-
tion exhibits spatial locality [21, 20] and often shares the
same alignment on a Web page. Since a frame tree repre-
sents the layout of a Web page, we infer that geometrical
alignment of frames may imply semantic relationship be-
tween their respective content. If all descendants of a frame
are consistently aligned either along X or Y axes, we call
such a frame consistent.

A Maximal Semantic Block, or simply block, is the largest
of the consistent frames on the path from a leaf to the root
of a frame tree. Thus, it is likely to be the largest possible
cluster containing semantically related items of information.
For example, Figure 3(a) shows how the alignment informa-
tion is used to cluster the New York Times Web page into
maximal semantic blocks: banner labeled as 1, search - 2,
taxonomy - 3, and news - 4.

The FindBlocks algorithm is used to find the blocks in a
frame tree. The algorithm runs a depth-first search over the
frame tree and recursively determines whether the frames
are consistent, ignoring the alignment of leaf-frames. A
frame is consistently X-aligned if all of its non-leaf descen-
dants are X-aligned. Similarly, a frame is consistently Y-
aligned if all of its non-leaf descendants are Y-aligned. Oth-
erwise, the frame is not considered to be consistent. In such
case, all of its children are marked as blocks.

Algorithm FindBlocks
Input: Frame: node of a frame tree
Output: Blocks: set of maximal semantic blocks
1. Identify all children C1, C2, . . . , Cm of Frame
2. Frame.IsConsistent ←true
3. for j ← 1 to m
4. do if Cj .IsLeaf = false
5. then FindBlocks(Cj)
6. if Cj .Alignment = NONE
7. then Frame.IsConsistent ←false
8. if Frame.IsConsistent = false
9. then for j ← 1 to m
10. do if Cj .Alignment 6= NONE
11. then Blocks ←Blocks ∪ {Cj}
12. else Frame.Alignment ←GetAlignment(Frame)
13. if Frame.Alignment = NONE
14. then for j ← 1 to m
15. do if Cj .Alignment 6= NONE
16. then Blocks←Blocks ∪ {Cj}
17. return Blocks

WWW 2007 / Track: Browsers and User Interfaces Session: Smarter Browsing

33

The FindBlocks algorithm uses the GetAlignment algo-
rithm to check whether the children of a frame have maching
alignment. That is, the GetAlignment algorithm determines
that a frame is X-aligned if all of its children are aligned on
the left, right, or center of the X-axis. Y-alignment of a
frame is computed in a similar fashion.

Algorithm GetAlignment
Input: Frame: node of a frame tree
Output: Alignment : alignment of Frame’s descendants
1. Identify all children C1, C2, . . . , Cm of Frame
2. XFirst ←C1.X
3. Y First ←C1.Y
4. XAlignedDescendants ←true
5. Y AlignedDescendants ←true
6. Alignment ←NONE
7. for j ← 2 to m
8. do if Cj .IsLeaf = false
9. then XCord ←Cj .X
10. Y Cord ←Cj .Y
11. if XCord 6= XFirst
12. then XAlignedDescendants←false
13. if Y Cord 6= Y First
14. then Y AlignedDescendants←false
15. if Cj .Alignment 6= XAlign
16. then XAlignedDescendants←false
17. if Cj .Alignment 6= Y Align
18. then Y AlignedDescendants←false
19. if XAlignedDescendants = true
20. then Alignment ←XAlign
21. if Y AlignedDescendants = true
22. then Alignment ←Y Align
23. return Alignment

The maximal semantic blocks, obtained by the Geometric
Clustering algorithm, are further used by the Context Iden-
tification and Relevant Block Identification algorithms. The
Dialog Generator module also makes use of the blocks when
structuring its VoiceXML dialogs.

3.2 Context Identification
Once the Geometric Clustering algorithm has segmented

the Web page into maximal semantic blocks, and the user
selected a link to be followed, the Context Identification al-
gorithm collects the context of the link. Before we proceed
to describe our algorithm in greater detail, we formally de-
fine the notion of context as:

Context of a link is the content around the link that main-
tain the same topic as the link.

Consider Figure 3, showing the front page of The New
York Times Web site and the corresponding frame tree. The
context of the link, indicated by an arrow, is the text sur-
rounded by the dotted line. Notice how the topic changes
from one headline to another.

A block, produced by the Geometric Clustering algorithm,
ideally represents a segment of text on the same subject, but
may have several topics within it. Therefore, we limit topic
boundary detection and context collection to the block con-
taining the link. Context collection begins from the link and
expands around the link until the topic of the text changes.
A simple cosine similarity technique is used to detect the
boundaries of the topic, see equation (1).

