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ABSTRACT 
Many applications in analytical domains often have the need to 
“connect the dots” i.e., query about the structure of data. In 
bioinformatics for example, it is typical to want to query about 
interactions between proteins. The aim of such queries is to 
“extract” relationships between entities i.e. paths from a data graph. 
Often, such queries will specify certain constraints that qualifying 
results must satisfy e.g. paths involving a set of mandatory nodes. 
Unfortunately, most present day Semantic Web query languages 
including the current draft of the anticipated recommendation 
SPARQL, lack the ability to express queries about arbitrary path 
structures in data. In addition, many systems that support some 
limited form of path queries rely on main memory graph algorithms 
limiting their applicability to very large scale graphs.  

In this paper, we present an approach for supporting Path Extraction 
queries. Our proposal comprises (i) a query language SPARQ2L 
which extends SPARQL with path variables and path variable 
constraint expressions, and (ii) a novel query evaluation framework 
based on efficient algebraic techniques for solving path problems 
which allows for path queries to be efficiently evaluated on disk 
resident RDF graphs. The effectiveness of our proposal is 
demonstrated by a performance evaluation of our approach on both 
real world and synthetic datasets. 

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features  

General Terms 
Algorithms, Languages. 
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SPARQL Extensions, RDF, Querying Semantic Web Databases. 

1. INTRODUCTION 
As more and more organizations contemplate the value of adopting 
Semantic Web technologies, it is likely that one of the deciding 
factors will be the degree to which the needs of their applications 
are supported. Therefore, it is important for Semantic Web storage 
and querying facilities to provide a range of data exploration and 
querying paradigms in order to promote broad uptake of the 
Semantic Web technologies. While there is a measurable effort 

being made towards the development of storage and querying 
facilities for the Semantic Web, there is still a chasm between the 
support provided by querying technologies and the needs of certain 
classes of applications. In particular, investigative and analytical 
applications in domains such as national security, bioinformatics 
and business intelligence often have the need to identify 
relationships that exist in data. In such scenarios, it is crucial to be 
able find answers to questions like “How are A, B, C and D 
related?”. Such queries referred to here as Subgraph Extraction 
Queries, specify some anchor points in a data graph with the 
semantics of “extracting” a data subgraph connecting the anchor 
points. Often, queries will include some constraints on the kinds of 
connections to be included in the result e.g., connecting paths must 
contain some mandatory nodes or edges. The following describes 
two real world analysis tasks involving the use of such queries. 

Scenario Example 1. (Flight and Airport Risk Assessment) To assess 
a potential threat to the safety of flights to certain airports, security 
officials would like to investigate all high risk passengers scheduled 
for such flights.    

Find any relationships between passengers on flights to New York 
or Washington DC, who either purchased their tickets less than 
24hrs before departure time or purchased their tickets by cash, 
particularly links associated with flight training.  

Scenario Example 2. (Analysis of gene interactions involved in 
advanced ovarian cancer adapted from [14]). Microarray analysis 
data of tissue from advanced ovarian cancer revealed 1191 
differentially expressed genes when compared to normal samples. 
Researchers will like to analyze these genes with respect to the 
biological pathways that they participate in to help understand the 
mechanism of action of the disease.   

Show the interaction network for all genes that are differentially 
regulated in advance stage papillary serous ovarian cancer with 
respect to the signaling pathways. Constrain the results to those 
genes expressed in epithelial cells. 

Both queries seek to retrieve paths or networks connecting specific 
nodes and the qualifying paths are subject to some constraints e.g. 
associated with flight training or genes expressed in epithelial cells. 
Other example applications arise in the transportation and 
telecommunications domains where network analysis is used for 
planning; in financial applications such as anti-money laundering 
analysis [25] and detecting potential biomedical patent infringement 
[22]. Unfortunately, as far as we know, none of the existing 
Semantic Web query languages support the expression of such 
queries about constrained path relationships. The sentiment about 
the need to extend Semantic Web query languages has been echoed 
by some researchers [3] who have argued for querying RDF graphs 
from a graph perspective. This will enable useful query paradigms 

 
Copyright is held by the International World Wide Web Conference 
Committee (IW3C2). Distribution of these papers is limited to classroom 
use, and personal use by others. 
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada. 
ACM 978-1-59593-654-7/07/0005. 

WWW 2007 / Track: Semantic Web Session: Query Languages and DBs

797



in Semantic Web query languages by interpreting them as standard 
graph operations like path finding, neighborhood searches, 
reachability and closure queries.  

