
Efficient Search Engine Measurements

Ziv Bar-Yossef
∗

Dept. of Electrical Engineering
Technion, Haifa 32000, Israel

Google Haifa Engineering Center, Israel

zivby@ee.technion.ac.il

Maxim Gurevich
Dept. of Electrical Engineering
Technion, Haifa 32000, Israel

gmax@tx.technion.ac.il

ABSTRACT
We address the problem of measuring global quality met-
rics of search engines, like corpus size, index freshness, and
density of duplicates in the corpus. The recently proposed
estimators for such metrics [2, 6] suffer from significant bias
and/or poor performance, due to inaccurate approximation
of the so called “document degrees”.

We present two new estimators that are able to overcome
the bias introduced by approximate degrees. Our estimators
are based on a careful implementation of an approximate
importance sampling procedure. Comprehensive theoreti-
cal and empirical analysis of the estimators demonstrates
that they have essentially no bias even in situations where
document degrees are poorly approximated.

Building on an idea from [6], we discuss Rao Blackwelliza-
tion as a generic method for reducing variance in search
engine estimators. We show that Rao-Blackwellizing our
estimators results in significant performance improvements,
while not compromising accuracy.

Categories and Subject Descriptors: H.3.3: Informa-
tion Search and Retrieval.

General Terms: Measurement, Algorithms.

Keywords: search engines, evaluation, corpus size estima-
tion.

1. INTRODUCTION
Background. In this paper we focus on methods for ex-
ternal evaluation of search engines. These methods interact
only with the public interfaces of search engines and do not
rely on privileged access to internal search engine data or on
specific knowledge of how the search engines work. External
evaluation provides the means for objective benchmarking
of search engines. Such benchmarks can be used by search
engine users and clients to gauge the quality of the service
they get and by researchers to compare search engines. Even
search engines themselves may benefit from external bench-
marks, as they can help them reveal their strengths and
weaknesses relative to their competitors.

Our study concentrates on measurement of global qual-
ity metrics of search engines, like corpus size, index fresh-

∗Supported by the European Commission Marie Curie In-
ternational Re-integration Grant.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

ness, and density of spam or duplicate pages in the corpus.
Such metrics are relevance neutral, and therefore no human
judgment is required for computing them. Still, as external
access to search engine data is highly restricted, designing
automatic methods for measuring these quality metrics is
very challenging. Our objective is to design measurement
algorithms that are both accurate and efficient. Efficiency
is particularly important for two reasons. First, efficient al-
gorithms can be executed even by parties whose resources
are limited, like researchers. Second, as search engines are
highly dynamic, efficient algorithms are necessary for cap-
turing instantaneous snapshots of the search engines.

Problem statement. Let D denote the corpus of doc-
uments indexed by the search engine. We focus on mea-
surement of metrics that can be expressed as either sums or
averages over D. Given a target function f : D → R, the
sum metric and the average metric corresponding to f are:

sum(f) ,
∑

x∈D

f(x), avg(f) ,
sum(f)

|D|
.

(In fact, we address sums and averages w.r.t. arbitrary mea-
sures. See more details in Section 2.) Almost all the global
quality metrics we are aware of can be expressed as sum or
average metrics. For example, the corpus size, |D|, is the
sum of the constant 1 function (f(x) = 1 for all x); the
density of spam pages in the corpus is the average of the
spam indicator function (f(x) = 1, if x is a spam page, and
f(x) = 0, otherwise); the number of unique documents in
the corpus is the sum of the inverse duplicate-count function
(f(x) = 1/dx, where dx is the number of duplicates x has,
including x itself). Many other metrics, like search engine
overlap, sizes of subsets of the corpus, or index freshness
can be expressed as sums or averages as well. We allow also
sums and averages of vector-valued functions f : D → R

m,
which capture metrics like the distribution of pages in the
corpus by language, country domain, or topic.

A search engine estimator for sum(f) (resp., avg(f)) is a
probabilistic procedure, which submits queries to the search
engine, fetches pages from the web, computes the target
function f on documents of its choice, and eventually out-
puts an estimate of sum(f) (resp., avg(f)). The quality of
an estimator is measured in terms of its bias and its variance.
The efficiency of an estimator is measured in terms of the
number of queries it submits to the search engine, the num-
ber of web pages it fetches, and the number of documents
on which it computes the target function f .

State of the art. Brute-force computation of search qual-
ity metrics is infeasible, due to the huge size of the corpus

WWW 2007 / Track: Search Session: Search Potpourri

401

and the highly restricted access to it. Every user is limited to
a few thousand queries per day and only the top k matches
are returned. (k is the search engine’s result set size limit;
e.g., k = 1, 000 for Google and Yahoo!) If a query “over-
flows”, i.e., has more than k matches, the user has no way
of accessing results beyond the top k. Thus, fetching all the
pages in a search engine’s corpus is practically impossible.

An alternative to brute-force computation is sampling.
One samples random pages from the corpus and uses them
to estimate the quality metrics. If the samples are unbiased,
then a small number of them is sufficient to obtain accurate
estimations. The main challenge is to design algorithms that
can efficiently generate unbiased samples from the corpus us-
ing queries to the public interface. Bharat and Broder [4]
were the first to propose such an algorithm. The samples
produced by their algorithm, however, suffered from severe
bias towards long, content-rich, documents. In our previous
paper [2], we were able to correct this bias by proposing a
technique for simulating unbiased sampling by biased sam-
pling. To this end, we applied several stochastic simulation
methods, like rejection sampling [24] and the Metropolis-
Hastings algorithm [22, 13]. Stochastic simulation, however,
incurs significant overhead: in order to generate each unbi-
ased sample, numerous biased samples are used, and this
translates into elevated query and fetch costs. For instance,
our most efficient sampler needed about 2,000 queries to
generate each uniform sample.

In an attempt to address this lack of efficiency, we also
experimented [2] with importance sampling estimation. Im-
portance sampling [21, 16] enables estimation of sums and
averages directly from the biased samples, without first gen-
erating unbiased samples. This technique can significantly
reduce the stochastic simulation overhead. Nevertheless, our
estimators in [2] used stochastic simulation twice (once to se-
lect random queries and once to select random documents),
and we were able to use importance sampling to eliminate
only the latter of the two. Furthermore, our importance
sampling estimator was still wasteful, as it used only a sin-
gle result of each submitted query and discarded all the rest.

Broder et al. [6] have recently made remarkable progress
by proposing a new estimator for search engine corpus size.
Their estimator (implicitly) employs importance sampling
and does not resort to stochastic simulation at all. Moreover,
the estimator somehow makes use of all query results in
the estimation and is thus less wasteful than the estimators
in [2]. Broder et al. claimed their method can be generalized
to estimate other metrics, but have not provided any details.

The degree mismatch problem. A prerequisite for ap-
plying importance sampling is the ability to compute for
each biased sample an importance weight. The importance
weights are used to balance the contributions of the different
biased samples to the final estimator.