The FindContext algorithm initializes the Context mul-
tiset with the words and word combinations (bigram and
trigram), excluding the function words3, from the link and
its non-link siblings; the text in the link siblings is ignored
because links tend to be semantically independent of each
other, i.e. have different topics. It then collects all text per-
taining to the same topic around the link, adding the words
to the Context multiset.

In the NYTimes example, Figure 3(a), the user follows
the link “Top General Warns Against Iraq Timetable”, in-
dicated by the mouse pointer. We initialize the multiset with
the text collected from the link node of the frame tree, indi-
cated by a mouse pointer in Figure 3(b), as well as from the
non-leaf sibling which follows the link node. The multiset
now contains single words (e.g. “general”, “david”, “stout”,
“gen” “john”, etc.), their bigrams (e.g. “david stout”, “gen
john”), and trigrams (e.g. “gen john abizaid”).

After the initialization stage, we collect the context of the
link, starting from the parent frame of the link node, by
expanding the context to include the frame’s siblings. We
divide the siblings into the PredList and SuccList, con-
taining the predecessor and successor siblings respectively,
to expand the context window in both directions. Next, we
calculate the geometric distances4 between the initial frame
and its siblings and sort the siblings accordingly.

Again, in our example, the parent frame of the link in the
frame tree is the node labeled as “a” in Figure 3(b). The
node does not have any predecessor siblings. Its successor
siblings, labeled as “b” and “c”, are respectively 2795 and
3675 pixels away from frame “a”. Hence, we start with
the sibling “b”, construct multiset SText from the sibling’s
text, and compare its content to the content of the Context
multiset. The comparison is done using cosine similarity of
the multisets. More formally, for any two multisets M1 and
M2, their cosine similarity is defined as:

Cos(M1, M2) =
M1 ∩M2√
|M1|

√
|M2|

(1)

In the above formula, each multiset, created from a pas-
sage of text, is considered to be a vector. The cosine of the
angle between the vectors is equal to 1 if the passages are
identical, and 0 if they are dissimilar. We consider two mul-
tisets to be similar if their cosine similarity is above a thresh-
old. We have statistically computed the threshold (See sec-
tion 4.2 for details) that best determines whether a topic
changes between the Context and the SText multisets.

If the cosine similarity between the multisets is above the
threshold, i.e. topic boundary is not detected, the multi-
sets are merged. Otherwise, we stop expanding the context
window in that direction. The process continues until the
Block boundary is reached or when there is no direction to
expand. At that point, the algorithm returns the Context
multiset as the context of the link.

3Function Words or grammatical words are words that
have little lexical meaning or have ambiguous meaning,
but instead serve to express grammatical relationships with
other words within a sentence, or specify the attitude or
mood of the speaker (Wikipedia.org)
4Geometric distance between two frames is the Euclidean
distance between their upper-left corners on the screen.

WWW 2007 / Track: Browsers and User Interfaces Session: Smarter Browsing

34

1

3

2

4

1

(a) Source Page (b) Source Frame Tree

Block

Non-leaf Frame

Image

Text

Image Link

3

4

 2

a

b
c

Link

ba

c

Figure 3: Context Identification

Algorithm FindContext
Input: LinkNode: leaf-frame containing the link
Output: Context: multiset with collected context
1. Context ←non-function words, their bigrams and tri-

grams from LinkNode and its non-link siblings
2. Let ancesBlock be the ancestor Block of LinkNode
3. if ancesBlock 6= LinkNode.Parent
4. then Node ←LinkNode.Parent
5. Expand ←true
6. repeat
7. ChildList ←Node.Parent.Children
8. Let PredList and SuccList be the lists

of predecessors and successors of Node in
ChildList, sorted by their geometric dis-
tance from Node

9. StopExpand ←false
10. repeat
11. Sibling ←PredList.Next
12. SText ←non-function words, their bi-

grams, trigrams from Sibling
13. Similarity ←Cos(Context ,SText)
14. if Similarity > Threshold
15. then Context←Context ∪ {SText}

else StopExpand ←true
16. Expand ←false
17. until PredList.IsLast or StopExpand
18. Repeat line 9 to 17 for SuccList
19. Node ←Node.Parent
20. until Node = ancesBlock or Expand = false
21. return Context

Continuing with our example in Figure 3, we collect the
text from the closest sibling frame “b”, corresponding to
the news item “Plea Deal in Selton Hall Arson Case”. The
multiset SText, constructed for this frame, now contains
{“plea”, “deal”, “selton”, . . ., “plea deal”, . . ., “plea deal
selton”, . . .}. We compute the cosine similarity of the Con-
text and a SText multisets, which turn out to be below our

threshold. The algorithm detects a topic boundary between
the content of the multisets and, therefore, stops expanding
the context window and returns the Context multiset. The
context of the followed link, Figure 3(a), is enclosed by the
dotted line.