1.1 Background and Related Work  
There are now several RDF query languages including RDQL[24], 
TRIPLE[27] N3, RxPath[28], RQL[20] SeRQL[9], RDFQL, Versa 
and the current W3C standard RDF query language proposal 
SPARQL[2] which is a successor language to RDQL[24]. A query 
algebra RAL[15] has also been proposed as a vehicle for studying 
RDF query languages. These languages exhibit one of four styles: 
SQL-like languages SPARQL, RDQL, SeRQL; functional query 
languages such as RQL, SeRQL; rule-based languages such as 
TRIPLE, N3 and graph traversal languages like Versa and RxPath. 
CORESE[13] is a Semantic Web search engine based on conceptual 
graphs that offers an RDF query language that uses the triple syntax. 
Our discussion of these languages will be limited to their 
expressiveness with respect to path query classes. For a detailed 
comparative analyses of these languages see [3][18]. In general, 
these languages focus on supporting graph pattern matching queries 
via path expression constructs. A notable exception is RDFPath 
which does allow for the expression of certain path queries if the 
source node is fixed. However, queries such as shortest path queries 
or those involving more complex constraints are not supported. It is 
also possible to express fixed path length queries in CORESE[13]. 
However, no other types of path queries are supported. In the 
languages that offer only a pattern matching paradigm, one could 
get around their limited expressiveness if the need is to express 
fixed path length queries using a union of queries capturing each of 
the lengths. However, this is very cumbersome and optimizing such 
queries is non trivial. There is a new proposed extension to 
SPARQL called PSPARQL[2] which allows query graph patterns 
involving regular expressions. This provides a lot of flexibility in 
expressing graph patterns that can be matched. However, 
PSPARQL like most of the other languages supports only a pattern 
matching query paradigm. Another class of queries that is very 
relevant to many applications is closure queries. Certain closure 
queries are naturally expressible in the rule based languages such as 
TRIPLE and N3, although Versa provides means to express 
transitive closure queries.  

Of the existing RDF storage and querying systems [1][7][9][12] 
[16][31], a few [16][31] support bounded length and shortest path 
finding operations via a programmatic interface but without a query 
language. A limitation of most of these systems is that they either 
rely on traversal algorithms on main-memory graph representations 
- disadvantageous for massive graphs, or relational database storage 
where these queries are evaluated using multi-way joins. What 
would be desirable is to investigate the possibility of newer storage 
and indexing approaches that will support efficient processing of 
path queries. An effort in this direction is [6] which proposes an 
index structure called ρ-index for optimizing ρ-queries [4] whose 
foundation is path queries. However, the ρ-index approach is based 
on a technique that transforms general graphs into trees blowing up 
the size of the resulting graph when there are many non-tree edges. 
This paper goes in the direction of enabling subgraph extraction 
queries however, the discussion is limited to only path extraction 
queries or path queries. It addresses both issues in query expression 
and query evaluation. Our specific contributions are as follows: 

1.2 Contributions 
• We propose an extended SPARQL query language called 

SPARQ2L (Recursively Protocol And RDF Query and Link 

Language) which introduces the concept of path variables 
along with path constraint expressions that allow for a wide 
variety of useful path and reachability queries to become 
expressible over RDF data.   

• We present the formal syntax and semantics of SPARQ2L  
• We propose a novel persistent storage and query evaluation 

framework that involves (i.) a preprocessing phase on RDF 
graphs that computes partial path fragments which are indexed 
and stored on disk based on a novel labeling scheme. (ii) a 
query processing phase that retrieves relevant path fragments 
from disk via the index and assembles them into complete path 
representations. The framework proposed adapts efficient 
algebraic techniques for solving path problems.    

• We present a comprehensive evaluation of the fundamental 
part of our evaluation framework. The evaluation is performed 
on both real world and synthetic benchmark datasets and 
shows an average of a 60% improvement in query response 
time with our labeling scheme.  

2. THE SPARQ2L LANGUAGE 
2.1 Language Requirements 
Based on our analysis of commonly expressed queries on different 
kinds of data networks such as biological networks and social 
networks, we developed some language requirements for 
SPARQ2L. First, we identify three classes of constraints that should 
be supported:   

1) Constraints on Nodes and Edges - constrain paths based on the 
presence or absence of certain nodes or edges.  

2) Cost-based constraints – for weighted graphs, constrain paths 
based on their “costs”.   

3) Structure-based constraints – constrain paths based on 
structural properties e.g. non-simple paths, presence of a 
pattern on path, etc.  