In the estimators of [2, 6], computing the importance
weight of a sample document translates into calculation of
the document’s “degree”. Given a large pool of queries (e.g.,
“phrase queries of length 5”, or “8-digit string queries”), the
degree of a document w.r.t. the pool is the number of queries
from the pool to whose results x belongs. As the estimators
of [2, 6] choose their sample documents from the results of
random queries drawn from a query pool, these samples are
biased towards high degree documents. Document degrees,
therefore, constitute the primary factor in determining the
importance weights of sample documents.

As importance weights (and hence degrees) are computed
for every sample document, degree computation should be
extremely efficient. Ideally, it should be done based on the
content of x alone and without submitting queries to the
search engine. The above estimators do this by extracting
all the terms/phrases from x and counting how many of them
belong to the pool. The resulting number is the document’s
predicted degree and is used as an approximation of the real
degree.

In practice, the predicted degree may be quite different
from the actual degree, since we do not exactly know how the
search engine parses documents or how it selects the terms
by which to index the document. Moreover, we do not know
a priori which of the queries that the document matches
overflow; the document may fail to belong to the result sets
of such queries if it is ranked too low. These factors give rise
to a degree mismatch—a gap between the predicted degree
and the actual degree. The degree mismatch implies that the
importance weights used by the estimators are not accurate,
and this can significantly affect the quality of the produced
estimates.

In [2], we proved that if the density of overflowing queries
among all the queries that a document matches has low vari-
ance, then the bias incurred by degree mismatch is small.
Broder et al. [6] have not analyzed the effect of degree mis-
match on the quality of their estimations.

Several heuristic methods have been used by [2, 6] to over-
come the degree mismatch problem. In order to reduce the
effect of overflowing queries, a pool of queries that are un-
likely to overflow was chosen ([2] used a pool of phrases of
length 5, while [6] used a pool of 8-digit strings). However,
pools that have low density of overflowing queries are also
more likely to have poor coverage, creating another bias.
[6] remove overflowing queries from the pool by eliminating
terms that occur frequently in a training corpus. However,
this heuristic can have many false positives or false nega-
tives, depending on the choice of the frequency threshold.

Our contributions. In this paper we show how to over-
come the degree mismatch problem. We present two search
engine estimators that remain nearly unbiased and very ef-
ficient, even in the presence of highly mismatching degrees.

Our first contribution is a rigorous analysis of an “ap-
proximate importance sampling” procedure. We prove that
using importance sampling with approximate weights rather
than the real weights incurs both a multiplicative bias and
an additive bias. The analysis immediately implies that the
estimator of Broder et al. [6] suffers from significant bias in
the presence of degree mismatch.

Our second contribution is the design of two new impor-
tance sampling estimators. Our estimators use approximate
weights, but are able to eliminate the more significant mul-
tiplicative bias, leading to nearly unbiased estimates. These
estimators can be viewed as generalizations of “ratio impor-
tance sampling” (cf. [20]) and importance sampling with ap-
proximate trial weights [2]. The first estimator, the Accurate
Estimator (AccEst), uses few search engine queries to proba-
bilistically calculate exact document degrees, and is thereby
able to achieve essentially unbiased estimations. The second
estimator, the Efficient Estimator (EffEst), predicts docu-
ment degrees from the contents of documents alone, with-
out submitting queries to the search engine, similarly to [2,
6]. To eliminate the multiplicative bias factor incurred by
degree mismatch, EffEst estimates this factor by invoking

WWW 2007 / Track: Search Session: Search Potpourri

402

AccEst. Nevertheless, as the bias factor is independent of
the target function being measured, this costly computation
can be done only once in a pre-processing step, and then be
reused in multiple invocations of EffEst. Hence, the amor-
tized cost of EffEst is much lower than that of AccEst. The
estimations produced by EffEst may be slightly less accu-
rate than those of AccEst, because the additive bias cannot
be always eliminated.

We note that our estimators are applicable to both the
sum metric and the average metric w.r.t. any target func-
tion. This in contrast to the estimators in [2], which are
efficiently applicable only to average metrics, and the esti-
mator in [6], which is applicable only to sum metrics.

Our last contribution builds on the observation that the
estimator of Broder et al. implicitly applies Rao Blackwelliza-
tion [7], which is a well-known statistical tool for reducing
estimation variance. This technique is what makes their es-
timator so efficient. We show that Rao Blackwellization can
be applied to our estimators as well and prove that it is guar-
anteed to make them more efficient as long as the results of
queries are sufficiently variable.

Experimental results. We evaluated the bias and the
efficiency of our estimators as well as the estimators from
[2, 6] on a local search engine that we built over a corpus of
2.4 million documents. To this end, we used the estimators
to estimate two different metrics: corpus size and density
of sports pages. The empirical study confirms our analyt-
ical findings: in the presence of many overflowing queries,
our estimators have essentially no bias, while the estimator
of Broder et al. suffers from significant bias. For example,
the relative bias of AccEst in the corpus size estimation was
0.01%, while the relative bias of the estimator of Broder et
al. was 75%. The study also showed that our new estimators
are up to 375 times more efficient than the rejection sam-
pling estimator from [2]. Finally, the study demonstrated
the effectiveness of Rao-Blackwellization by reducing the
query cost of estimators by up to 79%.

We used our estimators to measure the absolute sizes of
three major search engines. The results of this study gave
gross underestimates of the true search engine sizes, largely
due to the limited coverage of the pool of queries we used.
Even so, we showed that our estimates are up to 74 times
higher than the estimates produced by (our implementation
of) the Broder et al. estimator.

Other related work. Apart from [4, 2, 6], several other
studies estimated global quality metrics of search engines,
like relative corpus size. These studies are based on analyz-
ing anecdotal queries [5], queries collected from user query
logs [17, 10], or queries selected randomly from a pool a la
Bharat and Broder [12, 8]. Using capture-recapture tech-
niques (cf. [19]) some of these studies infer measurements
of the whole web. Due to the bias in the samples, though,
these estimates lack any statistical guarantees.

A different approach for evaluating search quality is by
sampling pages from the whole web [18, 14, 15, 1, 23]. Sam-
pling from the whole web, however, is a more difficult prob-
lem, and therefore all the known algorithms suffer from se-
vere bias.

2. PRELIMINARIES
In this section we introduce notations and definitions used

throughout the paper.

Search engines. Fix a search engine S whose corpus D
we wish to measure. For each query q, the index of the
search engine consists of a list of matching documents from
D. Given q, the search engine returns these matches, ranked
by relevance. The search engine has a result set size limit
k. If the number of matches for a query q exceeds k, only
the top k matches are returned. We denote the actual list
of results returned on query q by results(q).

The cardinality of a query q, denoted card(q), is the to-
tal number of matches it has. We say that q overflows, if
card(q) > k, and that it underflows, if card(q) = 0.

Measures and integrals. We restrict to measurements
of metrics that can be written as discrete integrals over D:

Intπ(f) ,
∑

x∈D

f(x)π(x).

Here, f : D → R is a target function and π : D → [0,∞) is
a target measure.

π induces a corresponding probability distribution on D:

π′(x) = π(x)
Zπ

, where Zπ =
∑

x∈D π(x) is the normalization
constant of π. We say that two different measures are the
same up to normalization, if they induce the same probabil-
ity distribution, but have different normalization constants.

