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ABSTRACT 

Information flows in a network where individuals influence 
each other.  The diffusion rate captures how efficiently the 
information can diffuse among the users in the network.  We 
propose an information flow model that leverages diffusion rates 
for: (1) prediction – identify where information should flow to, and 
(2) ranking – identify who will most quickly receive the information.  
For prediction, we measure how likely information will propagate 
from a specific sender to a specific receiver during a certain time 
period. Accordingly a rate-based recommendation algorithm is 
proposed that predicts who will most likely receive the information 
during a limited time period.  For ranking, we estimate the 
expected time for information diffusion to reach a specific user in 
a network. Subsequently, a DiffusionRank algorithm is proposed 
that ranks users based on how quickly information will flow to them.  
Experiments on two datasets demonstrate the effectiveness of the 
proposed algorithms to both improve the recommendation 
performance and rank users by the efficiency of information flow.  

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Information Search 
and Retrieval – Information Filtering; J.4 [Computer 
Applications]: Social and Behavioral Sciences – Economics 

General Terms 
Algorithms, Experimentation 

Keywords 
Information Flow, Social Influence, Diffusion of Innovation, 
Continuous-Time Markov Chain, Recommendation, Collaborative 
Filtering, Web Ranking 
 

1. INTRODUCTION 
People constantly influence each other in all facets of life. 

Social influence describes the phenomenon by which the behavior 
of an individual is directly or indirectly affected by the thoughts, 
feelings, and actions of others in a population [1][21]. Such 
influence is present when people recommend products or services 
to one another. Word-of-mouth communication is a particular 
type of informational social influence, and plays an important role 
in shaping the attitudes and behaviors of consumers.   

When one needs to choose among various options where 
he/she has no experience, one will often rely on the opinions of 
others with such experiences. However, when there are thousands 
or millions of options, like on the Web, it becomes practically 
impossible for an individual to identify reliable experts that can 

give advice about each of the options. Collaborative Filtering was 
proposed to automate the process of "word-of-mouth" [2] by 
leveraging like-minded users’ opinions. It infers the 
interests/preferences of an individual based on the 
interests/preferences of people with similar tastes [3][4]. In 
Collaborative Filtering, similarity - which is a symmetric 
relationship between users - plays a central role. However, it is in 
fact the inter-personal influence - an asymmetric relationship - 
that most directly and effectively supports the automation of the 
word-of-mouth process. For instance, asymmetric relationships 
such as employer-to-employee, teacher-to-student, and physician-
to-patient have a much stronger influence on decisions than their 
reverse relationships. We recently proposed a novel asymmetric 
recommendation algorithm based on such asymmetric inter-
personal relationships [5]. The algorithm leverages a user’s 
explicit or implicit influence over other users, instead of the mere 
symmetric similarity of users’ interests in Collaborative Filtering.  

People adopt new technologies at different times. The idea of 
modeling the adoption behaviors of a group of people as a flow 
process comes from Rogers’ “Diffusion of Innovation” theory [6], 
in which the adoption curve classifies adopters of innovations into 
five categories based on the fact that certain individuals are 
inevitably more open to adoption than others in a population. The 
innovation can be an idea, a practice, or an object. The five 
adopter categories, (1) innovators, (2) early adopters, (3) early 
majority, (4) late majority, and (5) laggards, follow a standard 
deviation curve. Innovators and early adopters are usually the 
social leaders. Early majority, late majority, and laggards are the 
followers. The perceived novelty of the idea by an individual 
determines his/her reaction to it. As a result, diffusion is the 
process by which an innovation is communicated through certain 
channels over time among the members of a population. The 
information can be imagined flowing from social leaders to 
followers. The behavior of followers is directly or indirectly 
influenced by the actions of social leaders. In this paper, we use 
terms “influence”, “information flow”, and “information diffusion” 
interchangeably to represent the same concept. 

Figure 1 (a) provides an intuitive example of the diffusion of 
innovation theory on the adoption of VCRs in the 1980s [7]. As 
illustrated in Figure 1(a), when VCRs enter the market, only 
around one million users adopt them. From 1980 to 1986, the 
number of adoptions keeps increasing, and finally declines after 
1986. Similar diffusion patterns exist on other products and 
technologies. We may remember how the cell phones are adopted 
in our family, as shown in Figure 1(b). One month after the cool 
neighbor (u1) purchases a cell phone, the kid (u2) notices it and 
persuades the family to get him one to contact the friends at 
school. Then the father(u3) also finds that he needs it for work and 
decides to get another one, following is the mother (u4). Finally, it 
takes a long time for the grandmother (u5) to accept the cell phone 
technology and purchase one.  
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Diffusion has a time dimension, which Rogers describes as 
the "innovation-decision" process [6]. The influence of central 
users tends to spread more rapidly throughout a network than the 
influence of peripheral users does. Also, it usually takes less time 
to reach central users than peripheral users when information 
flows in the network. Information flows in different rates through 
the network. Our previous model [5] ignores the fact that the 
network is not homogeneous in terms of the diffusion rate.  