To allow the expression of such queries in SPARQ2L, we introduce 
the notions of path variables and path filter expressions i.e. 
constraints on path variables into SPARQL. In addition, we will 
extend the query patterns supported to include RDF path patterns 
which generalize standard SPARQL graph pattern expression to 
include triple patterns with path variables in the predicate positions.  
In the sequel, we will give an algebraic formalization of RDF path 
patterns that builds on the formalization of SPARQL graph pattern 
queries in [17]. 

Let I, L and B be pairwise disjoint infinite sets of IRIs, literals and 
blank nodes respectively and are collectively referred to as RDF 
Terms. An RDF triple is a 3-tuple (s, p, o) ∈ (I ∪ B) × I × (I ∪ B ∪ 
L) where s is the subject, p is the predicate and o is the object. A 
directed edge-labeled graph is a graph G = (V, E, λ, ∑) such that E 
⊆ V × V, and λ is a function from E to a set of labels ∑ i.e. λ: E  
∑. An RDF triple graph for an RDF triple (s, p, o) is a directed 
edge labeled graph G = ({s, o}, {(s, o)}, λ, {p}). An RDF database 
graph for a set of triples {t1, t2, .. tn}is the directed edge labeled 
graph formed from the union of the triple graphs for t1, t2, and tn. An 
RDF path from node x to node y in an RDF database G is a 
sequence of triples <(x, p1, o1), (s2, p2, o2), …, (sk, pk, y)> such 
that oi, = si+1, i = 1, 2, …, k-1. An RDF path is simple if for all i,j, 
i≠  j implies oi≠ oj i.e., no node is repeated on the path, otherwise 
it is non-simple.  
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2.2 A Formal Syntax for SPARQ2L Path 
Pattern Expressions 
SPARQ2L’s path pattern expressions resemble SPARQL triple 
patterns except that they could contain path variables in the 
predicate position. A path pattern expression could consist of a 
SPARQL graph pattern, a triple pattern [17] with a path variable in 
the predicate position (called a path triple pattern) and some built-in 
path filter conditions. To describe this formally, we need a few 
definitions. Let VN and VP (regular and path variables respectively) 
be two pairwise disjoint sets of variables that are also disjoint from I 
∪ L ∪ B.  A triple pattern is a tuple in (I ∪ L ∪ VN) × (I ∪ VN) ×  
(I ∪ L ∪ VN) and we denote the set of all triple patterns as T. To be 
able to specify a desired pattern on a path we need to support 
regular expressions over triple patterns. Recall that a regular 
expression over a set X is an expression formed in the following 
way: if x ∈ X, then x, (x)*, (x)+, (x)? are regular expressions; if x 
and y are regular expressions, then x • y, x ⏐ y are also regular 
expressions. A T-Regular Expression is a regular expression over a 
triple pattern or an extended regular expression of the form ([s , ·], 
p, [· , o])+ where (s, p, o) a triple pattern. An extended regular 
expression matches a path such that the subject of the first triple in 
the path is s and object of last triple is o, · matches arbitrary 
intermediate nodes on the path and all the predicates on the path are 
p. We define R(T) as the set of regular and extended regular 
expressions over T.  

Definition 1 (Path Built-in Condition) Given the following built-in 
path functions: 

• containsAny : (VP, 2I)  Boolean 

• containsAll : (VP, 2I)  Boolean 

• containsPattern : (VP, R(T))  boolean 

• isSimple : VP  Boolean 

• cost : VP     
A path built-in condition is an expression built from I ∪ VP ∪ L ∪ 
R(T), the logical operators (¬, ∧) , the comparison operators (=, ≤) 
and path builtin functions in the following manner - given a variable 
??P ∈ VP, a constant c, C ⊆ I a set of IRIs, TP is a T-regular 
expression, the following are path built-in conditions: 

1) cost(??P) = c, containsAny(??P, C), containsAll((??P, C), 
containsPattern(??P, TP), and isSimple(??P).  

2) If BC1 and BC2 are path built-in conditions, then (¬BC1) and 
(BC1 ∧ BC2) are path built-in conditions. 

We can now define the notion of a SPARQ2L Path Pattern 
Expression. 

Definition 2 (Path Pattern Expression) A Path Pattern Expression 
PP is defined recursively as follows: 

• a 3-tuple q ∈ (I ∪ VN ∪ L)  × VP  ×   (I ∪ VN ∪ L)  called a 
path triple  pattern is a path pattern 

• if GP is a SPARQL graph pattern and PP is a path pattern then 
(PP AND GP) is a path pattern 

•  if PP is an path pattern and F is a path built-in condition then 
(PP PATHFILTER F) is a path pattern  

 

2.3 The Semantics of Path Queries in 
SPARQ2L   
In [17], the semantics of a SPARQL graph pattern is defined in 
terms of a function [[ ⋅ ]] which takes a pattern expression and 
returns a set of mappings where a mapping μ is defined as a partial 
function from VN to RDFT, RDFT = I ∪ L ∪ B. The function 
dom(μ) is used to denote the subset of VN in which μ is defined. 
We extend this definition for SPARQ2L’s path patterns.  

