
Analyzing Web Access Control Policies

Vladimir Kolovski
Department of Computer

Science
University of Maryland

College Park, MD

kolovski@cs.umd.edu

James Hendler
Department of Computer

Science
University of Maryland

College Park, MD

hendler@cs.umd.edu

Bijan Parsia
Schoole of Computer Science

University of Manchester
Manchester, UK

bparsia@lcs.man.ac.uk

ABSTRACT
XACML has emerged as a popular access control language
on the Web, but because of its rich expressiveness, it has
proved difficult to analyze in an automated fashion. In this
paper, we present a formalization of XACML using descrip-
tion logics (DL), which are a decidable fragment of First-
Order logic. This formalization allows us to cover a more
expressive subset of XACML than propositional logic-based
analysis tools, and in addition we provide a new analysis
service (policy redundancy). Also, mapping XACML to de-
scription logics allows us to use off-the-shelf DL reasoners
for analysis tasks such as policy comparison, verification and
querying. We provide empirical evaluation of a policy anal-
ysis tool that was implemented on top of open source DL
reasoner Pellet.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program verification; I.2.4 [Artificial Intelligence]: Knowl-
edge Representation Formalisms and Methods—represen-
tation languages; H.3.5 [Information Storage and Re-
trieval]: Online Information Services—Web-based services

General Terms
Security, Verification, Languages

Keywords
XACML, access control, policy analysis, policy verification,
description logics

1. INTRODUCTION
With the widespread use of Web services, systems on the

Web are becoming more connected and integrated. To pro-
tect the sensitive information that is often contained in these
systems, there is an increased need for adequate security
and privacy support. As a result, there has been a great
amount of attention to access control policy languages for
web services which accommodate large, open, distributed
and heterogeneous environments like the Web. These lan-
guages aim to be flexible and extensible, with enough fea-
tures to capture expressive and distributed access control

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

policies. Currently, policy languages with the largest mo-
mentum include WS-Policy [17] (a W3C submission), which
has been designed to specify the constraints and capabili-
ties of web services, and the more general eXtensible Access
Control Markup Language (XACML [7]).

The OASIS standard XACML is an expressive, general
purpose XML-based language (with significant deployment1)
that is used to specify policies on web resources. XACML
enables the use of arbitrary attributes in policies, allows for
expressing negative authorization, conflict resolution algo-
rithms and enables the use of hierarchical Role Based Access
Control, among other things.

With policy languages as expressive as XACML, a new
issue has emerged: users have difficulty understanding the
overall effect and consequences of their security policies.
Even arguably the most important feature in access control
- checking that the access control policy will not result in
the leakage of permissions to an unintended or unauthorized
principal, i.e., safety - has become difficult, if not impossible,
to do manually. For example, incomplete security policies
might unintentionally give access to an intruder. How can a
security administrator be certain that her policy covers all
corner cases? Even if the administrator does discover a bug
in the policy, and fixes it accordingly, the consequences of
that fix (policy change) are difficult to analyze.

To address the above issues, there has been a great amount
of attention to using logic and formal reasoning techniques
for analysis and verification of policies. There have been
several attempts to provide a formalization of XACML [11,
4, 18, 6] – unfortunately they either support a small subset
of the language, or they severely limit the analysis services
offered. To the best of our knowledge, Margrave [6] is the
only one analysis tool for XACML that provides both ver-
ification and change analysis – and it does so in a quite
efficient manner.

In this paper, we provide a formalization of XACML that
explores the ground between propositional logic analysis tools
(such as Margrave) and full First-Order logic XACML anal-
ysis tools (like Alloy [12]). As a basis for the XACML for-
malization we use description logics (DL), which are a family
of languages that are decidable subsets of First-Order logic
and are the basis for the Web Ontology Language (OWL)
[5]. Because of the correspondence of policy analysis ser-
vices to DL reasoning services (e.g., policy inclusion can
be reduced to concept subsumption, whereas change impact
analysis and verification can be reduced to concept satisfia-
bility), the framework can easily provide a variety of policy

1See [2] for a list of systems incorporating XACML.

WWW 2007 / Track: Security, Privacy, Reliability, and Ethics Session: Access Control and Trust on the Web

677

analysis services and leverage the availability of off-the-shelf
DL reasoners optimized for these services. In addition to
the analysis services, grounding the framework in DL (and
consequently, OWL), provides other benefits:

• the web nature of OWL (it uses URIs for naming and
allows for links between ontologies) is suitable for rep-
resenting an access control language for web resources

• with OWL we can use the framework to extend ac-
cess control policies with ontology-based descriptions
for objects used in the policy. Using DL reasoners
at analysis time, we are able to easily integrate these
expressive descriptions of the policy domain with the
policy itself, without sacrificing any of the services.
Also, being described in a standard machine process-
able language allows these domain descriptions to be
easily shared and re-used on the web.

We emphasize that at the moment we intend these ser-
vices to be used at design (or audit) time, not in a policy
enforcement point (PEP) to enforce policies. First, it is not
entirely clear how useful these services would be for enforce-
ment in today’s set-ups. They are not particularly designed
for enforcement, and even where they could be used to op-
timize enforcement (e.g., by pruning redundant tests) such
optimization can be done off-line. Second, these services can
be computationally expensive. Given that one requirement
on a PEP is that it can handle the response requirements of
applications under load, we must take care not to introduce
too much overhead.

We also provide a prototype implementation of our analy-
sis services on top of open source DL reasoner Pellet [15]. We
performed preliminary evaluation of our tool on Margrave’s
test policy set. While slower than Margrave (as expected),
Pellet finished all of the tests in a reasonable amount of time
(verifications took less than a second), thus exhibiting en-
couraging preliminary results. Our results also show that
the overhead of using OWL ontologies of different sizes to
describe policy objects is manageable.

2. PRELIMINARIES

2.1 Overview of XACML
In this section we provide an overview of XACML (ver-

sion 2.0 [7]), with focus on the subset of the language that
we support. At the end of the section we will discuss the
XACML features that we do not support.