3.3 Relevant Block Identification
After the context of the link has been gathered on the

source page, the Browser Object module downloads the des-
tination Web page and generates a new frame tree. Again,
we use our Geometric Clustering algorithm to segment the
page into maximal semantic blocks: 1, 2, 3 in Figure 4.
Then, the Relevant Block Identification algorithm matches
the context against every block in the frame tree and com-
putes the relevance of each block with respect to the col-
lected context.

Intuitively, a relevant block identification algorithm should
use a block ranking function to weigh the blocks and, then,
pick the top-scoring block as the most relevant one. For-

mally, block ranking is a function which takes a vector ~f of
block feature values f1, f2, . . . , fn and a vector ~w with fea-
ture contributions w1, w2, . . . , wn, and returns the weight W
of the block:

F : (f1, f2, . . . , fn)× (w1, w2, . . . , wn) → W (2)

A naive approach is to manually design such function and
fix the individual weights for each feature vector. For exam-
ple, a function can be based on addition of feature values:

F(~f × ~w) = w1 · f1 + w2 · f2 + . . . + wn · fn (3)

However, manually designing such function is not prac-
tical, justifiable, or scalable over a multitude of features.
Therefore, we learn a block ranking function using a statis-
tical learning method: we define “block ranking” as a learn-
ing problem and use a support vector machine (SVM) [32,
5], a well-known statistical model used in classification and

WWW 2007 / Track: Browsers and User Interfaces Session: Smarter Browsing

35

3

1

2

3

2
1

(a) Destination Page (b) Destination Frame Tree

Figure 4: Most Relevant Block Identification

Table 1: Description of Block Features
Feature Description
funigram exact match of context words
fbigram exact bigram match (pairs of words)
ftrigram exact trigram match (triples of words)
fstemUnigram match of word stems*
fstemBigram match of stemmed bigrams
fstemTrigram match of stemmed trigrams

regression analysis, to learn a block relevance model. Then,
we use the machine-learned model to determine the rele-
vance of blocks with respect to a given context. The blocks
are ranked according to their relevance to the context.

As many other machine learning tools, SVM takes a fea-
ture vector as input and produces its classification (when
SVM is used in classification problem). We define two classes
for our block relevance model: relevant and not relevant,
and describe each block of the destination page with a set of
feature values, which we compute by trying to match single
words, bigrams, trigrams, and their stemmed5 counterparts,
contained in context, to the text in the blocks. The features
are listed in Table 1. On each successful match the corre-
sponding feature value is incremented.

We used a freely available SVM package, libsvm [5], to
learn the block relevance model. To train the SVM model,
we collected and labeled training examples, where each block

is represented by a tuple (~f , l), where ~f is a feature vector
for that block and l is its relevance label. To simplify the
labeling, a block can be either relevant with respect to some
context: l = 1, or not relevant: l = 0.

To compile labeled training data, we manually collected
Web logs from about 1000 Web pages using our data-collect-
ion tool described in Section 4.1. Each Web log is a tuple
of (Source Page, Destination Page), with the context and
the link selected on the source page, and the most relevant

5Word stemming is done using Porter’s stemmer [24]

block selected on the destination page. We identified the
set of blocks B1, B2, . . . , Bm on the destination Web page,
computed their feature values, and labeled the blocks as
relevant (1) or not relevant (0). The training examples were,
then, used to train the SVM and learn the SVM model for
relevant block identification.

The machine-learned SVM model is now used to predict
the relevance of a given block with respect to some context.
Given a set of blocks B1, B2, . . . , Bm, we compute the
feature values for each block by matching the context against
the text in the block. Next, we use the learned SVM model
to label the blocks as either relevant or not-relevant, and
get the associated probability values. Then, we pick the
highest ranking block, in terms of the probability values, as
the most relevant one. Block 3, expanded in Figure 4(b),
was chosen by the SVM as the most probable candidate for
contextual relevancy. Subsequently, the CSurf will read the
page starting from section 3 of the Web page in Figure 4(a).

4. EVALUATION AND EXPERIMENTS
We developed the system, CSurf, by significantly expand-

ing a naive implementation, we had previously described in
a short paper [17]. Unlike CSurf, the naive prototype, which
we will call CSurf-Simple, did not use topic detection, SVM-
based learning, word-stemming or other NLP techniques.
Furthermore, we had not previously done a comprehensive
evaluation of the CSurf-Simple system.