Let us continue the previous example with users u1 to u5, 
representing the neighbor, the kid, the father, the mother, and the 
grandmother respectively as illustrated in Figure 1(b). Although 
the father, the mother, and the grandmother will follow whatever 
the kid adopts (i.e., the kid influences the father, the mother, and 
the grandmother in the same amount), the father always follows 
the kid within one day, while it will take more than a year for the 
grandmother to follow up. Information flows from the kid to the 
father much faster than to the grandmother. Given the kid adopts 
one item at time t, it is more likely that the father will adopt it at 
time t+1 than the grandmother, although the grandmother may 
eventually be interested in the item and adopt it at a much later 
stage. Therefore, it attains higher successful rate to recommend 
the item to the father than to the grandmother at time t+1.  

On the other hand, let us look at the problem of ranking these 
five users to find out the most efficient receiver of information. 
As what we have analyzed, the father should be the most efficient 
receiver in the network. However, by using existing ranking 
algorithms such as PageRank [9] or HITS [10], which do not take 
the diffusion rate into account, we can not find the correct answer, 
and instead, the grandmother is ranked as the most important 
receiver in the network.   

 

Adoption of VCR's by Households
1980-1989

0

2000

4000

6000

8000

10000

12000

80 81 82 83 84 85 86 87 88 89
Time (Year)

A
do

pt
io

ns
 (T

ho
us

an
ds

)

 
(a) Adoption of VCR’s by households (data is obtained 

from [7]). 
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(b) An example of adoption. Edge indicates the influence in the 
network. Only the most direct and efficient influence is illustrated.  

Figure 1: Intuitive examples of diffusion of innovation 
theory on the adoption 

 

In this paper, we propose an information flow model with 
inter-personal diffusion rate taken into account to measure how 
efficiently information diffuses from one user to another in the 
information flow network. The algorithm is based on Continuous-
Time Markov Chain, in which we model both the probability (how 
likely) and the rate (how fast) for the information to flow from 

one user to others. We propose a prediction algorithm and a 
ranking algorithm based on this inter-personal diffusion rate based 
information flow model. We demonstrate that by taking the inter-
personal diffusion rate into account, we can improve the 
recommendation performance and rank users by how efficiently 
they influence others.  

The primary contributions of this paper are three-fold. First 
we propose a novel information flow model to leverage inter-
personal diffusion rate based on Continuous-Time Markov Chain. 
Second, the rate-based information flow model is formulated to 
provide recommendations to users. Third, a DiffusionRank 
algorithm is defined to measure how efficiently information can 
flow to certain users. 

The rest of the paper is organized as follows.  We review 
related work in Section 2. Section 3 provides the problem 
formulation of leveraging rate-based information flow for 
prediction and ranking. In Section 4, we propose the information 
flow model based on Continuous-Time Markov Chain. In Section 
5, we demonstrate the experimental results by conducting our 
rate-based information flow model on improving recommendation 
performance and ranking effective influential users. Finally, 
conclusions and future work are given in Section 6.  

2. RELATED WORK 
In this section, we review the diffusion of innovation theory, 

the related work on recommendation algorithms, and the Markov 
chain based website ranking algorithms. 

2.1 Diffusion of Innovation Theory 
In [6], Everett Rogers describes the different stages of 

product adoption and indicates that the spread of a new 
technology depends mainly on two factors; innovation or 
imitation. Innovators are driven by their desire to try innovations; 
in contrast, imitators are primarily influenced by the behaviors of 
their peers. The Bass model [15] quantifies the concept of 
introduction of products/technologies by estimating the 
introduction (innovation) and acceptance (imitation) rate 
variables. The model is widely used in market analysis and 
demand forecasting of innovation diffusion in various areas. 

The Bass model characterizes the spread of a new product 
and technology in a market by 

 ( ) ( ) ( )( ) ( ) ( )( )1
1 1 1

N t
N t N t p m N t q m N t

m
−

= − + − − + − − (1) 

where ( )N t is the cumulative number of adopters by time t; the 
parameter m is the market potential, indicating the total number of 
people who will eventually adopt the item; the coefficient p is 
called the coefficient of innovation, indicating the external 
influence or advertising effect; the coefficient q is called the 
coefficient of imitation, indicating internal influence or word-of-
mouth effect. 

However, the Bass model ignores the network structure, 
which could significantly influence the diffusion process, and 
only takes the global diffusion rate into consideration.  

Identifying how information is propagated in a network is 
important in various applications. Network-based marketing refers 
to a collection of marketing techniques that take advantage of 
links between consumers to increase sales [16]. [17-19] attempt to 
model influence among consumers and understand how this 
influence propagates in the networks. The problem they address 
is: suppose that we have data on a potential network of consumers 
with estimation of the extent to which individuals influence one 
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another, if we are given a new product and a marketing budget, 
how can we maximize the adoption of the new product through 
customers? The threshold model and the cascade model have been 
considered in [19]. Information propagation through blogosphere 
is also recently studied [20]. These models ignore the inter-
personal diffusion rate, which describes how rapidly the 
information propagates in the network.  

2.2 Recommendation Algorithms 
Various Collaborative Filtering algorithms have been designed 

to identify users of similar interests [3]. The similarity metrics 
include cosine distance, correlation, and mean-squared difference. 
[8] utilizes the average commute time in a network to calculate 
the distance of a pair of users. 