At the root of all XACML policies is a Policy or a PolicySet.
A PolicySet is a container that can hold other Policies or
PolicySets, as well as references to policies found in remote
locations. A Policy represents a single access control pol-
icy, expressed through a set of Rules. Each XACML policy
document contains exactly one Policy or PolicySet root
element.

2.1.1 Combining Algorithms
Because a Policy or PolicySet may contain multiple poli-

cies or Rules, each of which may evaluate to different access
control decisions, XACML needs some way of combining the
decisions each makes. This is accomplished using a collec-
tion of combining algorithms, where each algorithm repre-
sents a different way of combining multiple access decisions
into a single one. There are Policy Combining Algorithms

and Rule Combining Algorithms which have similar seman-
tics. For example, with the Deny-overrides Algorithm, if
any of the child elements return Deny, then the final result is
also Deny (no matter what the other children return). Table
2.1.1 presents the most common combining algorithms.

2.1.2 Attributes and Rules
Attributes are the most basic unit of a XACML policy.

They represent characteristics of the Subject, Resource,
Action, or Environment in which the access request is made.
For example, a user’s role, their name, the file they want to
access, the current date are all attribute values. Access re-
quests in XACML represent a list of attribute-value pairs.

We provide some datatype support for values of attributes.
More specifically, we offer support for built-in and user-
defined XML Schema datatypes (currently we only support
datetime and integer). For example , we could state that
age attribute can have value ≥ 18, or that it must be one of
18, 19, 20, 21.
Rules are the most basic element of XACML that actually

makes access decision. Essentially, a Rule is a function that
takes an access request as input and yields an access deci-
sion (Permit, Deny, or Not-Applicable). To determine if a
Rule is applicable to an access request, the Target element
is used. A Target is a set of simplified conditions for the
Subject, Resource and Action that must be met for a Rule

to apply to a given request. These use boolean functions
to compare values found in a request with those included in
the Target. Example of a rule that returns Deny for access
requests that have value read value for action attribute is
given below:

<Rule RuleId="rule" Effect="Deny">
<Target>
<Subjects><AnySubject/></Subjects>
<Resources><AnyResource/></Resources>
<Actions>
<ActionMatch MatchId="function:string-equal">
<AttributeValue DataType="#string">read</AttributeValue>
<ActionAttributeDesignator

AttributeId="action"
DataType="...#string"/>

</ActionMatch>
</Actions>

</Target>
</Rule>

As shorthand notation, we will express a XACML Rule as a
triple r = (Target, AD, P) where AD is a Permit or a Deny, and
P is the parent Policy or PolicySet.

2.1.3 Advanced XACML Features
We also support the Hierarchical Role-based Access Con-

trol Profile of XACML [3], which allows us to specify inheri-
tance relationships between roles. For example, Role A may
be defined to inherit all permissions associated with Role B.
In this case, Role A is considered to be senior to Role B in
the role hierarchy.

As for the part of XACML that we do not support, this in-
cludes multi-subject requests, complex attribute functions,
rule Conditions and some combining algorithms (see Ta-
ble 2.1.1). While some features (like complex Conditions)
may be impossible to analyze at development time, there are
others which we believe could be handled in our formaliza-
tion (some types of Conditions, more expressive datatypes
and the Only-one-applicable overriding algorithm) – this
is part of our ongoing work.

WWW 2007 / Track: Security, Privacy, Reliability, and Ethics Session: Access Control and Trust on the Web

678

Name Summary Supported
Permit-overrides If any rule evaluates to Permit, then the final decision is also Permit. yes
Deny-overrides If any rule evaluates to Deny, then the final decision is also Deny. yes
First-applicable The effect of the first rule that applies is the decision of the policy.

The rules must be evaluated in the order that they are listed. yes
Only-one-applicable If more than one rule is applicable, return Indeterminate.

Otherwise return the access decision of the applicable rule
Ordered-permit-overrides Same as Permit-Overrides, except the order in which rules are evaluated

is the same as the order in which they are in the policy.
Ordered-deny-overrides Same as Deny-Overrides, except the order in which rules are evaluated

is the same as the order in which they are in the policy.

Table 1: Rule Combining Algorithms. Third column indicates whether the particular combining algorithm
is supported in our formalization.

2.2 Description Logics
In this section we provide an overview of DL and present

the syntax and semantics of a commonly used logic (SHOIN).
In DL, the domain of interest is modeled using individuals,

concepts and roles2, denoting objects of the domain, unary
predicates and binary predicates respectively. Atomic con-
cepts (C) and atomic roles (R) are elementary descriptions
and complex ones can be built on top of them using con-
structors. The available concept constructors determine the
expressive power of the description logic in question. For ex-
ample, in SHOIN the following constructors are available:

C ← A|¬C|C1 u C2|C1 t C2|∃R.C|∀R.C| ./ nS|{a}

where A is an atomic concept, a is an individual, C(i) a

SHOIN concept, R a role, S a simple role3 and ./∈ {≤,≥
}. We write > and ⊥ to abbreviate C t ¬C and C u ¬C
respectively.

For C, D concepts, a concept inclusion axiom is an expres-
sion of the form C v D. A TBox T is a finite set of concept
inclusion axioms. An ABox A is a finite set of concept asser-
tions of the form C(a) (where C can be an arbitrary concept
expression) and role assertions of the form R(a, b).

An interpretation I is a pair I = (W, .I), where W is a
non-empty set, called the domain of the interpretation, and
.I is the interpretation function. The interpretation function
assigns to each atomic concept A a subset ofW, to each role
R a subset of ofW×W and to each individual a an element
of W. The interpretation function is extended to complex
roles and concepts as given in [10].

The satisfaction of a SHOINaxiom α in an interpretation
I, denoted I |= α is defined as follows: (1) I |= R1 v R2 iff
(R1)

I ⊆ (R2)
I ; (2) I |= Trans(R) iff for every a, b, c ∈ W, if

(a, b) ∈ RI and (b, c) ∈ RI , then (a, c) ∈ RI ; (3) I |= C v D
iff CI ⊆ DI ; The interpretation I is a model of the RBox
R (respectively of the TBox T) if it satisfies all the axioms
in R (respectively T). I is a model of K = (T, R), denoted
by I |= K, iff I is a model of T and R.