In this section we present an extensive performance eval-
uation of CSurf; we also compare the quantitative perfor-
mance of CSurf and CSurf-Simple and show that the former
has considerably higher performance in terms of accuracy
of context identification, relevant block identification, and
browsing efficiency. However, we leave the detailed analysis
of the individual contributions of the afore-mentioned tech-
niques to future work.

WWW 2007 / Track: Browsers and User Interfaces Session: Smarter Browsing

36

0

10

20

30

40

50

60

70

80

90

100

News Books Electronics Office Info

Domains

A
cc

u
ra

cy
 (

%
)

Figure 5: Accuracy of Context Identification

4.1 Experimental Setup
In our experiments and evaluation we have used both

blind and sighted users. Our system was evaluated by thirty
graduate students and three blind people. It was impracti-
cal to get quantitative measurements of the accuracy of our
algorithms with blind users. Therefore, we used sighted stu-
dents to obtain those metrics, while blind evaluators helped
get qualitative feedback.

Prior to the experiments, all evaluators were trained to
use the CSurf Web browser. The evaluators interacted with
the system using keyboard and headphones. Blind evalua-
tors were allowed to browse the Web sites, which they were
familiar with. We used twenty five Web sites for the stu-
dent evaluation and data collection, 5 Web sites in each of
5 content domains: news, books, consumer electronics, office
supplies, and informational. The informational category in-
cluded various Web sites, such as LIRR6 and Medicaid7.

To have an efficient infrastructure for experiments, we de-
signed a visual tool for viewing frame trees, as well as col-
lecting data. We also embedded a Web browser to aid the
data collection. We manually collected around 1000 (source-
destination) pairs of Web pages to calculate a threshold for
topic identification and to train the SVM model. During
the data collection stage, the participants were asked to se-
lect any link and the context around it on the source pages.
Then, they were told to follow the link and select one block
containing what, they thought, was the most relevant infor-
mation with respect to the link they had chosen. The frame
trees, corresponding to the source and the destination pages,
were automatically saved together with user selections.

4.2 Accuracy of Context Identification
We used the collected source pages to statistically com-

pute the accuracy and the threshold for our topic boundary
detection algorithm, as described in Section 3.2. We used
50% of the page samples to estimate the threshold value and
the remaining 50% were used to calculate the accuracy of
topic identification algorithm.

We defined the accuracy of context identification as cosine
similarity between the human- and computer-selected con-
text, with the cosine similarity value ranging between 0 and
1, where 1 signified a 100% match. We used this measure
for threshold estimation, as well as quantitative evaluation
of the context-identification algorithm.

6http://www.mta.nyc.ny.us/lirr
7www.cms.hhs.gov/home/medicaid.asp

0%

20%

40%

60%

80%

100%

News Books Electro Office Info

Domain

A
cc

u
ra

cy
 (

%
)

CSurf-Simple

CSurf

Figure 6: Accuracy of Relevant Block Identification

We designed a greedy algorithm that started with an un-
realistically high threshold (1), that would only accept iden-
tical passages of text; we used our context identification al-
gorithm to find the context of the selected links in 50% of the
sample Web pages, compared the results with the human-
selected context, and, then, adjusted the threshold value
iteratively until it converged to the accuracy that locally
could not be improved any further.

Specifically, we set the threshold T1 = 1, n = 1, and
δ = 0.1; we compared the accuracies An and An+1 while
adjusting the threshold Tn+1 = Tn − δ iteratively, as long
as An < An+1. Then, we used a binary-search approach to
converge to the optimal threshold Topt between Tn and Tn+1,
where the accuracy Aopt was the local maximum. Finally,
we used the remaining 500 collected Web pages to calculate
the average accuracy of context identification in each of the
5 domains. The accuracy is summarized in Figure 5.

CSurf scored in the range of 80% to 90% accuracy com-
pared with human-selected context. CSurf scored the high-
est with the “News” and “Informational” Web sites; higher
accuracy of context identification in these two domains can
be explained by the fact that they are better organized and
have more textual content. Context identification accuracy
received the worst score (80%) in the “Electronics” domain,
and average scores in “Books” and “Office Supplies” Web
sites. This is, most likely, because e-commerce Web sites
crowd their pages with more diverse information, preferring
to use more images than text. While CSurf handles ALT
tagged images, many online stores disregard Web accessibil-
ity guidelines, making it difficult to use images as context.