However, as we demonstrate in [5], symmetric similarity is 
not as direct and effective as asymmetric inter-personal influence 
between people for recommendation. We observe people 
intentionally or unintentionally influence and inspire each other, 
thus creating an interest in retrieving or getting a specific kind of 
information or product. Therefore, we model the information 
adoption behaviors of a group of people as an information flow 
process. This process captures the amount and direction in which 
information is propagated in a network to predict where the 
information may flow to. Effective recommendations are 
generated as the result. 

However, our previous information flow model ignores the 
diffusion rate, which describes how efficiently information flows 
from one user to another in the network.  

2.3 Ranking Algorithms 
Markov Chain-based models have been proven successful in 

ranking web pages ([9-11]). The PageRank algorithm [9][10] 
computes the “importance” of web pages through a stochastic 
ergodic Markov transition matrix, which is constructed from all 
hyperlinks between web pages. The HITS algorithm [11] forms 
both an authority matrix and a hub matrix from the hyperlink 
adjacency matrix, rather than one Markov chain. As a result, 
HITS returns both authority and hub scores for each web page. 

The research discussed above has focused on using static 
properties, such as the connectivity of the nodes in a network and 
the average node distances, to represent the complex structure. 
However, networks evolve over time. Dynamic factors in the 
context of the web are essential and could not be ignored. Based 
on the fact that users are not only interested in the pages with high 
authority scores, but also the recent information, [12] proposes T-
Rank to take into account the temporal aspects such as freshness 
and update activity of pages and links when computing the 
importance of a page. [13] proposes a Markov centrality based on 
the mean first-passage time to measure the relative importance in 
networks. IRank [14] utilizes the timing ordering of the blogs to 
infer implicit links between blogs and rank the blogs according to 
those implicit links.  

However, to the best of our knowledge, the diffusion rate, 
which shows how long it takes for a node in the network, such as 
a webpage or a user, to be aware of other nodes and make an 
explicit or implicit link, is ignored in previous research.  

3. PROBLEM FORMULATION 
The central problem we address in this paper is the efficiency 

of information flow. On the inter-personal level, we measure how 
likely information goes from a specific sender to a specific 
receiver during a limited time period.  On the individual level, we 
estimate the expected rate that information diffuses to a particular 

node starting from an arbitrary node in the network. Thus, 
prediction of users’ preferences of information, and ranking users 
by the efficiency of information flow can be formulated as follows.  

Assume we have a network ( ), ,G n w τ containing a set of 
nodes n with a size of N, where edges between nodes represent the 
information flow paths,  w denotes the weights on the edges to 
represent the amount of information flow from one node to 
another, and τ  denotes the time delay on information flow paths.  

3.1 Recommendation 
For the problem of prediction of users’ preferences of 

information, the question we address is how likely for information 
to go from a specific sender to a specific receiver within a certain 
time period. Given time 0t and { , }u z n⊂ , where u represents 
those who have adopted the item, and z represents those who have 
not, we calculate the likelihood that users z will follow users u to 
adopt the item before time t. We denote this likelihood 
as ( )0| , ,L z u t t . 

3.2 Ranking 
For ranking problem, the question we address is what the 

expected time is for a user to receive information in a network. 
We calculate on average, how efficient for the information 
flowing from other users to a particular user i , and rank users 
based on the diffusion “efficiency”, which is denoted as ( )R i . 

4. INFORMATION FLOW MODEL BY 
LEVERAGING DIFFUSION RATE 

In this section, we review some related background on 
Continuous-Time Markov Chain. We then propose our rate-based 
information flow model based on the foundation of Continuous-
Time Markov Chain. Afterwards we discuss how to utilize the 
model for generating recommendations and ranking users. 

4.1 Continuous-Time Markov Chain 
Definition 1: A Continuous-Time Markov Chain (CTMC) is 

a continuous time stochastic process ( ){ }, 0X t t ≥ s.t. , 0s t∀ ≥ , 

and ( ), ,i j x h∀ . 

( ) ( ) ( ) ( ){ }
( ) ( ){ }

| , ,0

|

P X t s j X t i X h x h h t

P X t s j X t i

+ = = = ≤ ≤

= + = =
        (2) 

A Continuous-Time Markov Chain satisfies the Markov property 
and takes value from a discrete state space. The Markov property 
states that at any times 0t s t+ > > , the conditional probability 
distribution of the process at time t s+ given the whole history of 
the process up to and including time t, depends only on the state 
of the process at time t [28]. In this paper, we assume the 
transition probabilities are independent from the initial time t, 
which means the chain is time-homogeneous and we denote 

( )ijP s as the transition probability from i to j over s time period.  

Definition 2: Define the transition rate matrix as 

0,0 0,1

1,0 1,1

q q
q q

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

Q    (3) 

where 
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 { } ( ) ( )
0 0

|
lim  = lim       ijt t t

ij t t

P tP X j X i
q i j

t t
+∆

∆ → ∆ →

∆= =
= ≠

∆ ∆
 (4) 

as the probability per time unit that the CTMC makes a transition 
from state i to state j or the transition rate. Thus the total transition 
rate out of state i, which we call out-state rate, is 

 ,i i j
j i

q q
≠

= ∑  (5) 

Define , i i iq q= − , which means when the chain leaves state i with 

rate iq , it must enter some other states j’s, then  

 
0,0 0,1 0 0,1

1,0 1,1 1,0 1

q q q q
q q q q

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= = −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Q  (6) 

Definition 3: Define the time until the CTMC makes a 
transition and leaves state i, given that the CTMC is currently in 
state i, as the state staying time of the chain in state i, iT .  