For this work, it is important to discuss two basic reason-
ing services offered by DL: satisfiability and subsumption.
Determining satisfiability of a concept C in a KB K amounts

2Note that there is a distinction between DL roles, which
are binary predicates, and roles in access control, which are
usually unary predicates. We will refer to either of these as
roles only when clear from context.
3See [10] for a precise definition of simple roles

to a check whether K admits a model in which the interpreta-
tion of C is nonempty. Subsumption between two concepts
C and D in K, amounts to a check whether CI ⊆ DI for
every interpretation I of K, denoted as K |= C v D. Sub-
sumption is reduced to concept satisfiability as follows: C is
subsumed by D in K iff C u ¬D is not satisfiable in K.

3. RUNNING EXAMPLE
In this section we will introduce an example which will

be used throughout the paper to illustrate the services that
our formalization provides. In this toy example, initially
there are two security roles, Manager and Developer ; one
resource: Report ; and two actions: read, write. The root
policy set contains two policy sets which are combined us-
ing First-applicable combining algorithm. The policy is
presented in graphical form in figure 1.

Figure 1: Example Policy

The safety property for this example is: Developers can-
not write to Reports. Checking the example policy against
this property with Pellet produces a fail, with the following
counter example returned:

role=Manager, role=Developer, action=write,
resource=report

Thus, if a requester comes along that is a member of both
security roles (Manager and Developer), then she can gain
write access to Report. To prevent a Developer who is mas-
querading as a Manager from writing to Report, we use a

WWW 2007 / Track: Security, Privacy, Reliability, and Ethics Session: Access Control and Trust on the Web

679

separation of duty constraint: no user can be a member of
both Manager and Developer role at the same time. How-
ever, the policy fails to satisfy the property even after adding
the above constraint. This time, the counter example given
is:

role=Developer, action=write, action=read,
resource=report

Apparently, there is another way for a Developer to gain
write access: if he tries to both read and write to Report
at the same time. To prevent this from happening, we can
restrict R2 such that only one value (read) is allowed for
action attribute. After adding this constraint the policy
satisfies the property.

With this simple policy we can also illustrate a new analy-
sis service that we provide: policy redundancy. A policy ele-
ment is redundant if removing the element does not change
the behavior of the access policy. To understand our mo-
tivation for this service, consider Rule R4 in Figure 1. R4

will always be overridden by R3 , since the policy combina-
tion is First-applicable, and the Target of R3 subsumes
the Target of R4. In a policy evaluation engine, R4 can
be dropped without any consequences to the security pol-
icy. This elimination of unnecessary Rules could potentially
provide significant optimizations of the policy engine.

The above example illustrated only a subset of the services
provided by our framework; a full list follows:

• Constraints - We already mentioned separation of
duty constraints. In addition, we can also specify
more general cardinality constraints; for example, a
user cannot be a member of more than 3 security roles
at a time. Property (attribute) hierarchies are allowed
as well: if X is a brother-of Y, then he is a relative-of
Y.

• Policy Comparison - For two policies (or policy sets)
P1 and P2 check if whenever P1 yields a decision α, P2

will yield α, too. If not, give a counter example.

• Policy Verification - Check if the policy satisfies
a particular policy property. If not, give a counter-
example.

• Policy Incompatibility - If for two policies P1 and
P2, there cannot exist an access request where both
policies apply (yield a decision), then these policies
are incompatible.

• Policy Redundancy - For a policy and an access de-
cision (Permit or Deny), check whether the policy can
ever satisfy that decision (or it will be always overrid-
den by some other policy higher up the hierarchy).

• Policy Querying - Search for policies in the docu-
ment based on attribute values.

4. FORMALIZATION OF XACML
The basic unit in XACML that yields an access decision

is a Rule. To capture the behavior of XACML correctly,
we need to formalize the prerequisite of the Rule (which is
the Target element), and its head (the access decision). We
also need to capture how the access decision is propagated
upwards toward the root PolicySet - for this, the rule and
policy combining algorithms have to be taken into account.

While the Target element of Rules and Requests can be
mapped to a DL concept expression (we discuss this in more
detail below), the interaction of the access decision of vari-
ous policy elements is difficult, if not impossible, to do using
only description logics. This is because of the semantics of
the combining algorithms which requires us to use a formal-
ism that supports preferences. To capture the behavior of
the XACML combining algorithms, we use Defeasible de-
scription logics (DDL [16]), which is a formalism that allows
for expressing defeasible rules on top of description logics.

Only a limited fragment of DDL is needed to formal-
ize the combining algorithm. In Section 4.1 we provide
the description of this fragment. Then, we formalize the
four main policy elements in XACML: Rules, Requests,
Policies and PolicySets. Considering the obvious simi-
larities between some of them (and for better presentation),
we have grouped them in two: Rules with Requests and
Policies with PolicySets . Finally, in Section 4.4 we show
how it is possible to reason about XACML policies in this
formalization using DL reasoners.

4.1 DDL Preliminaries
The subset of DDL that we use, termed DDL−, is ex-

pressive enough for our purposes and at the same time has
the same computational complexity as the underlying de-
scription logics [16].

We represent a rule in DDL− as

Pre(r) 7−→ Con(r),

(Pre(r) and Con(r) obviosly referring to the antecedent and
consequent).

In DDL−, we do not allow any predicates from the DL
KB in the head of the rules. Instead, for each policy or
policy set P , we create two literals, which we call effect-
literals : Permit-P, Deny-P ∈ L. If the theory derives that
Permit-P (r) for some request r, that means we inferred a
Permit access decision for policy element P to request r.
To distinguish these literals for different policy elements, we
append the policy element id to the literal name. Instead
of denoting it as Permit-id(P) we abuse notation and sim-
ply write Permit-P . Note here that only effect-literals are
allowed in heads of rules in R.