4.3 Accuracy of Relevant Block Identification
The collected data was also used for SVM training and the

evaluation of the algorithm’s accuracy. Using the relevant
block identification algorithm on each pair of the collected
Web pages, we computed a feature vector for each block
of the destination Web page, as described in (Section 3.3).
The human-selected most-relevant blocks were labeled with
1’s (i.e. relevant), while the rest were labeled with 0’s. We
divided the training data in two sets: training (90%) and
cross-validation (10%).

Once the SVM model was learned, we tested it by us-
ing 100 Web page pairs of the cross-validation set to pre-
dict block labels. The labels were then compared with the
human-selected ones, and the accuracy of the prediction was
calculated based on the hit-miss approach, i.e. the number
of correctly identified blocks over the total number of blocks.

WWW 2007 / Track: Browsers and User Interfaces Session: Smarter Browsing

37

The learned model showed an average of 91% accuracy
in its prediction of the most relevant blocks, summarized
in Figure 6. The same chart shows the prediction-accuracy
comparison of CSurf over CSurf-Simple with 14% improve-
ment. To do a proper comparison of the relevant block
identification algorithms, we updated CSurf-Simple with the
topic-detection-based context identification algorithm. This
allowed us to have a uniform reference model for comparing
the two relevant-block-identification algorithms.

Our algorithm showed reasonable performance in all five
content domains. It is notable that our algorithm again
achieved the best result of over 95% in the news domain.
The relevant information identification algorithm depends
on the geometric organization of Web pages and the per-
formance of the Geometric Clustering Algorithm; the latter
performs the best on well-structured Web sites. The struc-
tural organization is often much better in News Web sites
than in other domains, which explains CSurf’s high perfor-
mance in that domain. The ”Informaional” category was
not among the high performers, because informational Web
sites tend to have more homogenous content and less struc-
ture, compared to the news Web sites. The relevant block
identification algorithm averaged about 90% accuracy in the
e-commerce (Books, Electronics, Office Supplies) categories.
The decrease of accuracy, compared to the News Web sites,
was due to the ambiguity introduced by the high similarity
among the different items occurring within the page. An-
other contributing factor was the presence of user reviews,
having more word matches and, thus, scoring higher than
product descriptions.

4.4 Browsing Efficiency with CSurf
We performed preliminary evaluation of the advantages

introduced by context-directed browsing vs. simple screen
reading. Since our goal was to provide faster access to rel-
evant information, we measured the time taken to reach
the desired information after following a link using CSurf,
CSurf-Simple, and a state-of-the-art screen-reader, JAWS.
The tree experiments were conducted in parallel.

We did, on average, 5 navigation steps on each of the 25
Web sites. The CSurf evaluators were not allowed to move
back on the page when the actual relevant information pre-
ceded the CSurf’s choice of the “most” relevant block. In
such case, the users had to “wrap” around and start from
the beginning of the page before they could get to the in-
formation. This is a better approximation of the behavior
of blind users, because they would feel lost on an unfamiliar
page. On the other hand, depending on personal preferences
and the familiarity with a Web page structure, blind users
could prefer to skip to the beginning of the page as soon as
they became aware of the CSurf’s mistake, thus, increasing
the actual time gain than reported in this section.

Familiarity with a Web page after the first reading is an-
other predicament in getting valid evaluation results. There-
fore, the experiments were performed by sighted users with
the goal of getting a rough estimate of the potential improve-
ments of the browsing time. Rigorous structured between-
or within-the-group evaluations by blind people are required
to determine the actual time gains, which may be differ-
ent for blind users. However, our preliminary results show
promise that context-directed browsing can substantially im-
prove browsing efficiency for blind people. Qualitative eval-
uation by blind people is described in Section 4.5.

0

20

40

60

80

100

120

140

160

180

News Books Electronics Office Info

Domains

T
im

e
(s

ec
)

CSurf

CSurf-Simple

JAWS

Figure 7: CSurf vs. CSurf-Simple vs. JAWS

We observed that for all domains our system was able
to present the relevant information faster than JAWS. Since
JAWS only follows the layout of the page content, it takes it
much longer to get to the relevant information. On the other
hand, CSurf takes its users to the information directly, thus,
reducing their browsing time. In Figure 7, we summarize
the results of the experiments by giving time comparisons
of CSurf, CSurf-Simple, and JAWS in all 5 content domains.

The results showed a speedup of 38% over CSurf-Simple,
and 66% over the state-of-the-art screen-reader JAWS. The
variations in the average time taken between different do-
mains was due to the small sample sizes. The news domain
showed the higher time gain than other domains, clearly,
due to the higher accuracy of relevant block identification.