Let 2RDFT be the set of possible tuples from RDFT. We introduce 
the notion of a pmapping ω as a partial function from (VP ∪ VN) to 
(2RDFT ∪ RDFT) such that ω(vp ∈VP) = p ∈ 2RDFT and ω(vn 
∈VN) = RDFT. Then, for a path triple pattern tp, we denote by 
ω(tp), the tuple formed by substituting any variables vn ∈ VN ∪ vp 
∈VP in tp according to ω. The dom of ω is the subset of VP ∪ VN 
in which ω is defined and is denoted by dom(ω). We extend the 
notion of compatibility defined in [17] to include compability 
between a mapping μ and a pmapping ω. We say that a mapping μ 
is compatible with a pmapping ω if when x ∈ dom(μ) ∩ dom(ω), 
then μ(x) ∈ ω(x). Next, we define the join of a set of mappings Ω 
and a set of pmappings Θ in the following way: 

Ω ><  Θ = {μ ∪ ω  | μ ∈ Ω , ω ∈ Θ are compatible} 
Definition 3. (Path Pattern Solution) Let D be an RDF dataset over 
RDFT, tp a path triple pattern whose variables are defined by 
var(tp) and GP1 a graph pattern. Then, the solution of a path pattern 
PP over D, denoted by [[ ⋅ ]]D is defined as recursively as follows: 

i. [[tp]]D = { ω | dom(ω) = var(tp) and ω(tp) forms a path in D } 

ii. [[(PP AND GP)]] D = [[PP]]D ><  [[GP]]D  

For the path patterns with PATHFILTER expressions, we say that a 
pmapping ω satisfies a builtin condition F or ω =| F if given I’ a 
subset of the set of IRIs and tr a tp-regular expression,   

i. F is containsAny(??P, I’) and ??P ∈ dom(ω) and I’∩ ω(??P) 
≠ ∅. 

ii. F is containsAll(??P, I’) and ??P ∈ dom(ω) and I’⊆ ω(??P). 
iii. F is containsPattern(??P, tr) and ??P ∈ dom(ω) and 

ground(tr) is a subpath of ω(??P) . 
iv. F is isSimple (??P’) and ??P ∈ dom(ω) and for x, y ∈ 

ω(??P), x ≠ y. 
v. F is (¬F1), F1 is a built-in condition, ω ≠|  F1  
vi. F is (F1 F2), F1 and F2 are built-in conditions, ω |= F1 and ω 

|= F2 
 

2.4 SPARQ2L By Example 
This section gives a feel of the SPARQ2L grammar by examples.  

Query 1. (Non-Simple Path Query) Find any feedback loops (i.e. 
non simple paths) that involve the compound Methionine 

SELECT ??p 
WHERE  {  ?x   ??p   ?x .  

?z   compound:name   “ Methionine” . 
PathFilter(containsAny(??p, ?z) ) } 

Query 2. (Path Query with Terminal Node Constraints) Is 
PassengerX connected in anyway to entities on the CIA watchlist.? 

SELECT ??p 
WHERE  { ?x   ??p   ?y .  
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?x   foaf:name   “PassengerX” .   
?y   rdf:type    sec:CIA_Watchlist_Entities . }  

Query 4. (Path Query with Constraint on Intermediate Nodes) Find 
the paths of influence of Mycobacterium Tuberculosis MTB 
organism on PI3K signaling pathways.  

SELECT ??p 
WHERE  {  ?x   ??p   ?y .  

?x   bio:name   “MTB Surface Molecule” .   
?y   rdf:type   bio:Cellular_Response_Event .  
?z   rdf:type   bio:PI3K_Enzyme .  
PathFilter(containsAny(??p, ?z) ) } 

Query 5. (Path Query with Path Length Constraint). Find all 
close connections (< 4 hops) between SalesPersonA & CIO-Y. 

SELECT ??p 
WHERE { ?x   ??p   ?y . 
    ?x   foaf:name   “salesPersonA”. 
    ?y   company:is_CIO ?z. 
    ?z company:name “CompanyY” . 
    PathFilter( cost(??p) < 4 )  }   

Query 6. (Path query with path pattern constraint) Find social 
relationships between potential jurors and a defendant.  