A set of rules R can contain both strict and defeasible
rules. Strict rules cannot be overridden: whenever the body
of the rule is derived, the head is derived as well. With de-
feasible rules, even though the body of the rule might be
derived, the rule might still be overridden by another con-
flicting, higher priority rule. Following we give a definition of
strict and defeasible rules that takes into account XACML’s
combining algorithms.

Definition 1. For each rule r ∈ R, let P, Ppar correspond
to the policy element and its parent in the XACML docu-
ment. r is a strict rule in the following cases:

1. If Permit-Ppar ∈ Con(r), and the combining algo-
rithm of Ppar is Permit-overrides

2. If Deny-Ppar ∈ Con(r), and the combining algorithm
of Ppar is Deny-overrides

3. If P is the first element in the list of children of Ppar,
and the combining algorithm of Ppar is First-applicable

All other rules in R are defeasible.

WWW 2007 / Track: Security, Privacy, Reliability, and Ethics Session: Access Control and Trust on the Web

680

Definition 2. A DDL− theory D is a tuple (K,R, >,L)
where K is a DL knowledge base, R = Rs ∪ Rd a finite set
that contains strict and defeasible rules , > a superiority
relation on R, and L a set of effect-literals used in the rules
of R.

Following we provide procedural semantics for the defea-
sible theory (derived from [16]). A derivation (proof) is a
finite sequence P = (P (1), . . . , P (n)) of literals that belong
to L. Conclusion in a DDL− theory is a set of tagged effect-
literals. We have only two tags: for a literal l, +l means l was
derived, and -l means it cannot be derived. We use D ` α
iff there is a derivation sequence P = (P (1), . . . , P (n)) s.t.
+α ∈ P ; we say that α is provable in D.

If P (i + 1) = +l then either
(1) ∃r ∈ Rs s.t.

l ∈ Con(r) and
K |= Pre(r) or Pre(r) ∈ P (1..i)

(2)or ∃r ∈ Rd s.t.
l ∈ Con(r) and

K |= Pre(r) or Pre(r) ∈ P (1..i)
∀q ∈ (Rd ∪Rs) s.t. Con(q) v ¬Con(r) either

K 6|= Pre(q) and Pre(q) 6∈ P (1..i)
or r > q

Figure 2: Derivation Procedure

Figure 2 gives the procedural semantics for the derivation.
In (1), which is the strict rule case, we infer l if there exist
a strict rule that concludes l and the prerequisite of that
rule is either entailed by the DL knowledge base or was
derived before in this proof. The defeasible rule case is more
involved: we also need to make sure that the defeasible rule
that infers l is not also overridden by a conflicting rule with
a higher priority.

Deriving that a literal cannot be proven from a DDL−

theory is similar to above, but all of the conditions are
negated (defined as strong negation in [16]). We omit the
procedural semantics here for brevity and point the inter-
ested reader to [13].

4.2 Mapping XACML Requests and Rules
A XACML Rule is translated to a rule in R. The Target

element is translated to a DL concept expression C and be-
comes the antecedent of the new rule. The Effect is mapped
to an effect-literal L ∈ L and becomes the conclusion. The
effect-literal can be either Permit-P or Deny-P where P is
the Policy that contains the Rule. This new rule, denoted
C 7→ L, is added to R. For any policy P and rules r1, r2

s.t. Permit-P ∈ Con(r1) and Deny-P ∈ Con(r2), we state
that r1 and r2 are conflicting.

The full mapping of the Target element to a DL con-
cept expression is given in Table 2. The main idea is that
attribute-value pairs are mapped to existential restrictions –
for example (role Developer) would be mapped to ∃role.Developer.
We also allow for propositional combinations of attribute-
value pairs. Note here that we enforce a one-to-one mapping
from attribute names and values used in the XACML policy
to their corresponding DL roles and concepts in K (we create
a DL role or a concept with the same name as the XACML
attribute or value).

For the XACML construct Any, we formalize it as a dis-
junction where each disjunct corresponds to an attribute.
For each attribute, we create another disjunction from all

possible attribute values for that attribute. For example,
formalizing Any using this mapping would create 15 dis-
juncts (there are 3 attributes and 5 attribute values). By
assuming that the values for role, action and resource at-
tributes are disjoint, we can prune the search space signifi-
cantly (see how the Any occurring in the running example is
mapped below).

Example 1. The rules in our running example are mapped
to:

R1 : ∃role.Manager u ∃resource.Reportu
(∃action-type.read t ∃action-type.write) 7→ Permit-P1

R2 : ∃role.Developer u ∃action-type.readu
∃resource.Report 7→ Permit-P1

R3 : ∃role.Manager t ∃role.Developer t ∃action.Write t
∃action.read t ∃resource.Report 7→ Deny-P1

R4 : ∃role.Developer u ∃action-type.write u
∃resource.Report 7→ Permit-P2

XACML requests are mapped in the same manner as
rules, since they also can be represented as a list of attribute
value pairs. To check whether a request r matches a rule
with target T , we only need to check whether K |= π(T)(r)
(equivalent to instance checking in description logics).

4.3 Mapping XACML Policies and Policy Sets
To propagate the access decisions from Rules to the root

PolicySet, we introduce the following rules in R:

1. For each XACML Rule r : (Target Deny P), add an
axiom to R,

R = R ∪ {π(Target) 7→ Deny-P}

2. For each XACML Rule r : (Target Permit P), add an
axiom to R,

R = R ∪ {π(Target) 7→ Permit-P}

3. For each policy element P and parent policy element
PS introduce the following axioms:

Permit-P 7→ Permit-PS

Deny-P 7→ Deny-PS

A Policy or a PolicySet can also have a Target ele-
ment. However, we can propagate the constraints specified
in Target down to Targets of its children. In this manner,
we propagate the constraints to the XACML Rule elements.
Thus, without loss of generality, we can assume that Policy
and PolicySet elements have empty Target – all of the con-
straints are propagated down to the Target of their XACML
Rules descendants.