4.5 End-User Experience
Following the experiments, we also conducted preliminary

qualitative evaluation of CSurf with 3 blind and low-vision
users at Helen Keller Services for the Blind (HKSB), Hemp-
stead, NY [10]. The evaluators, who were experienced com-
puter users proficient with JAWS, were quickly trained to
use CSurf and were, then, asked to browse familiar-to-them
Web sites. In the end of the two-hour evaluation session,
they were asked to give their opinions on CSurf’s perfor-
mance. The evaluators noted that context-directed brows-
ing, although not always accurate, is a substantial improve-
ment over regular browsing with screen-readers, because
screen-readers always start reading from the beginning of the
page. It is worth mentioning that our research was spurred
by the request of HKSB’s blind instructors to find a way
“not to start reading from the beginning of the page” while
browsing the Web.

Blind users also liked several other features of CSurf, such
as various shortcuts, e.g. the list of links in a page; advanced
voice controls to change voices and voice properties; and a
magnified input window for partially sighted users. Among
the shortcomings of the system, the blind evaluators found
some deficiencies with our navigation controls, which made
it difficult to move within a page. In our current VoiceXML
dialogs, users are allowed to skip between blocks in any di-
rection, but they cannot move back within a block. We are
in the process of redesigning the dialog structure to accom-
modate this functionality. Also, because CSurf processes
and analyzes Web pages statically, some dynamic content,
such as Flash and JavaScript menus, may not be accessible.
We are improving our system to handle the above-mentioned
issues and have already scheduled a comprehensive evalua-
tion of the improved CSurf at HKSB.

WWW 2007 / Track: Browsers and User Interfaces Session: Smarter Browsing

38

5. RELATED WORK
The work described in this paper has broad connections

to research in non-visual Web access, Web content analysis,
and contextual analysis.
Non-visual Web Access. Several research projects aim-
ing to facilitate non-visual Web access include work on brow-
ser-level support [14, 2, 31], content adaptation and sum-
marization [35, 28, 9], organization and annotation of Web
pages for effective audio rendition [26, 12, 11], etc.

Some of the most popular screen-readers are JAWS [14]
and IBM’s Home Page Reader [2, 31]. An example of a
VoiceXML browsing system (which presents information se-
quentially) is described in [22]. All of these applications do
not perform content analysis of Web pages. BrookesTalk [35]
facilitates non-visual Web access by providing summaries
of Web pages to give its users an audio overview of Web
page content. The work described in [9] generates a “gist”
summary of a Web page to alleviate information overload
for blind users. However, summarization of the entire page
does not help find the relevant information within it. CSurf,
having roots in our earlier HearSay audio browser [25], goes
beyond these systems in scope and approach: it analyzes the
content of Web pages and helps find relevant information in
them while navigating from one page to another.

The works describing organization and annotation of Web
pages for better audio rendition typically rely on rules [26]
or logical structures [11]. The ASTER system [26] permits
visually challenged individuals to manually define their own
document-reading rules. Other researchers propose the idea
of extracting content using semantics [12]. They describe
a framework for manual annotation of the content w.r.t. a
schema, representing the task a user wishes to accomplish.
These annotation rules are also site specific, and, hence, not
scalable over content domains.

The essential difference between our work and all of the
above-mentioned research is that we do not require any do-
main knowledge in terms of rules. CSurf dynamically cap-
tures the contextual information and uses it to facilitate
non-visual Web access.
Web Content Analysis. A critical piece of our context
analysis algorithm is in partitioning Web pages into geomet-
ric segments (blocks). Substantial research has been done
on segmenting Web documents [31, 6, 33]. These techniques
are either domain-specific [6], site-specific [31], or depend on
fixed sets of HTML markups [33]. Semantic partitioning of
Web pages has been described in [19, 20]. These systems
require semantic information (e.g. ontologies). In contrast
to all of these works, our geometric clustering method does
not depend on rules, domain knowledge or ontologies.

Web page partitioning techniques have been used for con-
tent adaptation [4] and content caching [27]. VIPS [34] al-
gorithm uses visual cues to partition a Web page into geo-
metric segments. This algorithm is used in [29], where the
segments are described by a set of features (e.g. spatial
features, number of images, sizes, links, etc.). The feature
values are then fed into an SVM, which labels the segments
according to their importance.

CSurf also uses an SVM to rank the blocks on the desti-
nation Web page w.r.t. the context of the link in the source
page. In contrast to [29], where the SVM model was learned
using features only from the content of Web page segment,
our SVM model uses the feature set, Table 1, computed from
both the context of the link and the content of the block.