When the target measure is a distribution, we call the in-
tegral Intπ(f) an average metric. Otherwise, it is a sum met-
ric. For example, corpus size is a sum metric, as the corre-
sponding target measure is the uniform 1-measure (π(x) = 1
for all x ∈ D), while the density of spam pages in the corpus
is an average metric, because its corresponding measure is
the uniform distribution on D (π(x) = 1/|D| for all x).

Everything we do in this paper can be generalized to deal
with vector-valued functions f : D → R

m. Yet, for simplic-
ity of exposition, we focus on scalar functions.

Search engine estimators. A search engine estimator
for a metric Intπ(f) is a randomized procedure P, which
interacts only with the public interface of the search engine
and/or with the web, and produces an estimate of Intπ(f).
The procedure is assumed to have access to an “f -oracle”
and to a “π-oracle”. Given a document x ∈ D, the f -oracle
returns f(x) and the π-oracle returns π̂(x). π̂ is a measure
on D, which is identical to π up to normalization. We denote
by Zπ̂ the normalization constant of π̂. If Intπ(f) is a sum
metric, we require π̂ = π. If Intπ(f) is an average metric, π̂
can be any measure that is the same as π up to normalization
and the normalization constant Zπ̂ need not be known in
advance. For example, when estimating the density of spam
in the corpus, the π-oracle can return for each document x
the value π̂(x) = 1, which is identical to the target uniform
distribution π up to normalization.

The quality of an estimator is measured in terms of two
parameters: bias and variance. The bias of P is the dif-
ference |E(P) − Intπ(f)|. P is called unbiased, if E(P) =
Intπ(f). The variance of P is var(P) = E((P − E(P))2).
The estimator’s bias and variance can be used (via Cheby-
shev’s inequality) to determine estimation confidence in-
tervals, i.e., parameters ǫ > 0 and 0 < δ < 1 for which
Pr((1 − ǫ) Intπ(f) ≤ P ≤ (1 + ǫ) Intπ(f)) ≥ 1 − δ.

The three expensive resources used by search engine esti-
mators are: (1) queries submitted to the search engine; (2)
web pages fetched; (3) calculations of the function f . The
expected query cost of an estimator P, denoted qcost(P), is
the expected number of queries P submits to the search en-

WWW 2007 / Track: Search Session: Search Potpourri

403

gine. Expected query cost cannot be used to compare the
efficiency of different estimators, as they may have different
variances. The amortized query cost, defined as qcost(P) ·
var(P), is a more robust measure of efficiency. Expected and
amortized fetch/function costs are defined similarly.

Query pools and document degrees. Let P be a pool
of queries. For a document x ∈ D, we denote by queriesP(x)
the set of queries to whose result sets x belongs:

queriesP(x) , {q ∈ P | x ∈ results(q)}.

The degree of x w.r.t. P, denoted degP(x), is |queriesP(x)|.
A basic task carried out again and again by our algorithms
is the following: given a query pool P and a document x,
compute degP(x). Since we need to perform this task ultra-
efficiently, we would like to do it based on the content of
x alone and without submitting any queries to the search
engine. This may seem initially impossible to do. How-
ever, if P consists of term/phrase queries, we can predict
the queries in P that x matches, simply by extracting all
the terms/phrases that occur in the text of x and that also
belong to P. Let pqueriesP(x) denote this set of predicted
queries and let pdegP(x) denote the predicted degree of x,
i.e., |pqueriesP(x)|. pdegP(x) will be our approximation for
degP(x).

In practice, however, pqueriesP(x) may contain queries
that do not belong to queriesP(x), and, conversely, queriesP(x)
may contain queries that do not belong to pqueriesP(x). We
would like to somehow bridge the gap between the two.
Dealing with queries in queriesP(x) \ pqueriesP(x) is rela-
tively easy. We call a query q valid for x, if x belongs to the
result set of q and we could have anticipated that by inspect-
ing the content of x. That is, q ∈ queriesP(x)∩pqueriesP(x).
The set of valid results for a query q is defined as follows:
vresults(q) , {x ∈ results(q) | q is valid for x}. Our al-
gorithms will use only the valid results of queries, rather
than all the results. Therefore, for each document x, the
set of valid queries for x is: vqueriesP(x) , {q ∈ P | x ∈
vresults(q)} = queriesP(x) ∩ pqueriesP(x). The valid degree
of x, denoted vdegP(x), is |vqueriesP(x)|. By using only valid
results, we are guaranteed that vqueriesP(x) ⊆ pqueriesP(x),
contributing to shrinking the difference between the two.

Addressing queries in pqueriesP(x)\vqueriesP(x) is a more
serious problem, because figuring out which of the queries in
pqueriesP(x) do not belong to vqueriesP(x) requires submit-
ting all these queries to the search engine—a prohibitively

expensive task. We call the ratio vdegP (X)

pdegP (X)
the validity den-

sity of x and denote it by vdensityP(x). From the above,
vdensityP(x) ∈ [0, 1] for all x. The closer vdensityP(x) is to
1, the better is our approximation of vdegP(x).

Usage of the k available results of overflowing queries
in our estimations is a potential source of bias, since such
queries may favor documents with high static rank. In or-
der to eliminate any bias towards such documents, our al-
gorithms simply ignore overflowing queries. Technically, we
do this by defining all the results of overflowing queries to
be “invalid”. Therefore, if q overflows, vresults(q) = ∅. This
in particular means that vqueriesP(x) cannot contain any
overflowing query.

We say that the pool P covers a document x, if there
is at least one query q ∈ P which is valid for x. That is,
vqueriesP(x) 6= ∅. Note that documents that do not contain
any of the terms/phrases in P or that match only overflowing
queries in P are not covered by P.

3. IMPORTANCE SAMPLING
In this section we present a basic importance sampling

search engine estimator. It will be used as a basis for the
more advanced estimators presented in subsequent sections.

Setup. Like the pool-based estimators in [4, 2, 6], our es-
timator assumes knowledge of an explicit query pool P. For
example, in our experiments, we used a pool of 1.75 billion
English phrases of lengths 3-5. Such a pool can be con-
structed in a pre-processing step, by crawling a representa-
tive corpus of web documents and extracting terms/phrases
that occur therein (we used the ODP [9] directory for this
purpose). We can run the estimator with any such pool, yet
the choice of the pool may affect the bias and the efficiency
of the estimator.

No matter how large P is, in practice, there will always be
documents in D that P does not cover. Since our estimator
uses only queries from P, it can never reach such documents.
This means that our estimator can estimate integrals only
over the set of documents that are covered by P and not
over the entire corpus D. So regardless of the statistical
bias of the estimator, there will be an additional “built-
in” bias that depends on the coverage of the chosen query
pool. To simplify our discussion, from now on, we suppress
this coverage-induced bias and use D to denote only the
documents that are covered by P.