In Table 3, we provide the full translation of our toy ex-
ample to a DDL− theory.

4.4 Reduction to DL Concept Expressions
This section provides an important result: an algorithm

to reduce derivability in DDL− to concept satisfiability in
description logics. In particular, for a effect-literal α we will

WWW 2007 / Track: Security, Privacy, Reliability, and Ethics Session: Access Control and Trust on the Web

681

Syntax π
R ::= (Rule T Effect) π(T) 7→ π(Effect)
Effect ::= Permit | Deny Permit-P | Deny-P (P is parent policy)
T ::= ((Sub) (Act) (Res)) π(Sub) u π(Act) u π(Res)
Sub | Act | Res ::= Fcn π(Fcn)
Fcn ::= AV | Fcn ∩ Fcn | Fcn ∪ Fcn | ¬ Fcn π(AV)|π(Fcn) u π(Fcn)|π(Fcn) t π(Fcn)|¬π(Fcn)
AV ::= (attr-id attr-val) ∃π(attr-id).π(attr-val)
attr-id DL role corresponding to attr-id
attr-value DL concept corresponding to attr-val

Table 2: Mapping Rule to a DL class expression

Diagram Formalization

R ={
P1 : Permit-P1 7→ Permit-PS1,
P2 : Deny-P1 7→ Deny-PS1,
P3 : Permit-PS2 7→ Permit-PS1,
P4 : Deny-PS2 7→ Deny-PS1,
P5 : Permit-P2 7→ Permit-PS2,
P6 : Deny-P2 7→ Deny-PS2

R1 : ∃role.Manager u ∃resource.Report u
(∃action.read t ∃action-type.write) 7→ Permit-P1

R2 : ∃role.Developer u ∃action-type.read u
∃resource.Report 7→ Permit-P1

R3 : ∃role.Manager t ∃role.Developer t
∃action.Write t ∃action.read t
∃resource.Report 7→ Deny-P1

R4 : ∃role.Developer u ∃action-type.write u
∃resource.Report 7→ Permit-P2}

δ = {P1 > P4, P2 > P3, R1 > R3, R2 > R3}
L = {Permit-PS1, Deny-PS1, P ermit-PS2,

Deny-PS2, P ermit-P1, Deny-P1,
P ermit-P2, Deny-P2}

Table 3: Mapping the example access control policy to a DDL− theory.

show how to generate a DL concept expression A in K s.t.
α is derivable in D iff A is satisfiable in K.

First we will illustrate the intuition with a simple exam-
ple. In the following DDL− theory: r1 : A 7→ Permit-1, r2 :
B 7→ Deny-1, r1 < r2 we have only two rules whose prereq-
uisites are DL expressions A and B. To check if Permit-1
can be derived, we need to check if the concept A is satisfi-
able (since it is the only way to derive Permit-1). However,
this alone is not enough, since r1 can be overridden by r2.
Thus, we need to check the satisfiability of: A u ¬B. If
this expression is satisfiable, then there can exist an access
request such that it satisfies A and not B. If this expres-
sion was unsatisfiable, then there would be no possibility of
deriving Permit-1 since it would always be overridden by
r2.

The transformation function that takes a DDL− theory D
and an effect-literal l as input, and generates a DL concept
expression is given below:

Definition 3. If a 6∈ L, then map(a) = a. When a ∈ L,
there are two cases - it is a Permit effect-literal or a Deny

effect-literal. For a Permit effect-literal,

map(a) =
⊔

(map(C) u ¬(
⊔

map(J))) where

• C 7→ Permit-P ∈ R

• J 7→ Deny-P ∈ R

• J > C

for some Permit-P , Deny-P .

map(a) is defined analogously for Deny effect-literals.

Theorem 1. For a DDL− theory D = (K,R, >,L) and
literal α ∈ L, map(α) is satisfiable iff there exists a request
i s.t. D ` +α(i) (α is provable). ¬map(α) is satisfiable
iff there is a request j s.t. D ` −α(j) (α is not always
provable).

Proof of this theorem is available in the accompanying
report [13].

WWW 2007 / Track: Security, Privacy, Reliability, and Ethics Session: Access Control and Trust on the Web

682

5. POLICY IDIOMS
One of the distinguishing features of our mapping is that

the subjects, actions and resources used in the access poli-
cies are mapped to DL concepts and roles. As a result, we
can extend the access policy with semantic descriptions of
the policy domain. In other words, we can use a domain
ontology (expressed in DL) to provide a semantic descrip-
tion for the entities used in the access policy. If the policy
is about Managers, Developers and Reports, we can have an
ontology that describes the company, and link the policy en-
tities with concepts in the company ontology using subclass
relationships. For example, we can state that a Manager is
an Employee that is a boss of at least one Person:

Manager v Employee u ∃boss.Person

Using such ontologies, we show how common policy idioms
can be expressed in description logics:

1. Role hierarchies are easily captured with subclass ax-
ioms. For example, stating that a LeadDeveloper in-
herits all of the access privileges of the Developer role
can be expressed as:

∃role.LeadDeveloper v ∃role.Developer

2. Hierarchies on Attributes, can be captured using prop-
erty hierarchies in DL. For example, to state that if a
person is a CIO of a company, that means he is also
an employee of that company, we write:

CIO-of v employee-of

3. Separation of duty constraints can be captured with
disjoint axioms. To state separation of duty for two
security role A and B, we use:

∃role.A v ¬∃role.B

4. Cardinality constraints can be expressed on any given
attribute. To state that the role attribute cannot have
more than k values, we can write:

≥ k role.> v ⊥

We can even specify maximum number of users that a
security role can have, with a combination of inverses
and cardinality constraints. For example, the following
says that a role cannot have more than k users:

≥ k role−.> v ⊥

6. ANALYSIS SERVICES
In this section be provide an overview of the analysis ser-

vices provided by our formalization.