 { }0: inf : |i tT t X i X i= ≠ =  (7) 

where inf denotes inferior limit. iT  is exponentially distributed 
with rate iq . When the stochastic process leaves state i, it will next 
enter state j with probability ijP , which is independent of the time 
spent at state i, and satisfies 

 
1

0

ij
j i

ii

P

P
≠

⎧ =⎪
⎨
⎪ =⎩

∑
 (8) 

Also we have 

 ( )     ij
ij

i

q
P i j

q
= ≠  (9) 

In a summary, in a CTMC, the process makes a transition 
from one state to another, after it has spent an amount of time – 
state staying time, on the state it starts from. This state staying 
time is exponentially distributed with some rate. When the 
process leaves one state, it will next enter another state with some 
probability independent of the time spent at the previous state. 
Similar as for the “cell phone adoption” example, the rate and the 
transition probability are essential and well-captured factors in the 
CTMC. In this paper, we propose a rate-based information flow 
model based on the CTMC framework. 

4.2 Rate-based Information Flow Model  
In this subsection, we propose a rate-based information flow 

model on a network ( ), ,G n w τ  based on the CTMC, in which 
each node is a state, the weight is represented as the transition 
probability, and the delay is represented as the staying time in 
each state. Figure 2 illustrates an example of our model. We assume 
that the information stays in a node i for a certain time 
period iT before making a transition to others. Then information 
flows to other nodes j, k, and l according to transition 
probabilities ijP , ikP , and ilP .  

In the rest of this subsection, we first describe how to 
estimate the staying time in each state as well as the transition 
probability. Then we summarize the proposed rate-based 
information flow model. Afterwards, we propose a 

recommendation algorithm and a ranking algorithm based on the 
proposed rate-based information flow model.  

i

j

k

l

Pij

Pik

PilStay in state i
for time Ti

i

j

k

l

Pij

Pik

PilStay in state i
for time Ti  

Figure 2: Rate-based Information Flow Model 

4.2.1 Out-State Rate Estimation 
We assume that the staying time at node i follows an 

exponential distribution with out-state rate iq . According to the 
property of the exponential distribution, the expected value of an 
exponentially distributed random variable iX with rate iq  is given 
by 

 1( )i i
i

E X T
q

= =  (10) 

Therefore, we estimate the out-state rate by the expected 
value of the observations of the staying time at each node in the 
network. 

4.2.2 Transition Probability 
We estimate the transition probability based on the instances 

on the inter-state transition and the time delay on each transition. 
Given the out-state rate, we estimate the transition probability from 
user i to user j as 

 ( )( )expij i i ij c
c

P q q t= −∑  (11) 

where ( )ij ct is defined as the inter-state diffusion time from node i to 

node j on c instances. 
According to Equation (9), we have 

 ( )     ij i ijq q P i j= ≠  (12) 

which we define as the inter-personal diffusion rate from user i to 
user j. Thus we have all the elements in the Q matrix ready for use.  

4.2.3 Our Proposed Information Flow Model 
To summarize, the rate-based information flow model is 

described in Figure 3, where we estimate the out-state rate, 
transition probability and inter-personal diffusion rate to generate 
the transition rate matrix Q.  

Algorithm  Rate-based Information Flow Model 

Input: ( ), ,G n w τ : user adoption data with timestamp 

Output: Q: transition rate matrix  
Begin 

1) Estimate the out-state rate by Equation (10) 
2) Estimate transition probability by Equation (11) 

3) Estimate inter-personal diffusion rate ijq by (12) 

4) Generate transition rate matrix Q 
End 

Figure 3: Rate-based Information Flow Model 

4.3 Recommendation Algorithm 
Assume we have user adoption data on N users and M items. 

We model user adoption behaviors by our proposed rate-based 
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information flow model in which information flows from some 
users (social leaders) to others (followers) in different rates.  

Specifically, given the detailed log data, including the 
timestamp of each adoption, for each pair of users, we calculate the 
out-state rate and transition probability by comparing their adoption 
timestamps on the same items. Following the steps listed in Figure 3, 
we generate a rate-based information flow model for the user 
adoption data.  

For the recommendation problem, given at time t=0, user i 
adopts an item, then the information starts to flow from this user 
to others in the network. We predict users’ preferences of 
information by estimating who will most likely adopt the item by 
time t τ= , in other words, information will flow to them. To 
predict users’ preferences by time t τ= , we estimate the 
probability that the information flows from user i to others as the 
probability that transition ( )   i j j i→ ≠ is enabled in [ ]0,τ  

as ( )| ,L j i τ , which is the ( ),i j th element in ( )L τ  with 

( ) ( )
0

L P t dt
τ

τ = ∫    (13) 

where ( )P t is the transition probability matrix with 

( ),i j th entry ( )ijP t .  