Importance sampling estimation. Recall that we would
like to estimate the integral Intπ(f) for some given target
function f and target measure π on D. The naive Monte
Carlo estimator (cf. [20]) for Intπ(f) works as follows: (1)
sample a random document X from the distribution π′ in-
duced by π; (2) compute the normalization constant Zπ of
π; (3) output f(X) · Zπ. It is easy to check that this esti-
mator is unbiased. Its variance can be reduced by averaging
over multiple independent instances of the estimator.1

In our setting, however, this simple estimator is impracti-
cal, for the following reasons: (1) sampling from the distribu-
tion π′ may be hard or costly (e.g., when π is a uniform mea-
sure on D); (2) computation of the normalization constant
Zπ may be costly (e.g., in corpus size estimation, Zπ = |D|,
which is exactly the quantity we need to estimate); (3) the
random variable f(X) may have high variance. Importance
sampling [21, 16, 20] can be used in these circumstances to
obtain a more efficient estimator.

The basic idea of importance sampling is the following.
Instead of sampling a document X from π′, the estimator
samples a document Y from a different trial distribution p on
D. p can be any distribution, as long as supp(p) ⊇ supp(π)
(here, supp(p) = {x ∈ D | p(x) > 0} is the support of p;
supp(π) is defined similarly). In particular, we can choose
it to be a distribution that is easy to sample from. The
importance sampling estimator is then defined as follows:

IS(Y) , f(Y) ·
π(Y)

p(Y)
= f(Y) · w(Y).

The correction term w(Y) ,
π(Y)
p(Y)

is called the “importance

weight” and it guarantees that IS(Y) is an unbiased estima-

1More efficient aggregation techniques, like the median of
averages (cf. [11, 6]), exist. For simplicity of exposition, we
will focus mainly on averaging in this paper.

WWW 2007 / Track: Search Session: Search Potpourri

404

tor of Intπ(f): Ep(IS(Y)) =

=
∑

y∈supp(π)

p(y)f(y)
π(y)

p(y)
=

∑

y∈supp(π)

f(y)π(y) = Intπ(f).

Implementation of an importance sampling estimator re-
quires: (1) ability to sample efficiently from the trial distri-
bution p; and (2) ability to compute the importance weight
w(y) and the function value f(y), for any given element
y ∈ D. There is no need to know the normalization con-
stant Zπ or to be able to sample from π′.

The sample space. The sample space of the importance
sampling estimator proposed in our previous paper [2] was
the corpus of documents D. The trial distribution p was
the “document degree distribution”, in which documents are
sampled proportionally to their degree. In order to sample
documents from this distribution, we had to sample queries
from the pool P proportionally to their cardinality, and then
to sample random documents from the result sets of these
queries. As cardinalities of queries are not known in ad-
vance, sampling queries from P required application of re-
jection sampling. This step incurred significant overhead.

In this paper we propose a different sample space. Rather
than sampling queries and then documents in two separate
steps, we sample them together. The sample space is then
Ω = P × D. Each sample is a query-document pair (q, x).
We extend the target measure π on D into a target measure
µ on Ω and the function f on D into a function F on Ω. The
extension is done in such a way that Intµ(F) equals Intπ(f).
We thus reduce the problem of estimating Intπ(f) to the
problem of estimating Intµ(F). For the latter, we can apply
importance sampling directly on the two-dimensional sam-
ple space Ω, without having to resort to rejection sampling.

Let Ω = P × D. We extend π into a measure on Ω as
follows: µ(q, x) ,

I(x∈vresults(q))·π(x)
vdeg(x)

, where I is an indicator

function: I(condition) = 1 if the condition is true, and 0
otherwise. The connection between µ and π is given by the
following proposition:

Proposition 3.1. π is the marginal measure of µ on D.
Furthermore, the normalization constants of π and µ are the
same.

It follows from the proposition that µ is a distribution if and
only if π is a distribution.

Similarly, we extend the function f on D into a function
F on Ω as follows: F (q, x) , f(x). It is easy to see that
Intµ(F) = Intπ(f). Our estimator therefore estimates the
integral Intµ(F).

The trial distribution. We next describe the trial dis-
tribution for selecting query-document pairs from Ω. Let
P+ denote the collection of queries in P that have at least
one valid result: P+ , {q ∈ P | vresults(q) 6= ∅}. Our
trial distribution selects a pair (q, x) as follows: (1) pick a
query q ∈ P+ uniformly at random; (2) pick a document
x ∈ vresults(q) uniformly at random:

p(q, x) ,
1

|P+|
·
I(x ∈ vresults(q))

vcard(q)
.

Here, vcard(q) is the number of valid results q has. Sampling
from p can be done easily (see Figure 1): we repeatedly
select queries from P uniformly at random, submit them
to the search engine, and extract the valid results from each
such query. We stop when reaching a query that has at least

one valid result. We then select a document from the set of
valid results of this query uniformly at random.

1: Function TrialDistributionSampler(S, P)
2: while (true) do
3: Q := uniformly chosen query from P
4: submit Q to S
5: if Q overflows continue
6: results(Q) := results returned by S
7: download all pages in results(Q)
8: vresults(Q) := valid results extracted from results(Q)
9: if (vresults(Q) 6= ∅) then
10: X := uniformly chosen document from vresults(Q)
11: return (Q,X)

Figure 1: Trial distribution sampler

The importance weights. The importance weights cor-
responding to the target measure µ and the trial distribution
p are the following:

w(q, x) =
µ(q, x)

p(q, x)
=

π(x) · |P+| · vcard(q)

vdeg(x)
.

Thus, the importance sampling estimator for Intπ(f) is:

IS(Q, X) ,
f(X) · π(X) · |P+| · vcard(Q)

vdeg(X)
,

where (Q, X) is a sample from the trial distribution p. The
caveat with this estimator is that computing the importance
weights may be hard or costly to do for three reasons: (1)
we cannot compute vdeg(x) without submitting queries to
the search engine; (2) we do not know a priori which of
the queries in P have at least one valid result and therefore
cannot compute |P+|; and (3) if Intπ(f) is an average metric,
we may know π(x) only up to normalization.

The estimator of Broder et al. [6] resembles the above im-
portance sampling estimator for the special case of corpus
size estimation. As they could not compute the exact impor-
tance weights, they used approximate importance weights,
by substituting pdeg(x) for vdeg(x). It is not clear, however,
what is the effect of the approximate importance weights on
the bias of the estimator. Also, it is unknown how to extend
the estimator to work for average metrics. We address these
issues in the next section.

4. APPROXIMATE IMPORTANCE
SAMPLING

Suppose we come up with an approximate weight function
u(q, x), which is “similar”, but not identical, to w(q, x) (we
will discuss possible alternatives for u(q, x) in the next sec-
tion). What is the effect of using u(q, x) rather than w(q, x)
in importance sampling? In the following we analyze the
quality and performance of this “approximate importance
sampling” procedure.

Bias analysis. Suppose supp(u) ⊆ supp(w). The follow-
ing lemma analyzes the bias of the approximate importance
sampling estimator: AIS(Q, X) = f(X) · u(Q, X).

Lemma 4.1. Ep(AIS(Q,X)) =

= Intπ(f) · Eµ′

(

u(Q,X)

w(Q,X)

)

+ Zπ · covµ′

(

f(X),
u(Q,X)

w(Q,X)

)

,

where µ′ is the distribution induced by µ and Zπ is the nor-
malization constant of π.

WWW 2007 / Track: Search Session: Search Potpourri

405

For lack of space, the proof of this lemma, as the proofs
of all the other results in this paper, are postponed to the
full version of the paper [3].