6.1 Policy Comparison
The map function defined above allows us to easily com-

pare the behaviors of two policies. For example, we can
check for policy subsumption: P2 subsumes P1 (P1 v P2)
if whenever P1 produces access decision α, P2 also yields
the same access decision. We can restrict our attention to
Permit, Deny or both.

To determine whether P1 v P2, we try to build a request
i s.t. D ` Permit-P1(i) and D 6` Permit-P2(i). If it is
possible to build a request s.t. Permit-P1(i) was derived,
and Permit-P2(i) was not derived, then P1 6v P2. Translat-
ing to DL expressions, this reduces to checking whether the
concept map(Permit-P1)u¬map(Permit-P2) is satisfiable.
If the concept is satisfiable, such request exists.

As an example, consider adding a new security role ,
LeadDeveloper, to our running example. The updated pol-
icy now contains an additional Rule:

∃role.LeadDev u ∃action.write u
∃resource.Report 7→ Permit-P1

Figure 3: Updated Policy (with LeadDev role)

To check whether we have given any unintended access to
other roles, we use the policy subsumption algorithm, that
is, we generate the following concept expressions:

map(Permit-PSold), map(Deny-PSnew),
map(Permit-PSold), map(Deny-PSnew)

Subsumption holds only both of the following hold:

map(Permit-PSold) v map(Permit-PSnew)

map(Deny-PSold) v map(Deny-PSnew)

Pellet reports the first statement is true, which is obvious
from looking at the Rules themselves (the Rule that we
added in PSnew yields a Permit). However, Pellet reports
subsumption does not hold w.r.t. Deny.

In cases of non-subsumption, it is useful to know what are
the counter examples, i.e., to show the user a request where
PSnew and PSold would yield different decisions. Since we
use a tableau-based DL reasoner for policy analysis, to check
whether A v B, we try to build a representation of a model
for A u ¬B. If such representation can be built, it means
the subsumption does not hold. In that case the completion
graph (representation of the model) just built can easily be
extracted from the internals of the reasoner and used as a
counter example. Here we get several counter-examples:

1) role=LeadDev, action=read, resource=report,
action=write,

resource=report
2) role=LeadDev, action=write, resource=report
3) role=LeadDev, role=Developer, action=write,

resource=report

WWW 2007 / Track: Security, Privacy, Reliability, and Ethics Session: Access Control and Trust on the Web

683

The first two are expected (because of the new Permit
rule), however the third counter example represents a po-
tentially dangerous access leak to a person who is a member
of role Developer. It is possible to fix this bug by separating
the roles of Developer and LeadDev:

∃role.LeadDev v ¬∃role.Developer

We can generalize the technique used for policy subsump-
tion to policy comparison. For two policies P1 and P2, we
first specify the access decisions we are interested in (say,
Deny for the first policy and Permit for the second), and
then check satisfiability of the map expressions for those
decisions :

map(Permit-PSold) umap(Deny-PSnew)

If the above expression is not satisfiable, then there can-
not be an access request s.t. the first policy yields a Deny

and the second one yields a Permit. If it is satisfiable, there
is such an access request, and we can extract the counter ex-
ample from the internals of the reasoner. To get all counter
examples, we need to retrieve all open and complete com-
pletion graphs (representations of models) that the concept
expression admits; this involves saturation of the tableau, a
technique for which DL reasoners are not particularly opti-
mized.

Finally, the service of verifying changes was introduced
in [6], we show here that it can be accomplished using de-
scription logics as well. The safety properties that are to be
checked are simply added to the conjunction of the map ex-
pressions. For example, if we want to verify that there were
all of the changes from Permit to Deny in the above pol-
icy involved the LeadDev role, we could test the following
concept expression:

map(Permit-PSold)umap(Deny-PSnew)u∀role.¬LeadDev

6.2 Policy Redundancy
Another service we provide is determining redundant Rules4

Intuitively, a redundant rule is one that whenever fires, it is
always overridden by some other rule or policy with higher
priority in the hierarchy. It does not matter whether the
rule is part of the policy document or not – in both cases,
for any access request i, the evaluation engine will give iden-
tical results. A simple way to check redundancy of a rule r
is to perform change impact analysis for a policy with and
without the rule. However, there is a more optimal way of
checking redundancy, by building a concept expression that
ignores the policy elements that cannot override the rule we
are checking. Algorithm 1 contains the pseudo-code.

The function starts with an input Rule r and works its
way up to the root policy element. At the same time, it
builds a disjunction, that consists of the concept expres-
sions for every Policy or PolicySet that can override the
access decision made by r. If the prerequisite of r is sub-
sumed by this disjunction, then we know for certain that
the access decision of r will always be overridden by some
policy element. In this case, r is redundant.

Redundant rules do not have to be evaluated, and can be
safely removed from a policy file. This simplifies the policy
and improves runtime performance of the policy evaluator
because there are less rules to match requests against.

4The technique can be easily generalized to Policies or
PolicySets – for brevity we focus on Rules only.

Algorithm 1 is redundant(r,D)

Input:
r: defeasible rule of the form T 7→ α
D: DDL− theory D = (K,R, >,L)

Output:
b: returns true if r is redundant, false otherwise

1: J ← ⊥
2: rold ← r . cache r
3: while true do
4: J ← J tmap(Pre(q)) where
5: q ∈ R and
6: parent(q) = parent(r) and
7: q > r . q can override r
8: if parent(r) 6= null then
9: r ← getParentRule(r)

10: else
11: break
12: end if
13: end while
14: if Pre(rold) v J then . request is subsumed
15: return true
16: else
17: return false
18: end if

6.3 Policy Verification
We allow for specification and formal verification of prop-

erties of policies. We admit policy properties of the same
form as rules, i.e, they have a DL concept expression as body
and a Deny or Permit as head. To check whether a policy P
satisfies a property, first we compute map(Permit-P) and
map(Deny-P) using the techniques described in Section 4.4.
Then, we try to build a (finite representation of a) model
where a request can match both the policy property and
the map concept for the effect-literal that has the opposite
access decision than the policy property. If the expression
is not satisfiable, then the policy is formally verified against
the property. If the expression is satisfiable, the model that
is built is returned as a counter example.