Formally, when the state space is finite, we can estimate the 
transition probability by solving  

 
( ) ( )
( )0

P t P t
P

′⎧ =⎪
⎨ =⎪⎩

Q
I

 (14) 

where I is the identity matrix. The solution is 

 ( ) ( )
0 !

m
t

m

t
P t e

m

∞

=

= = ∑Q Q
 (15) 

If Q can be diagonalized by 1−=Q MDM , then  

 ( ) ( ) 1
1

0 !

m
t

m

t
P t e

m

−∞
−

=
= =∑ DM D M

M M  (16) 

For large Q , Taylor approximation can also be used 

 ( ) lim
m

m

tP t
m→∞

⎛ ⎞≈ +⎜ ⎟
⎝ ⎠

I Q  (17) 

Specifically, the steady state distribution of the CTMC can 
be calculated in the ways mentioned in the following theorem.  

Theorem 1. Given an irreducible CTMC, suppose 'i sπ∃ s.t. 
0iπ > satisfies 

 
1

0
ii

π

π

⎧ =⎪
⎨

=⎪⎩

∑
Q

 (18) 

'i sπ are then the steady state distribution for the CTMC and the 
CTMC is ergodic. The solution is 

 
( ) 1

0
lim lim lim

!

m
t t

t t tm

t
e e

m
π

∞
−

→∞ →∞ →∞
=

= = =∑Q DQ
M M  (19) 

The detailed proof of this theorem can be found in [28].  
To summarize, the rate-based information flow for 

recommendation algorithm is described in Figure 4, where we 

estimate how likely the transition will enable during a time period 
by the transition probability of the CTMC.  

 

Algorithm  Rate-based Information Flow for 
Recommendation 
Input:    Q: transition rate matrix 
                u: initial users who have adopted the recent item at   
                time 0 
                n: all the users, including sets u and /=z n u    
                τ : when the recommendation will be made to users 
Output:  ( )| ,L τz u : how likely other users will adopt the       
                item by time τ  
Begin 

1) Matrix diagonalization: 1−=Q MDM  
2) Estimate ( )P τ by Equation (16) or (17) 
3) Estimate ( )L τ by Equation (13) 

4) Given a group of user u, estimate ( )| ,L τz u by 

 ( ) ( )| , | ,
k

i
u u

L L uτ τ
∈

= ∑z u z  (20) 

End 
Figure 4: Rate-based Information Flow for Recommendation 

Algorithm 
 

4.4 Ranking Algorithm 
Similarly we assume we are given the user adoption data as 

described in Section 4.3. For the ranking problem, we pose the 
problem as if an arbitrary user j ( )j i≠ adopts an item at t=0, 
when will be the average time in which user i adopts it? In 
Continuous-Time Markov Chain, this question can be answered 
by the mean first-passage-time.  

Let M be the first-passage time matrix of the CTMC with 
the ( ),i j th element as ijm . The mean first passage time ijm from i 
to j is defined as the expected time taken until the first arrival at 
node j starting at node i.   

Let v be any constant such that ( )max i iv q≥ . Divide the off-

diagonal components of Q  ( ( )P    i ijq i j≠ ) by v and replace its 

diagonal components iq− by1 /iq v− , we then have a uniformized 
chain (discrete time), whose transition matrix vP can be related to 
Q though v as follows 

 1
v v
= +P I Q  (21) 

Let λM denote the matrix of the first passage time of the 
uniformized chain (discrete time). According to [26], the mean 
first-passage time matrix of discrete-time Markov chain is given 
by 

 ( )( )v v v dg
= − +M I Z E Z D  (22) 

where I is the identity matrix, E is a matrix containing all ones, 

and D is the diagonal matrix with elements 
( )
1

iid
iπ

= where 

( )iπ is the steady state distribution of node I in this discrete-time 

Markov chain,  vZ is the fundamental matrix [30] of this discrete-
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time Markov chain with 

 ( ) 1

v v v

−∞= − +Z I P P  (23) 

( )v dg
Z results from vZ by setting off-diagonal entries to zero, and 

v
∞P is the limiting matrix of vP  with each row of  v

∞P as Tπ , or 
T

v
∞ =P eπ , where e is a column vector with all ones. The matrix of 

the first-passage time of the original Continuous-Time Markov 
Chain M is 

 ( ) ( )1
v vof dgv

= +M M Λ M  (24) 

where ( )1
idiag q−=Λ , ( )v dg

M results from vM by setting off-

diagonal entries to zero, and ( )v of
M results from vM by setting 

diagonal entries to zero.  

The computational complexity is as high as ( )3O N because 

we need to invert a matrix of size | | | |N N× in Equation (23). 
Fortunately, an efficient way of calculating first passage time in a 
large Continuous-Time Markov Chain by means of Laplacian 
transforms is discussed in [27]. Since the computational efficiency 
is out of the scope of this paper, we refer to [27] for more details. 

Thus, the rank score for each user j is estimated as 

 ( ) 1
1

1 iji j

R j
m

N ≠

=

− ∑
 (25) 

To summarize, the rate-based information flow for ranking 
algorithm which we call the DiffusionRank Algorithm is 
described in Figure 5, where the mean first-passage time of the 
CTMC is utilized to rank the users by the flow efficiency. 