It follows from the lemma that there are two sources of
bias in this estimator: (1) multiplicative bias, depending
on the expectation of u/w under µ′; and (2) additive bias,
depending on the correlation between f and u/w and on
the normalization constant Zπ. Note that the multiplica-
tive factor, even if small, may have a significant effect on
the estimator’s bias, and thus must be eliminated. The ad-
ditive bias is typically less significant, as in many practical
situations f and u/w are uncorrelated (e.g., when f is a con-
stant function as is the case with corpus size estimation).

For a query-document pair (q, x), the ratio u(q, x)/w(q, x)
is called the weight skew at (q, x). The multiplicative bias
factor is the expected weight skew under the target distribu-
tion µ′. In order to eliminate this bias, we need to somehow
estimate the expected weight skew. For now, let us assume

we have some unbiased estimator WSE for Eµ′

(

u(Q,X)
w(Q,X)

)

(WSE may depend on the same sample (Q, X) used by the
importance sampling estimator). It follows from Lemma 4.1
that:

Ep(AIS(Q, X))

E(WSE)
= Intπ(f) +

Zπ · covµ′

(

f(X), u(Q,X)
w(Q,X)

)

Eµ′

(

u(Q,X)
w(Q,X)

) .

Thus, the ratio of the expectations of the two estimators,
AIS and WSE, gives us the desired result (Intπ(f)), modulo
an additive bias factor. Ignoring for the moment this addi-
tive bias, it would seem that a good estimator for Intπ(f)
is the ratio AIS

WSE
. However, there is one problem: the ex-

pectation of a ratio is not the ratio of the expectations, i.e.,

E
(

AIS
WSE

)

6= E(AIS)
E(WSE)

.

To solve this problem, we resort to a well-known trick
from statistics: if we replace the numerator and the denom-
inator by averages of multiple independent instances of the
numerator estimator and of the denominator estimator, the
difference between the expected ratio and the ratio of ex-
pectations can be diminished to 0. This idea is formalized
by the following theorem:

Theorem 4.2. Suppose A and B are two estimators such

that E(A)
E(B)

= I. Let A1, . . . ,An and B1, . . . ,Bn be n indepen-

dent instances of A and B, respectively. Then,

|E

(1
n

∑n

i=1 Ai

1
n

∑n

i=1 Bi

)

− I| ≤

1

n
·

(

I ·
var(B)

E
2(B)

+
| cov(A,B)|

E
2(B)

)

+ o

(

1

n

)

.

We can therefore define the approximate ratio importance
sampling estimator for Intπ(f) as follows:

ARIS ,

1
n

∑n

i=1 f(Xi) · u(Qi, Xi)
1
n

∑n

i=1 WSEi

,

where (Q1, X1), . . . , (Qn, Xn) are n independent samples from
the trial distribution p and WSE1, . . . , WSEn are n indepen-
dent estimators of the weight skew (WSEi may depend on
(Qi, Xi)). Using Lemma 4.1 and Theorem 4.2, we can ana-
lyze the bias of this estimator:

Lemma 4.3. If E(WSE) = Eµ′

(

u(Q,X)
w(Q,X)

)

, then

|Ep(ARIS)−Intµ(f)| ≤
Zπ · covµ′

(

f(X), u(Q,X)
w(Q,X)

)

Eµ′

(

u(Q,X)
w(Q,X)

) +O

(

1

n

)

,

where the O(1/n) term suppresses constant factors that de-
pend on var(WSE) and on cov(f(X) · u(Q,X), WSE).

We conclude from the lemma that if we use sufficiently
many samples, then we are likely to get an estimate of
Intπ(f), which has only additive bias that depends on the
correlation between f and u/w.

5. TWO ESTIMATORS
In this section we describe two variants of the approxi-

mate ratio importance sampling estimator (ARIS) discussed
above. The two estimators, the Accurate Estimator (Ac-
cEst) and the Efficient Estimator (EffEst), offer different
tradeoffs between accuracy and efficiency. The former has
lower bias, while the latter is more efficient.

The estimators differ in the choice of the approximate im-
portance weight function u(q, x) and in the expected weight
skew estimator WSE. Before we show how u and WSE are
defined in each of the estimators, let us rewrite the impor-
tance weights:

w(q, x) =
π(x) · |P+| · vcard(q)

vdeg(x)
=

π(x) · |P+| · vcard(q)

pdeg(x) · vdensity(x)
.

Of the different terms that constitute the weight, the three
we may not know a priori are π(x), |P+|, and vdensity(x).
vcard(q) is known, because we always obtain the pair (q, x)
after having submitted q to the search engine and extracting
its valid results. pdeg(x) is known, because we can extract
the predicted queries from the content of x.

5.1 The Accurate Estimator
The Accurate Estimator (AccEst) uses approximate weights

uacc(q, x) that are equal to the exact weights w(q, x), up to
a constant factor. It follows that uacc(q, x)/w(q, x) is con-
stant, and hence the correlation between f and uacc/w is 0.
Using Lemma 4.3, the bias of AccEst is then only O(1/n).

How do we come up with approximate weights that equal
the exact weights up to a constant factor? Well, we are
unable to efficiently do this with deterministic approximate
weights, but rather with probabilistic ones. That is, Ac-
cEst uses a probabilistic weight function uacc(q, x), for which
E(uacc(q, x)) = const · w(q, x). As our analysis for approxi-
mate importance sampling easily carries over to probabilistic
weights as well, we can still apply Lemma 4.3 and obtain the
desired bound on the bias of AccEst.

The approximate weights are defined as follows:

uacc(q, x) ,
π̂(x) · |P| · vcard(q) · IVD(x)

pdeg(x)
.

That is, π(x) is approximated by π̂(x) (they are the same,
if Intπ(f) is a sum metric), |P+| is approximated by |P|,
and the term 1/ vdensity(x) is estimated probabilistically by
the “Inverse Validity Density Estimator” (IVD) described
below. Note that apart from the computation of IVD(x),
computing uacc(q, x) requires no search engine queries.

Figure 2 shows a procedure for estimating 1/ vdensity(x)
for a given document x, using a limited number of queries.

WWW 2007 / Track: Search Session: Search Potpourri

406

The procedure repeatedly samples queries uniformly at ran-
dom from the set of predicted queries pqueries(x). It submits
each query to the search engine and checks whether they are
valid for x. The procedure stops when reaching the first valid
query and returns the number of queries sampled so far. As
this number is geometrically distributed with vdensity(x) as
the success parameter, the expectation of this estimator is
exactly 1/ vdensity(x). Note that the procedure is always
guaranteed to terminate, because we apply it only on docu-
ments x for which vdensity(x) > 0.

1: Function InverseValidityDensityEstimator(S, P, x)
2: pqueries(x) := predicted queries for x
3: i := 1
4: while (true) do
5: Q := uniformly chosen query from pqueries(x)
6: submit Q to S
7: results(Q) := results returned by S
8: if (Q does not overflow and x ∈ results(Q)) return i

9: i := i + 1

Figure 2: Estimator for the inverse of the validity

density

The expectation of uacc(q, x) is analyzed as follows:

E(uacc(q, x)) = E

(

π̂(x) · |P| · vcard(q) · IVD(x)

pdeg(x)

)

=
|P|

|P+|
·
π̂(x) · |P+| · vcard(q) · E(IVD(x))

pdeg(x)

=
|P|

|P+|
·
Zπ̂

Zπ

· w(q, x).