When specifying properties, we can use the full expres-
siveness of description logics. For example, we can state
that the a user who is not a Manager and is less than 25
years old is not allowed to do perform more than one action
at a time:

∃role.¬Manager u ∃age. ≤21 u > 1action 7−→ Deny

7. IMPLEMENTATION AND EVALUATION
We have implemented a prototype XACML analysis tool

on top of open source DL reasoner Pellet. As a test case,
we used the access policy for the conference paper manager
Continue. The authors of Margrave [6] translated this policy
to XACML, used it to test their analyzer and published the
policy at [1]. This realistic access policy was used to evaluate
the correctness and performance of our tool as well.

Parsing the policy file using sunxacml and loading the
policy ontology took 2.1 seconds. Converting the policies to
description logics took additional 1.7 seconds.

For the purpose of this paper, we tested verification of
properties. There are 12 safety properties for the Continue
policy. We encoded them in description logics and used

WWW 2007 / Track: Security, Privacy, Reliability, and Ethics Session: Access Control and Trust on the Web

684

Pellet to verify them.

Example 2. A sample property from the set is:

If a subject is not a pc-chair or admin,
then he may not set the meeting flag.

This can be encoded in DL as:

P ≡ ¬(∃role.pc-chair t ∃role.admin)u
∃action.write u ∃resource.meetingF lag

P can be verified by checking the concept satisfiability of
map(Permit)uP where map(Permit) is the concept expres-
sion corresponding to access requests that map to Permit
(details on map function in Section 4.4). If map(Permit)u
P is not satisfiable, then property P holds for the policy.

It is important noting that, to improve performance, tableau
reasoners reduce concept expressions to a simplified normal
form before checking concept satisfiability. Due to the sheer
size of the concept expressions returned from our mapping
function (the XACML construct Any dramatically increases
the size of the DL representation, and it is used liberally in
Continue) this function proved to be the bottleneck of the
analyzer. To alleviate the issue we extracted the simplifi-
cation function outside the verification algorithm - so once
the concept expression is reduced to normal form when ver-
ifying property A, there is no need to do it again for other
properties. This produced significant time savings overall.

Preprocessing the concept expressions in Pellet took 10.6
seconds, while verification of the properties took .420 sec-
onds on average. For comparison, Margrave’s loading and
preprocessing time was 0.9 seconds, and the properties were
verified in less than a millisecond. Pellet’s performance is
worse since it is optimized for reasoning about a more ex-
pressive logic than Margrave. Nonetheless, considering that
verification time was still under half a second, we consider
the results to be suitable for practical purposes.

Next, to evaluate the overhead of integrating the access
control policy with a domain ontology, we tested Continue
with three ontologies with various sizes. For the evaluation,
we simply added subclass relationship between the concepts
in the access policy and random concepts from the domain
ontology. The goal was to simulate reasoning about policies
when their concepts have rich domain descriptions expressed
in DL. Results are in Table 4. Overhead is noticeable only
in the cases of Galen, which is a quite large ontology.

Ontology
Name

Ontology Info Performance
C P Classif. Initial Verif.

no-ont 0 0 0 10.295 0.420
koala 25 5 0.171 10.415 0.421
lubm 43 32 0.210 10.425 0.414
tambis 395 100 1.713 10.876 0.441
galen 3097 413 49.251 10.385 1.088

Table 4: Reasoning about policies with domain on-
tologies. C, P, Classif. stand for number of DL con-
cepts, roles and classification time respectively. We
added subclass relationships connecting every con-
cept in the policy with a random concept from the
ontology. The first row represents the case without
a domain ontology.

8. DISCUSSION AND FUTURE WORK
For future work, we intend to extend our coverage of

XACML even further: adding Only-one-applicable as a
combining algorithm and handling more attribute functions
using specific datatype reasoners are some of our short term
goals. We believe that Only-one-applicable can be han-
dled simply by adding additional defeasible rules in our
framework (we will need to extend the map function as well).

As for datatype reasoning, user-defined datatypes are part
of OWL 1.1 [8] and are already implemented in Pellet. Cur-
rently, there is support for datetime and integer user-defined
XML Schema Datatypes and common datatype facets (min-
Inclusive, maxInclusive). We plan to add more expressive
datetime datatype support to allow for policies with period-
icity constraints. For example: Permit access only on every
other Friday form 5PM-6PM starting from today, unless it
is a national holiday.

9. RELATED WORK
Logic programming systems seem to be a popular choice

for formalization of access control policy languages, which is
not surprising considering logic programming is a mature re-
search area, with efficient implementations, and rules being
the most natural way to model access control policies. We
used DL as the basis for the formalization instead because of
the correspondence of policy analysis services to DL reason-
ing services, which allowed us to provide a variety of policy
analysis services and leverage the availability of off-the-shelf
DL reasoners optimized for these services. Also, we have
provided a set of services that, to the best of our knowledge,
has not been offered by rule-based policy systems.

Moving to DL based systems, Zhao et al [19] present a for-
malization of RBAC based on the description logic ALCQ.
They also show how RBAC policy constraints (separation
of duty, security role hierarchies) can be captured with this
logic. We generalize their approach by formalizing a more
expressive access control language (XACML uses overrid-
ding algorithsm which are not covered by their approach)
using a more expressive description logic (SHOIN).

Massacci [14] formalizes RBAC using multi modal logic
and presents a decision method based on analytic tableaux.
Because he is using tableau-based algorithms, he is able to
provide services similar to ours: logical consequence, model
generation and consistency checking of policies. Again in
this case, policy combining algorithms are not taken into
account, so it is not applicable to XACML.