 

Algorithm  DiffusionRank Algorithm 
Input:              Q: transition rate matrix 
                         n: users  
Output:          ( )R n : rank scores 
Begin 

1) Generate a uniformized matrix with transition 
matrix as vP according to Equation (21) 

2) Generate the steady state distribution of vP  
3) Calculate the mean first passage matrix vM of the 

uniformized chain according to Equation (22) 
4) Calculate the mean first passage time matrix M of 

the original CTMC according to Equation (24) 
5) Calculate the rank scores ( )R n by Equation (25) 

End 
Figure 5: DiffusionRank Algorithm 

 

5. EXPERIMENTS 
In this section, we first describe the datasets used to evaluate 

our algorithms. We observe how information flow model captures 
user adoption patterns. Following that, we analyze the diffusion 
time from global and structural perspectives. Afterwards, we 
demonstrate the experimental results on both recommendation and 
ranking.  

5.1 Experiment Set-Up 
We demonstrate our proposed algorithms on two datasets.  The 

first dataset is collected from NEC’s “EigyoRyoku 21” (denoted as 
ER and stands for Sales-Force in Japanese) system. The ER system 
is a knowledgebase to support sales staffs with registered 
documents that include articles, slides, etc. We collected a thirty-
month period of clickstream log files from April 1 2004 to 
September 19 2006 covering 3,528 users and 31,379 documents.  
Nine user actions are identified: {"Login", "Register_Feedback", 
"Preview", "Abstract", "Document Download", "Search", 
"Register", "Update", "Delete"}. The clickstream log is partitioned 
into sessions that start with “login” followed by a sequence of user 
actions. The timestamps of users’ actions as well as the disclosure 
of the documents are included in the dataset. In this paper, we 
assume if a user accesses a document (including "Preview", 
"Abstract" or "Download"), he or she has adopted it.  

The second dataset is MovieLens dataset [4], which consists 
of 1,000,209 anonymous ratings of approximately 3,900 movies 
made by 6,040 MovieLens users who joined MovieLens in 2000.  
Each user has rated at least 20 movies. We assume the user has 
adopted the movie as long as this user ever provided a rate on the 
movie. 

5.2 User Adoption Patterns 
Based on ER dataset, we simulate the user adoption process to 

illustrate user adoption patterns. Figure 6 illustrates the adoption 
process on one document. We first cluster users into five groups 
according to Rogers’ diffusion of innovation theory [1] (the user 
clusters from the left to the right are innovators, early adopters, 
early majority, late majority and laggards respectively) according to 
how early their adoptions are in the dataset. These user groups are 
illustrated as half-rings in the figure. Each node represents a user, 
with user ID as the label. When a document is disclosed and users 
start to adopt it, we mark the nodes of these users as red shaded 
boxes accordingly based on the user’s relative adoption time. We do 
observe consistent sequential patterns from user adoption data, 
which confirm that information flows from innovators to early 
adopters, early majority, late majority, until laggards. 

 

 
Figure 6: Visualization on user adoption patterns. This 

series captures the fact that after one document being 
disclosed (the small rectangular on the left side), how users 

adopt it over time. Each node represents a user, with user ID 
as the label.  The nodes are marked by red shaded boxes when 

the corresponding users adopt the document  
 

5.3 Diffusion Time: Case Study 
To analyze how the information flows in different rates in 

these two datasets, we study the distributions of global diffusion 
time, and structural diffusion time.  
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5.3.1 Global Diffusion Time 
We define the global diffusion time as how long it takes that 

information spreads through the population. This concept is in the 
inverse proportion of the global diffusion rate which has been 
captured in diffusion of innovation theory [6] and Bass model 
[15].  

For both datasets, we ranked the user adoption behaviors by 
the adoption time. The global diffusion time is calculated as the 
difference of the disclosure time and the adoption time, keeping 
the relative position unchanged. Intuitively, we expect there are a 
larger amount of adoptions at the beginning and followed with 
decay because the value of the items decays over time. Figures 
7(a) and (b) illustrate how the number of adoptions of the items 
changes over time. It does confirm our expectation. A large 
amount of adoptions take place at the early stage when the items 
are just disclosed, rapidly decaying afterwards for both datasets. 
To illustrate the decay rate, we fit the data to an exponential 
function,  

 ( )expY a b X= ⋅  (26) 

As indicated by the coefficient of exponential fit, the decay rate in 
the ER dataset (b = -0.0018) is similar as that in the MovieLens 
dataset (b = -0.0019). 

To further analyze how the information diffuses over time, 
we utilize the Bass model [15], which quantifies the adoption of 
innovations by estimating the introduction and acceptance rate 
variables. Figures 7 (c) and (d) illustrate how the Bass model fits 
two datasets by using Equation (1). Comparing the innovation 
coefficients of these two cases, (p = 0.2748 for ER and p = 
0.0756 for MovieLens), we can tell that ER system has higher 
percentage of innovators than MovieLens system, which is 
reasonable because the documents in ER system are more time-
sensitive than the movies in MovieLens system.  
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(a) ER (b = -0.0018)         (b) MovieLens (b = -0.0019) 
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(c) ER (p = 0.2748)             (d) MovieLens (p = 0.0756 ) 

Figure 7: The Distributions of global diffusion time on 
ER and MovieLens datasets 

Note: For Figures 7-9, the x-axis represents time (days or 100 days), 
y-axis represents the number of corresponding diffusion times 

located in a certain time. 

The global diffusion time provides us with an overall view of 
how quickly the information diffuses for different products or 
technologies, thus offers a means to look further into the special 
insights and properties of the products or technologies. However, 

we still have no clue on how the information flows to different 
nodes in the network without looking into the structural level.  