Hence, the expectation of uacc(q, x) equals the weight w(q, x),

up to the unknown multiplicative constant |P|
|P+|

· Zπ̂

Zπ
. It

immediately follows that also the expected weight skew is
|P|
|P+|

· Zπ̂

Zπ
and that covµ′(f(X), uacc(Q, X)/w(Q, X)) = 0.

How we obtain an unbiased estimator WSE for the expected
weight skew is different between the case Intπ(f) is a sum a
metric and the case it is an average metric.

Case 1: Intπ(f) is a sum metric. Here, the π-oracle
computes the target measure π explicitly. That is, π̂ = π

and Zπ̂

Zπ
= 1, so the only term we need to estimate is |P|

|P+|
.

If we sample a query Q′ uniformly at random from P, it

has a probability of
|P+|

|P|
to have at least one valid result.

Therefore, we can estimate |P|
|P+|

as follows: repeatedly sam-

ple queries uniformly at random from P and submit them
to the search engine; stop when reaching the first query that
has at least one valid result; the number of queries submitted

is an unbiased estimator of |P|
|P+|

.

Case 2: Intπ(f) is an average metric. In this case π
is a distribution, and thus Zπ = 1. Therefore, the expected

weight skew is |P|
|P+|

· Zπ̂. As Zπ̂ is not known in advance,

we cannot use the same expected weight skew estimator as
above. On the other hand, we observe that since π is a
distribution, then the approximate weight uacc(Q, X) itself,
where (Q, X) ∼ p, is an unbiased estimator of the expected
weight skew. This follows from Lemma 4.1 with f ≡ 1:

Proposition 5.1.

Ep(uacc(Q,X)) = Zπ · Eµ′

(

uacc(Q,X)

w(Q,X)

)

.

As Zπ = 1, uacc(Q, X) is indeed an unbiased estimator of
the expected weight skew.

Analysis. By Lemma 4.3, the bias of the estimator is

at most
Zπ·cov

µ′

(

f(X),
uacc(Q,X)

w(Q,X)

)

E
µ′

(

uacc(Q,X)
w(Q,X)

) + O
(

1
n

)

. Recall that the

covariance term is 0, and thus the bias is only O(1/n).
The cost of the computing uacc(q, x) is dominated by the

cost of computing the inverse validity density. This compu-
tation requires O(1/ vdensity(x)) queries to the search en-
gine in expectation. Complete analysis of the efficiency of
the estimator is postponed to the full version of the paper.

5.2 The Efficient Estimator
The Efficient Estimator (EffEst) uses deterministic ap-

proximate weights, which require no queries to the search
engine to compute, similarly to the estimators of [2, 6]:

ueff(q, x) ,
π̂(x) · |P| · vcard(q)

pdeg(x)
.

That is, π(x) is approximated by π̂(x) (they are the same, if
Intπ(f) is a sum metric), |P+| is approximated by |P|, and
the term 1/ vdensity(x) is ignored. The weight skew in this
case is characterized as follows:

Proposition 5.2. ueff(q, x)/w(q, x) = |P|
|P+|

·Zπ̂·vdensity(x).

The estimator for the expected weight skew is again dif-
ferent between the case Intπ(f) is a sum metric and the case
Intπ(f) is an average metric.

Case 1: Intπ(f) is a sum metric. By Proposition 5.1,
ueff(Q, X), where (Q, X) ∼ p, is an unbiased estimator of the
expected weight skew, modulo the constant factor Zπ:

Ep(ueff(Q, X)) = Zπ · Eµ′

(

ueff(Q, X)

w(Q, X)

)

.

In our case π is not a distribution, so Zπ is unknown. Hence,
ueff(Q, X) is not sufficient by itself to estimate the expected
weight skew. In order to obtain an estimator for the ex-
pected weight skew, we will divide ueff(Q, X) by an unbiased
estimator for Zπ.

We observe that Zπ = Intπ(1), where 1 is the constant
1 function. So by applying the Accurate Estimator with
f ≡ 1, we can obtain an unbiased estimator of Zπ. We

thus have:
Ep(ueff(Q,X))

E(AccEst)
= Eµ′

(

ueff(Q,X)
w(Q,X)

)

. So, using again

Theorem 4.2, we can get a nearly unbiased estimator of the
expected weight skew by averaging over multiple instances
of ueff(Q, X) and AccEst:

WSE =
1
n

∑n

i=1 ueff(Qi, Xi)
1
n

∑n

i=1 AccEsti

.

Here, (Q1, X1), . . . , (Qn, Xn) are n independent samples from
p and AccEst1, . . . , AccEstn are n independent Accurate Es-
timators for Intπ(1).

At this point the reader may be wonder why the Efficient
Estimator is more efficient than the Accurate Estimator.
After all, the Efficient Estimator calls the Accurate Esti-
mator! The rationale behind this is the following. Indeed,
if we need to estimate only a single integral Intπ(f), then
the Efficient Estimator is less efficient than the Accurate
Estimator. However, in practice, we usually need to com-
pute multiple integrals Intπ(f1), . . . , Intπ(ft) w.r.t. the same
target measure π. Note that the constant Zπ, for whose

WWW 2007 / Track: Search Session: Search Potpourri

407

estimation we used the Accurate Estimator, depends only
on π and is independent of the target function f . There-
fore, we can reuse the estimation of Zπ in the estimations of
Intπ(f1), . . . , Intπ(ft). This implies that the amortized cost
of the Efficient Estimator is lower than that of the Accurate
Estimator.

Case 2: Intπ(f) is an average metric. In this case π is
a distribution and thus Zπ = 1. Therefore, by Proposition
5.1, ueff(Q, X), where (Q, X) ∼ p, is an unbiased estimator
of the expected weight skew.

Analysis. By Lemma 4.3, the bias of the estimator is at

most
Zπ·cov

µ′

(

f(X),
ueff(Q,X)

w(Q,X)

)

E
µ′

(

ueff(Q,X)

w(Q,X)

) + O
(

1
n

)

. By the characteriza-

tion of the weight skew using the validity density (Proposi-
tion 5.2) and recalling that π′ is the marginal distribution
of µ′ on D (Proposition 3.1), we can rewrite the bias as:

Zπ · covπ′(f(X), vdensity(X))

Eπ′(vdensity(X))
+ O(1/n).

That is, as long as the target function is not correlated with
the validity density of documents, the bias is low.

The Efficient Estimator is indeed efficient, because each
approximate weight computation requires only fetching a
single page from the web and no queries to the search en-
gine. Complete analysis of the efficiency of the estimator is
postponed to the full version of this paper.

6. RAO-BLACKWELLIZATION
There is some inherent inefficiency in the importance sam-

pling estimators: although each random query they submit
to the search engine returns many results, they use at most
a single result per query. All other results are discarded.
The corpus size estimator of Broder et al. [6] uses all query
results, and not just one. We observe that what they did
is an instance of the well-known Rao-Blackwellization tech-
nique for reducing estimation variance. We next show how
to apply Rao-Blackwellization on our importance sampling
estimators in a similar fashion.