Hughes et al. [11] propose a framework for automated ver-
ification of access control policies based on relational First-
Order Logic. They introduce a formal model for systemati-
cally specifying access to resources, and show that the access
control policies in XACML can be translated to a simple
form which partitions the input domain to four classes: per-
mit, deny, error, and not-applicable. The authors show how
to automatically verify policies using an existing automated
analysis tool, Alloy [12]. Because using the first-order con-
structs of Alloy to model XACML policies is prohibitively
expensive (in terms of performance), the authors use only
the propositional constructs. However, it is unclear from
their results whether it is feasible for larger policies. In ad-
dition, the results of policy analysis are an internal Alloy
representation that can only be explored with Alloy’s visu-
alization tools.

WWW 2007 / Track: Security, Privacy, Reliability, and Ethics Session: Access Control and Trust on the Web

685

In [18] the authors present a model-checking algorithm
which can be used to evaluate access control policies, and a
tool which implements it. The evaluation includes not only
assessing whether the policies give legitimate users enough
permissions to reach their goals, but also checking whether
the policies prevent intruders from reaching their malicious
goals. Policies of the access control system and goals of
agents are described in the access control description and
specification language RW [9].

Finally, in terms of services offerred, Margrave [6] is the
tool most similar to ours. Margrave is a software suite for
analyzing role-based access-control policies. It includes a
verifier that analyzes policies written in XACML, translat-
ing them into a binary decision-diagram to answer queries.
It also provides semantic differencing information between
versions of policies. On one hand, by using description log-
ics to analyze policies, we sacrifice some of the performance
compared to Margrave. Although, results show that our ap-
proach is still practical. Also, we have not evaluated yet
comprehensive change analysis, where all access requests
that map to different access decisions are returned. On the
other hand, by having DL-based formalization we are able
to provide expressive descriptions of the subjects, resources
and actions that are referred to in the policies, and offer
support for XML Schema datatypes.

10. CONCLUSION
Understanding the effects and consequences of sets of ac-

cess control policies has always been an issue for security
officers, especially with expressive policy languages. In this
paper, we addressed this issue for XACML by proposing a
formalization based on a decidable fragment of FOL. We
were able to provide a similar suite of analysis services such
as propositional logic-based tools, while adding extra ex-
pressiveness by describing subjects, actions and resources
using ontologies. We also showed how common policy con-
straints, such as role cardinality, separation of duty and role
hierarchies can be easily captures by these logics. Finally,
we demonstrated through empirical evaluation that off the
shelf DL reasoners are practical as XACML analysis tools.

11. ACKNOWLEDGEMENTS
This work was supported in part by grants from Fujitsu,

Lockheed Martin, NTT Corp., Kevric Corp., SAIC, the Na-
tional Science Foundation, the National Geospatial-Intelligence
Agency, DARPA, US Army Research Laboratory, and NIST.

The authors would like to thank Kathi Fisler, Christian
Halaschek-Wiener, Yarden Katz and Taowei Wang and for
all of their comments and feedback.

We would also like to thank the authors of [6] for trans-
lating the Continue policy example to XACML, generating
the policy safety properties and making them publicly avail-
able.

12. REFERENCES
[1] Continue access control policy example., 2005.

http://www.cs.brown.edu/research/plt/
software/margrave/versions/01-
01/examples/continue/.

[2] Xacml references, v1.65. http://docs.oasis-
open.org/xacml/references/xacmlrefsv1.65.html,
2006.

[3] A. Anderson. Core and hierarchical role based access
control (rbac) profile of xacml v2.0, February 2005.

[4] J. Bryans. Reasoning about xacml policies using csp.
In SWS ’05: Proceedings of the 2005 workshop on
Secure web services, pages 28–35, New York, NY,
USA, 2005. ACM Press.

[5] M. Dean and G. Schreiber. Owl web ontology
language reference w3c recommendation., feb 2004.

[6] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and
M. C. Tschantz. Verification and change-impact
analysis of access-control policies. In ICSE ’05:
Proceedings of the 27th international conference on
Software engineering, pages 196–205, 2005.

[7] S. Godik and T. Moses. Oasis extensible access control
markup language (xacml) version 1.1. oasis committee
specification, July 2003.

[8] B. C. Grau, I. Horrocks, B. Parsia, P. Patel-Schneider,
and U. Sattler. Next steps for owl. In OWL
Experienced and Directions, 2006.

[9] D. P. Guelev, M. Ryan, and P.-Y. Schobbens.
Model-checking access control policies. In ISC, pages
219–230, 2004.

[10] I. Horrocks and U. Sattler. A tableaux decision
procedure for SHOIQ. In Proc. of the 19th Int. Joint
Conf. on Artificial Intelligence (IJCAI 2005). Morgan
Kaufman, 2005.

[11] G. Hughes and T. Bultan. Automated verification of
access control policies (technical report). Technical
Report 2004-22, Department of Computer Science,
University of California, Santa Barbara, September
2004.

[12] D. Jackson. Alloy: a lightweight object modelling
notation. ACM Trans. Softw. Eng. Methodol.,
11(2):256–290, 2002.

[13] V. Kolovski. Formalizing XACML Using Defeasible
Description Logics. Technical Report TR-233-11,
University of Maryland - College Park, 2006.

[14] F. Massacci. Reasoning about security: A logic and a
decision method for role-based access control. In
ECSQARU-FAPR, pages 421–435, 1997.

[15] B. Parsia and E. Sirin. Pellet: An OWL DL reasoner.
In Third International Semantic Web Conference -
Poster, 2004.

[16] K. Wang, D. Billington, J. Blee, and G. Antoniou.
Combining description logic and defeasible logic for
the semantic web. In RuleML, pages 170–181, 2004.

[17] WS-Policy. Web services policy framework
(ws-policy). http://www-
106.ibm.com/developerworks/library/specification/ws-
polfram/.

[18] N. Zhang, M. D. Ryan, and D. Guelev. Evaluating
access control policies through model checking. In
Eighth Information Security Conference (ISC05),
2005.

[19] C. Zhao, N. Heilili, S. Liu, and Z. Lin. Representation
and reasoning on rbac: A description logic approach.
In ICTAC, pages 381–393, 2005.

WWW 2007 / Track: Security, Privacy, Reliability, and Ethics Session: Access Control and Trust on the Web

686