5.3.2 Structural Diffusion Time 
We define the structural diffusion times as those diffusion 

times which take the network structure into account. The 
structural diffusion times include inter-personal diffusion time, 
which we define as how long it takes that information spreads 
from one node to another, and state staying time, which is defined 
in Section 4.1. In this paper, we make the same assumption as we 
did in [5]: the fact that two users access the same item sequentially 
is modeled as an information flow process: the information is 
flowing from early adopters to late adopters.  

For both datasets, we calculate the difference of adoption 
time of each pair of users on the same item as the inter-personal 
diffusion time. For each pair of users, we take the average over 
the common items both users adopt to indicate how rapidly the 
information flows from one user to another on average. Figures 8 
(a) and (b) illustrate the distributions of the average inter-personal 
diffusion time in ER and MovieLens datasets. For both datasets, 
the average inter-personal diffusion times vary from several days 
to several hundred days. We also study the distribution of state 
staying time at each user. For each user, we calculate the adoption 
time difference of him/her and others and take the average to 
indicate how rapidly the information flows out from this node to 
others. Figures 8 (c) and (d) illustrate the distributions of the 
average state staying time in ER and MovieLens datasets. Again, 
for both datasets, the average state-staying times vary from 
several days to several hundred days. The variety reminds us of 
the example of “cell phone adoption”. In real situations, some 
users more efficiently influence other users than some others do. 
Users with similar properties as the “father” and “grandmother” 
do exist. How to differentiate them will affect various applications 
such as recommendation and ranking.  
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Figure 8: The distributions of the structural diffusion time 
The distributions of the average inter-personal diffusion 

times on ER dataset (a) and MovieLens dataset (b).   
The distributions of the average state staying time on ER 

dataset (c) and MovieLens dataset (d) 

To look closer, Figure 9 provides the individual cases for the 
state staying time. Figures 9(a) and (b) compare the state staying 
time for user 3526 and user 2433 on ER dataset. The state staying 
time for user 3526 ranges from one day to around 80 days; while 
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for user 2433, it ranges from one day to more than 800 days. 
Thus, on average, user 3526 influences others much more 
efficiently than user 2433. The similar conclusion can be drawn 
by comparing the state staying time of user 2292 and user 2980 on 
MovieLens dataset as illustrated in Figures 9(c) and (d). Also we 
can see that modeling of the state staying time as exponential 
distribution is reasonable, although not perfect.  
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(a) ER: UserID 3526               (b) ER: UserID 2433  
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(c) MovieLens: UserID 2292 (d) MovieLens: UserID 2980 

Figure 9: The case study of distribution of the state staying 
time  

5.4 Recommendation Performance 
To demonstrate the performance of our recommendation 

algorithm, for the ER dataset, we first divide both datasets into two 
sets: the training set and the test set. The data from April 2004 to 
April 2005 serve as the training data, and the data from May to July 
2005 serve as the test data. To exclude casual users who had very 
few activities, we selected 1170 active users who adopted more than 
50 documents in the training period; and more than 10 documents in 
the test period in our experiments. In total, there are 23,894 
documents involved in this selected dataset. 201,750 adoption 
actions were recorded. The average number of adoption actions per 
user is 172, and the average number of actions per document is 8. 
For the MovieLens dataset, we select first 80% as the training set 
and later 20% as the test set.  

In the experiments, we simulate the situation of adoption 
behaviors. There are 586 documents disclosed during the test period 
from May to July 2005. The mean value of the number of users who 
adopted these 586 documents during May to July 2005 is 18. These 
documents were first adopted by one or multiple users – innovators. 
We then predict who else will most likely adopt the documents 
following these early adopters within 30 days. This strategy is 
suitable for online document/product pushing service or 
advertisement – recommending the items to potential customers 
according to the choices of innovators. It can also be used in the 
traditional recommendation scenario by estimating how likely one 
user will be interested in the documents and recommending those 
top-ranked items to him/her.  

To evaluate the accuracy of predictions, we measure the 
average recommendation accuracy, which represents the 
percentage of them who are actually interested in the item among 
the recommended users.  

In our experiments, we compare the performance of the 
following algorithms: 

1. Collaborative Filtering based on Cosine Similarity (baseline) 
(denoted as Cosine) 

2. Early adoption based information flow model as proposed in 
[5] (denoted as EABIF) 

3. Rate-based information flow model (proposed in this paper, 
and denoted as RIF) 
Figure 10 compares the average recommendation accuracy of 

Collaborative Filtering based on Cosine Similarity (labeled by 
CF), early adoption based information flow model (labeled by 
EABIF) and rate-based information flow model (labeled by RIF) 
on both ER ((a)–(c)) and MovieLens datasets ((d)-(e)). We 
demonstrate the results in the situations when one or multiple 
users adopted the item within 30 days. In both datasets, RIF beats 
CF and EABIF. In ER dataset, RIF improves accuracy by 67% 
comparing to CF, and 20% comparing to EABIF. In MovieLens 
dataset, RIF improves accuracy by 80% comparing to CF, and 
53% comparing to EABIF. We also find that for MovieLens 
dataset, given the recommendation time as 30 day, sometimes the 
EABIF algorithm can not perform as well as CF does. The reason 
is that EABIF looks for potential users in a much longer duration 
– sometimes these potential users are laggards (“grandma” in our 
cell phone adoption example). However, the interest of these 
laggards on the item may have not been triggered yet during a 
short time period like 30 days. 
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(a) ER: Number of adopted users = 1 
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(b) ER: Number of adopted users = 2 
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(c) ER: Number of adopted users = 3 
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Performance Comparison (MovieLens) 
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(d) MovieLens: Number of adopted users = 1 
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(e) MovieLens: Number of adopted users = 3 
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(f) MovieLens: Number of adopted users = 5 