The main difference between our research and the above-
mentioned techniques is that we exploit geometrical and log-
ical structure of Web pages both to collect context and to
identify relevant information on the next Web page.
Contextual Analysis. The notion of context has been
used in different areas of Computer Science research. For
example, [13] defines context of a Web page as a collection
of text, gathered around the links in other pages pointing
to that Web page. The context is then used to obtain a
summary of the page.

The use of contextual information for non-visual Web ac-
cess is not a well-studied problem. A technique resulting
from early efforts at context analysis for non-visual Web ac-
cess is described in [8], where context of a link is used to get
the preview of the next Web page, so that visually disabled
individuals could choose whether or not they should follow
the link. This idea is used in AcceSS system [23], to get the
preview of the entire page. However, presenting a preview
does not guarantee the reduction of browsing time.

All of these works define the context of the link as an ad-
hoc collection of words around it. In contrast, our notion
of context is based on topic similarity of text around the
link. We use a principled approach for context analysis with
a simple topic boundary detection method [1], confined to
geometric clusters that have semantically related content.

CSurf is fundamentally different from all of these works in
its application. Specifically, it aims to help visually disabled
users quickly identify relevant information on following a
link, thus, potentially reducing their browsing time.

Our initial ideas on context-directed browsing will appear
as a short paper [17]. We have substantially extended this
naive preliminary work with a geometric clustering tech-
nique to identify maximal semantic segments; a topic de-
tection [1] algorithm for context collection; an SVM block-
relevance model to identify relevant information in Web pages
for context-directed browsing; as well as word-stemming and
other NLP techniques. We developed a stable and usable
CSurf Web-browser supporting many of JAWS shortcuts.
We have also conducted performance evaluations to justify
our techniques, and preliminary usability testing by blind
users at HKSB.

6. CONCLUSION AND FUTURE WORK
In this paper, we described the design and implementation

of CSurf, our context-directed non-visual Web browser. The
system uses Web page partitioning and techniques from NLP
and Machine Learning. We demonstrated the effectiveness
of our algorithms by showing substantial performance im-
provements over our base-line prototype, CSurf-Simple. We
leave the detailed analysis of the individual contributions of
SVM, word-stemming, and topic detection to future work.
Using our system, visually impaired individuals can poten-
tially imitate the browsing behavior of sighted users, saving
their time on not listening to irrelevant information. Thus,
CSurf goes beyond traditional screen-readers in its ability
to combat information overload and “cut to the chase”.

In the future, we will explore the use of other features
for enhancing the performance of context-browsing. For ex-
ample, by introducing more features that distinguish be-
tween parts of speech and text formatting, the accuracy of
the SVM model could be improved. Bringing other NLP
techniques (e.g. summarization) to enhance browsing ex-
perience is another interesting direction for research. Con-

WWW 2007 / Track: Browsers and User Interfaces Session: Smarter Browsing

39

textual browsing also has implications for handheld devices
with small screens. It may be possible to adapt our algo-
rithms to identify and display the most relevant sections of
Web pages on small screens effectively, making navigation
with handhelds more efficient.

Finally, we would like to mention that the instructors at
HKSB are ready to switch over to CSurf, as soon as we
have a stable version implementing all major shortcuts of
JAWS screen-reader. HKSB have also agreed to provide
their power users with visual disabilities for pre-release beta
testing of CSurf. Following the beta-testing, we are planning
to release the first version of the CSurf non-visual context-
based voice browser.

7. ACKNOWLEDGEMENTS
We would like to thank NSF for supporting this research

(Award IIS-0534419). We are grateful to Dipanjan Das
for his input at the initial stages of this research, and Dr.
Amanda Stent for her invaluable knowledge on topic detec-
tion. And, finally, we would like to extend our appreciation
to all of our evaluators for their time and patience.

8. REFERENCES
[1] J. Allen. Topic detection and tracking: Event-based

information organization. Kluwer Academic
Publishers, 2002.

[2] C. Asakawa and T. Itoh. User interface of a home
page reader. In ASSETS, 1998.

[3] Y. Borodin. A flexible vxml interpreter for non-visual
web access. In ACM Conf. on Assistive Technologies
(ASSETS), 2006.

[4] O. Buyukkoten, H. Garcia-Molina, and A. Paepcke.
Seeing the whole in parts: Text summarization for
web browsing on handheld devices. In WWW, 2001.