Recall that the basic approximate importance sampling
estimator is AIS(Q, X) = f(X) · u(Q, X), where (Q, X) is
a sample from the trial distribution p and u(Q, X) is an
approximate weight. Suppose now that instead of using only
this single document in our basic estimator, we use all the
query results:

AISrb(Q) =
1

vcard(Q)

∑

X∈vresults(Q)

f(X) · u(Q, X).

Each instance of AISrb is an average over several corre-
lated instances of AIS. The main point is that computing
these correlated instances in bulk can be done with a sin-
gle query. The Rao-Blackwell theorem (cf. [7]) implies that
AISrb(Q) can be only better than AIS(Q, X) as an estimator
of Intπ(f):

Theorem 6.1 (Rao-Blackwell Theorem). AISrb has
the same bias as AIS:

E(AISrb(Q)) = E(AIS(Q,P)).

The variance of AISrb can only be lower:

var(AISrb(Q)) = var(AIS(Q,X)) − E(var(AIS(Q,X)|Q)).

By the above theorem, the expected reduction in variance
is E(var(f(X) · u(Q, X))|Q), where Q is a uniformly chosen
query from P+ and X is a uniformly chosen document from
Q. That is, the more variable are the results of queries w.r.t.
the target function f , the higher are the chances that Rao-
Blackwellization will help. In our empirical study we show
that in practice Rao-Blackwellization can make a dramatic
effect. See Section 7.

The variance reduction achieved by Rao-Blackwellization
can lead to lower costs, as fewer instances of the estimator
are needed in order to obtain a desired accuracy guarantee.
On the other hand, each instance of the estimator requires
many more weight and function calculations (as many as the
number of results of the sampled query), and if these are very
costly (as is the case with the Accurate Estimator), then the
increase in cost per instance may outweigh the reduction in
the number of instances, eventually leading to higher amor-
tized costs. We conclude that Rao-Blackwellization should
be used judiciously.

7. EXPERIMENTAL RESULTS
We conducted two sets of experiments. In the first set

we performed comparative evaluation of the bias and amor-
tized cost of our new estimators, of the rejection sampling
estimator from our previous paper [2], and of the Broder et
al. estimator [6]. To this end, we ran all these estimators on
a local search engine that we built over 2.4 million English
documents fetched from ODP [9]. As we have ground truth
for this search engine, we could compare the measurements
produced by the estimators against the real values.

The second set of experiments was conducted over three
major real search engines. We used the Accurate Estimator
to estimate the corpus size of each the search engines, with
and without duplicate elimination. (More accurately, we
estimated sizes of large subsets of the search engine corpora.)

Experimental setup. We used the same ODP search
engine as in our previous paper [2]. The corpus of this
search engine consists only of text, HTML, and pdf English-
language documents from the ODP hierarchy. Each docu-
ment was given a serial id and indexed by single terms and
phrases. Only the first 10,000 terms in each document were
considered. Exact phrases were not allowed to cross bound-
aries, such as paragraph boundaries. We used static ranking
by serial id to rank query results.

In order to construct a query pool for the evaluation ex-
periments, we split the ODP data set into two parts: a
training set, consisting of every fifth page (when ordered by
id), and a test set, consisting of the rest of the pages. We
used the training set to create a pool of phrases of length 4.
The measurements were done only on the test set.

The experiments on real search engines were conducted
in February 2007. The pool used by our estimators was a
pool of 1.75 billion phrases of lengths 3-5 extracted from the
ODP data set (the entire data set, not just the test set).

Evaluation experiments. We compared the following
6 estimator configurations: (1) AccEst, without Rao Black-
wellization; (2) AccEst, with Rao Blackwellization; (3) EffEst,
without Rao Blackwellization; (4) EffEst, with Rao Black-
wellization; (5) the Broder et al. estimator; (6) the rejection
sampling estimator from our previous paper.

We used the estimators to measure two metrics: (1) cor-
pus size (i.e., the size of the test set); (2) density of pages

WWW 2007 / Track: Search Session: Search Potpourri

408

in the test set about sports. (We used a simple keyword
based classifier to determine whether a page is about sports
or not.) Note that the first metric is a sum metric, while
the second is an average metric. We did not use the rejec-
tion sampling estimator for estimating corpus size, as it can
handle only average metrics. We did not use the Broder
et al. estimator for estimating the density of sports pages,
because it can handle only sum metrics.

In order to have a common baseline, we allowed each es-
timator to use exactly 1 million queries. Each estimator
produced a different number of samples from these queries,
depending on its amortized query cost.

We ran each experiment four times, with different values
of the result set size limit k (k = 5, 20, 100, 200). This was
done in order to track the dependence of the estimators’ bias
and cost on the density of overflowing queries (the lower k,
the higher is the density).

Figure 3(a) compares the relative bias (bias divided by the
estimated quantity) of our two estimators and the estimator
of Broder et al. when measuring corpus size. Figure 3(b)
compares the relative bias of our two estimators and the re-
jection sampling estimator when measuring density of sports
pages. The results for the Rao-Blackwellized versions of
these estimators are suppressed, since Rao-Blackwellization
has no effect on bias.

The results for the corpus size clearly show that our esti-
mators have no bias at all, while the estimator of Broder et
al suffers from significant bias, which grows with the density
of overflowing queries in the pool. For example, for k = 5,
the relative bias of the Broder et al. estimator was about
75%, while the relative bias of our estimators was 0.01%.
Note that since the target function is constant in this case,
then its value has no correlation with the weight skew, which
explains why also EffEst has no bias.

The results for the density of sports pages show that
AccEst is unbiased, as expected. EffEst has small bias,
which emanates from a weak correlation between the func-
tion value and the validity density. The rejection sampling
method has a large observed bias, primarily because it pro-
duced a small number of samples and thus its variance is
still high.

Figures 4(a) and 4(b) compare the amortized costs of the
regular and the Rao-Blackwellized versions of our two esti-
mators and of the rejection sampling estimator. We used a
square root scale in order to fit all the bars in a single graph.
The results clearly indicate that Rao-Blackwellization is ef-
fective in reducing estimation variance (and therefore also
amortized costs) in both metrics and both estimators. For
example, in corpus size estimation, when k = 200, Rao-
Blackwellization reduced the amortized query cost of AccEst
by 79% and the query cost of EffEst by 60%. Furthermore,
the amortized cost of the rejection sampling estimator is
tremendously higher than the amortized cost of our new es-
timators (even the non-Rao-Blackwellized ones). For exam-
ple, when k = 200, Rao-Blackwellized EffEst was 375 times
more efficient than rejection sampling!

Experiments on real search engines. We used our
most accurate sampler, AccEst, to estimate the corpus sizes
of three major search engines. For reference, we also ran the
Broder et al. estimator with the same query pool. These
measurements count duplicate pages as separate pages. We
also measured the duplicate-free size of the corpus, by es-
timating the average number of duplicates each document

in the corpus has. The results, together with confidence
intervals, are plotted in Figure 5.