Figure 10: Average recommendation accuracy of RIF 
comparing to CF and EABIF on ER and MovieLens datasets 

given different number of adopted users 

5.5 Ranking Performance 
To demonstrate the performance of our ranking algorithm, we 

compare the performance of the following algorithms: 
1. PageRank (with the damping factor as 0.85) 
2. HITS 
3. DiffusionRank (our proposed algorithm) 

Table 1 and Table 2 show the top 10 ranked users in ER and 
MovieLens datasets using these algorithms. To further analyze the 
result, we illustrate the in-node diffusion time for 1st ranked user in 
PageRank, and DiffusionRank in Figure 11. We define the in-node 
diffusion time as how long it takes that information flows from 
other nodes to this particular node. The in-node diffusion time is an 
important indicator which is related to the flow efficiency to a 
particular node although not the only one. We can see that on 
average, the in-node diffusion time for the 1st ranked user in 
DiffusionRank (Figure 11(b)) is much smaller than that of the 1st 
ranked in PageRank and HITS (Figure 11(a)). This demonstrates 
that the information flows more rapidly to these users who ranked 
higher in DiffusionRank than to these higher ranked in PageRank 

and HITS. A similar conclusion can be drawn from the result on 
MovieLens dataset (Figures 11(c) and (d)).  

 

Table 1.  Top 10 ranked users in ER dataset 

User IDs ordering 
HITS Rank PageRank 

Authority Hub 
DiffusionRank 

1 31 31 7 722 
2 5 5 31 563 
3 9 9 1016 1 
4 7 10 10 66 
5 10 7 103 469 
6 246 246 5 673 
7 363 363 9 582 
8 970 970 29 952 
9 29 199 199 6 

10 366 29 239 849 
 

Table 2. Top 10 ranked users in MovieLens dataset 

User IDs ordering 
HITS Rank PageRank 

Authority Hub 
DiffusionRank 

1 683 293 276 1 
2 729 94 303 189 
3 416 655 92 188 
4 796 234 222 291 
5 551 682 804 468 
6 189 7 268 221 
7 56 59 749 342 
8 234 796 130 796 
9 532 308 194 919 

10 807 551 378 56 
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 (a)  ER: UserID 31                 (b) ER: UserID 722 
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(c) MovieLens: UserID 683     (d) MovieLens: UserID 1 

Figure 11: Distribution of the in-node diffusion times of top-
ranked users. The x-axis represents time (days), y-axis 

represent the percentage of the in-node diffusion times to this 
user located in a certain time 

 

6. CONCLUSIONS AND FUTURE WORK 
Social influence is the process whereby people directly or 

indirectly influence the thoughts, feelings and actions of others. 
PageRank and HITS use the hyperlink structure of the web pages 
to determine their “importance”. Word-of-mouth marketing and 
recommendation is another way of leveraging social influences. 
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However, none of these approaches take the diffusion rates in the 
network into account.  

In this paper, we propose a novel Information Flow model 
that captures the diffusion rates of information in a network. By 
modeling the diffusion of information flow, we can tackle two 
refined problems in recommendation and ranking.  First, we can 
measure how likely information will flow from a specific sender 
to a specific receiver within a limited time, and thus predict who 
will be the most likely recipients of information in a 
recommendation. Second, we can estimate the expected time for 
information to diffuse to a particular user in the network, and thus 
rank users based on how quickly information will travel to them.  

Our recommendation and ranking algorithms use the 
transient transition probability and the mean first-passage time in a 
Continuous-Time Markov Chain.  Consequently, we can address 
the diffusion efficiency of information flow on the inter-personal 
and individual levels.   

In our experiments, the diffusion efficiency of the proposed 
algorithms is demonstrated for both the prediction of automatic 
recommendations and ranking of influential users. For 
recommendation, we chose a recommendation period of 30 days. 
Compared with traditional Collaborative Filtering and the 
uniform-diffusion information flow model (EABIF), our rate-
based information flow (RIF) algorithm improves 67% and 20% 
respectively for recommendation accuracy in the ER dataset. In 
the MovieLens dataset, RIF improves accuracy by 80% 
comparing to CF, and 53% comparing to EABIF. Furthermore 
compared with PageRank and HITS algorithms, our proposed 
DiffusionRank ranks users based on how efficiently information 
will flow to them in the network. 

Ongoing work includes formally defining “influence” 
between users and conducting our proposed algorithms on 
datasets with explicit links, such as blog datasets, to track the 
influence flow. Also, some recent evidences demonstrate that 
heavy tailed statistics happen in some human actions [22-25]. 
Thus, another direction is to estimate the state staying time by 
hyper-exponential distribution to fit the heavy tailed distribution. 
Then we can build the rate-based information flow model based 
on semi-Markov process [29].   
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