[5] C.-C. Chang and C.-J. Lin. LIBSVM: a library for
support vector machines, 2001.
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[6] D. Embley and L. Xu. Record location and
reconfiguration in unstructured multiple-record web
documents. In WebDB, 2000.

[7] http://freetts.sourceforge.net.

[8] S. Harper, C. Goble, R. Stevens, and Y. Yesilada.
Middleware to expand context and preview in
hypertext. In Assets ’04: Proceedings of the 6th
international ACM SIGACCESS conference on
Computers and accessibility, 2004.

[9] S. Harper and N. Patel. Gist summaries for visually
impaired surfers. In Assets ’05: Proceedings of the 7th
international ACM SIGACCESS conference on
Computers and accessibility, pages 90–97, 2005.

[10] http://www.hellenkeller.org.

[11] M. Hori, G. Kondoh, K. Ono, S. ichi Hirose, and
S. Singhal. Annotation-based web content
transcoding. In WWW, 2000.

[12] A. Huang and N. Sundaresan. A semantic transcoding
system to adapt web services for users with
disabilities. In ASSETS, 2000.

[13] B. B.-M. J.-Y. Delort and M. R. Enhanced. Enhanced
web document summarization using hyperlinks. In
HYPERTEXT’03: Proceedings of the fourteenth ACM
conference on Hypertext and hypermedia, pages
208–215, 2003.

[14] http://www.freedomscientific.com/.

[15] http://jrex.mozdev.org/.

[16] http://java.sun.com/products/java-media/speech.

[17] J. Mahmud, Y. Borodin, D. Das, and
I. Ramakrishnan. Combating information overload in
non-visual web access using context. In IUI, 2007.
Short paper.

[18] http://www.mozilla.com/firefox/.

[19] S. Mukherjee, I. Ramakrishnan, and A. Singh.
Bootstrapping semantic annotation for content-rich
html documents. In ICDE, 2005.

[20] S. Mukherjee, G. Yang, and I. Ramakrishnan.
Automatic annotation of content-rich html
documents: Structural and semantic analysis. In Intl.
Semantic Web Conf. (ISWC), 2003.

[21] S. Mukherjee, G. Yang, W. Tan, and
I. Ramakrishnan. Automatic discovery of semantic
structures in html documents. In Intl. Conf. on
Document Analysis and Recognition, 2003.

[22] http://www.internetspeech.com.

[23] B. Parmanto, R. Ferrydiansyah, A. Saptono, L. Song,
I. W. Sugiantara, and S. Hackett. Access: accessibility
through simplification & summarization. In
Proceedings of the International Cross-Disciplinary
Workshop on Web Accessibility W4A’05, pages 18–25,
2005.

[24] M. Porter. An algorithm for suffix stripping. In
Program, pages 130–137, 1980.

[25] I. Ramakrishnan, A. Stent, and G. Yang. Hearsay:
Enabling audio browsing on hypertext content. In
WWW, 2004.

[26] T. Raman. Audio system for technical readings. PhD
Thesis, Cornell University, 1994.

[27] L. Ramaswamy, A. Iyengar, L. Liu, and F. Douglis.
Automatic detection of fragments in dynamically
generated web pages. In WWW, 2004.

[28] J. T. Richards and V. L. Hanson. Web accessibility: a
broader view. In WWW, pages 72–79, 2004.

[29] R. Song, H. Liu, J.-R. Wen, and W.-Y. Ma. Learning
block importance models for web pages. In WWW,
pages 203–211, 2004.

[30] http://cmusphinx.sourceforge.net.

[31] H. Takagi, C. Asakawa, K. Fukuda, and J. Maeda.
Site-wide annotation: Reconstructing existing pages
to be accessible. In ASSETS, 2002.

[32] V. Vapnik. Principles of risk minimization for learning
theory. In D. S. Lippman, J. E. Moody, and D. S.
Touretzky, editors, Advances in Neural Information
Processing Systems 3, pages 831–838. Morgan
Kaufmann, 1992.

[33] Y. Yang and H. Zhang. HTML page analysis based on
visual cues. In Intl. Conf. on Document Analysis and
Recognition (ICDAR), 2001.

[34] S. Yu, D. Cai, J.-R. Wen, and W.-Y. Ma. Improving
pseudo-relevance feedback in web information retrieval
using web page segnmentation. In WWW, 2003.

[35] M. Zajicek, C. Powell, and C. Reeves. Web search and
orientation with brookestalk. In Proceedings of Tech.
and Persons with Disabilities Conf., 1999.

WWW 2007 / Track: Browsers and User Interfaces Session: Smarter Browsing

40