It can be seen that the estimations we got are far below
the reported sizes of search engines. The main reason for
this is that our estimators effectively measure the sizes of
only subsets of the corpora—the indexed pages that match
at least one phrase from the pool. As our pool consists
of English-only phrases, pages that are not in English, not
in HTML, pdf, or text format, or pages that are poor in
text, are excluded from the measurement. A second reason
is that search engines may choose sometimes not to serve
certain pages, even though these pages exist in their index
and match the query, e.g., because these pages are spam or
duplicates.

Another observation we can make from the results is that
overflowing queries really hurt the Broder et al. estimator
also on live search engines. We note that like Broder et al,
we filtered out from the query pool all phrases that occurred
frequently (at least 10 times) in the ODP corpus. Even
after this filtering, 3% of the queries overflowed on the first
search engine, 10% on the second, and 7% on the third. The
overflowing queries probably incurred high bias that made
the estimates produced by the Broder et al. estimator to be
much lower than ours.

Finally, the experiments reveal search engines deal dif-
ferently with duplicates. In one of the search engines, the
corpus size, after removing duplicates, shrunk in 28%, while
in the other two it shrunk in 14% and 17%, respectively.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

SE1 SE2 SE3

A
bs

ol
ut

e
co

rp
us

 s
iz

e
(b

ill
io

ns
)

Broder et al, with dups

AccEst, with dup

AccEst, w/o dups

Figure 5: Corpus sizes of three major search en-

gines, with and without elimination of duplicates.

8. CONCLUSIONS
In this paper we presented two new estimators for search

engine quality metrics that can be expressed as discrete in-
tegrals. Our estimators are able to overcome the “degree
mismatch” problem and thereby be accurate and efficient at
the same time. We show both analytically and empirically
that our estimators beat recently proposed estimators [2, 6].

In designing our estimators we employ a combination of
statistical tools, like importance sampling and Rao Black-
wellization. By carefully analyzing the effect of approxi-
mate weights on the bias of importance sampling, we were
able to design procedures to mitigate the bias. This bias-
elimination technique for approximate importance sampling
may be applicable in other scenarios as well.

WWW 2007 / Track: Search Session: Search Potpourri

409

0%

10%

20%

30%

40%

50%

60%

70%

80%

5 20 100 200

Result set size limit (k)

R
el

at
iv

e
b

ia
s

Broder et al

EffEst

AccEst

(a) Corpus size.

0%

10%

20%

30%

40%

50%

60%

70%

5 20 100 200

Result set size limit (k)

R
el

at
iv

e
b

ia
s

Rejection sampling

EffEst

AccEst

(b) Density of sports pages.

Figure 3: Relative bias of the estimators.

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

3.0E+07

3.5E+07

5 20 100 200

Result set size limit (k)

S
q

ua
re

 r
oo

t
of

 a
m

o
rt

iz
ed

 q
u

er
y

co
st EffEst without RB

EffEst with RB
AccEst without RB
AccEst with RB

(a) Corpus size.

0

2

4

6

8

10

12

14

16

18

5 20 100 200

Result set size limit (k)

S
q

ua
re

 r
oo

t
of

 a
m

or
ti

ze
d

qu
er

y
co

st Rejection sampling

EffEst without RB

EffEst with RB

AccEst without RB

AccEst with RB

(b) Density of sports pages.

Figure 4: Square root of amortized query cost of the estimators.

9. REFERENCES
[1] Z. Bar-Yossef, A. Berg, S. Chien, J. Fakcharoenphol, and

D. Weitz. Approximating aggregate queries about Web pages
via random walks. In Proc. 26th VLDB, pages 535–544, 2000.

[2] Z. Bar-Yossef and M. Gurevich. Random sampling from a
search engine’s index. In Proc. 15th WWW, pages 367–376,
2006.

[3] Z. Bar-Yossef and M. Gurevich. Efficient search engine
measurements, 2007. Full version available at
http://www.ee.technion.ac.il/people/zivby.

[4] K. Bharat and A. Broder. A technique for measuring the
relative size and overlap of public Web search engines. In Proc.
7th WWW, pages 379–388, 1998.

[5] E. T. Bradlow and D. C. Schmittlein. The little engines that
could: Modeling the performance of World Wide Web search
engines. Marketing Science, 19:43–62, 2000.

[6] A. Broder, M. Fontoura, V. Josifovski, R. Kumar, R. Motwani,
S. Nabar, R. Panigrahy, A. Tomkins, and Y. Xu. Estimating
corpus size via queries. Proc. 15th CIKM, 2006.

[7] G. Casella and C. P. Robert. Rao-Blackwellisation of sampling
schemes. Biometrika, 83(1):81–94, 1996.

[8] M. Cheney and M. Perry. A comparison of the size of the
Yahoo! and Google indices. Available at
http://vburton.ncsa.uiuc.edu/indexsize.html, 2005.

[9] dmoz. The open directory project. http://dmoz.org.

[10] A. Dobra and S. E. Fienberg. How large is the World Wide
Web? Web Dynamics, pages 23–44, 2004.

[11] O. Goldreich. A sample of samplers - a computational
perspective on sampling (survey). ECCC, 4(20), 1997.

[12] A. Gulli and A. Signorini. The indexable Web is more than
11.5 billion pages. In Proc. 14th WWW, pages 902–903, 2005.

[13] W. K. Hastings. Monte Carlo sampling methods using Markov

chains and their applications. Biometrika, 57(1):97–109, 1970.

[14] M. R. Henzinger, A. Heydon, M. Mitzenmacher, and
M. Najork. Measuring index quality using random walks on
the Web. In Proc. 8th WWW, pages 213–225, 1999.

[15] M. R. Henzinger, A. Heydon, M. Mitzenmacher, and
M. Najork. On near-uniform URL sampling. In Proc. 9th
WWW, pages 295–308, 2000.

[16] T. C. Hesterberg. Advances in Importance Sampling. PhD
thesis, Stanford University, 1988.

[17] S. Lawrence and C. L. Giles. Searching the World Wide Web.
Science, 5360(280):98, 1998.

[18] S. Lawrence and C. L. Giles. Accessibility of information on
the Web. Nature, 400:107–109, 1999.

[19] S.-M. Lee and A. Chao. Estimating population size via sample
coverage for closed capture-recapture models. Biometrics,
50(1):88–97, 1994.

[20] J. S. Liu. Monte Carlo Strategies in Scientific Computing.
Springer, 2001.

[21] A. W. Marshal. The use of multi-stage sampling schemes in
Monte Carlo computations. In Symposium on Monte Carlo
Methods, pages 123–140, 1956.

[22] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and
E. Teller. Equations of state calculations by fast computing
machines. J. of Chemical Physics, 21:1087–1091, 1953.

[23] P. Rusmevichientong, D. Pennock, S. Lawrence, and C. L.
Giles. Methods for sampling pages uniformly from the World
Wide Web. In Proc. AAAI Symp. on Using Uncertainty
within Computation, 2001.

[24] J. von Neumann. Various techniques used in connection with
random digits. In John von Neumann, Collected Works,
volume V. Oxford, 1963.

WWW 2007 / Track: Search Session: Search Potpourri

410