SELECT ??p 
WHERE { ?x   ??p   ?y . 
    ?x   foaf:name   “defendantX” . 
    ?y   foaf:name   “jurorY” . 

PathFilter( containsPattern (??p, [?a, ·]  
foaf:knows [· , ?b] )+ )      }  

3. QUERY EVALUATION FRAMEWORK  
Our query evaluation framework derives from an algebraic 
technique for solving path problems [29][30] which has a strong 
relationship to the Gaussian elimination technique for solving a 
system of linear equations by LU decomposition. Recall that to 
solve a system of equations using this technique, a matrix 
representing a system of linear equations Mx = b is decomposed 
into two triangular matrices L and U. Then, the system is solved by 
first solving the system Ly = b (frontsolving) then substituting y in 
the system Ux = y and solving for the vector x (backsolving). 
These triangular systems L and U can be used to solve for different 
right hand sides i.e. different values of b, allowing for the 
computationally dominant phase (the LU decomposition phase) to 
be reused for different problem instances. In [29][30], the authors 
show how by interpreting the sum and product operations 
appropriately, we can solve a variety of path problems using this 
technique. In general, solving a path problem instance using the 
triangular matrices, we process each triangular matrix in a specific 
order. Our work focuses on indexing and storing the contents of 
these matrices so that we may “skip” processing submatrices that 
are irrelevant to a query.   

3.1 System Architecture Overview 
Figure 1 shows our system for multi-paradigm querying of RDF 
which includes support for pattern matching queries, path queries 
as well as keyword queries. The first step in our approach is to load 
RDF Schema and data documents into internal graph data 
structures. Then, different preprocessing steps are performed on the 
data which produces appropriate indexes on the data for each of the 
querying paradigms i.e.  Pattern Matching Indexes stored in the 
Pattern Match Store, Path Index stored in the Path Store and 

statistical and structural summaries used for Top-k queries stored in 
the System Catalog.  
 

Pattern 
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Catalog
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Preprocessor

SPARQ2L
Parser

Document
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Processor

Pattern
Matcher

Query
Planner

Pattern
Match

Pattern
Filter

Path
Finder

Path
Filter

Figure 1: System Architecture 
Our storage layer uses the BerkeleyDB data storage system because 
of its flexibility with respect to accommodating non-relational 
storage models and arbitrary data types. The Query Processor 
Module consists of three different kinds of query processors for 
processing each type of query.  
However, a query may be processed by multiple processors. For 
example, Figure 1 shows an example query plan for a path query in 
which some constraints involve standard graph pattern matching.  
For brevity, we have omitted most of the components used to 
support keyword queries. 

3.2 Data Preprocessing  
Our discussion on preprocessing will focus only on what is relevant 
for path query processing which is the construction, labeling and 
indexing of a graph’s path sequence. The LU decomposition phase 
of preprocessing can be seen as computing partial path summaries. 
This means that for certain pairs of nodes, some of the paths 
connecting the nodes are computed at this phase. We use the term 
“summaries” to imply a concise representation of path information 
as opposed to an enumerated listing of paths. A good analogy for 
path summarization is that of representing the set of strings in a 
regular language using a regular expression. To give an example, 
assume that we have the following triples (x, p1, y), (x, p2, y), (y, p3, 
z) represented as labeled edges in an RDF graph. Then, we can 
summarize the paths from x to z as (p1 ∪ p2 • p3). We will refer to a 
triple of such a regular expression and the source and destination 
nodes as a P-Expression e.g. ( (p1 ∪ p2 • p3), x, z ).While the 
discussion here will continue to refer to p-expressions as strings, our 
approach uses a more efficient implementation. P-expressions are 
represented using a binary encoding scheme that enables the path 
filtering step for path constraint evaluation to be performed 
efficiently using bit operations. However, a detailed discussion of 
the binary encoding scheme and path filtering algorithms is outside 
the scope of this paper.  
The LU decomposition of phase of the preprocessing requires that 
an RDF graph G be ordered  -  Gα = (G, α) where α : {1, 2, …N} 

 V(G) so that α(i) maps to some node v in G i.e. v ∈ V(G). 
Conversely, α-1(v) maps a node in G to an integer between 1 and N. 
(Our choice of α will be discussed in the next section). At the end of 
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the LU decomposition algorithm [29], the elements of M satisfy one 
of two conditions: For u, v ∈ V(G): 

• M[α-1(u), α-1(v)] for α-1(u) ≥ α-1(v) contains a p-expression 
representing exactly the paths from u to v that do not contain 
any intermediate vertex w such that α-1(w) > α-1(v).  

• M[α-1(u), α-1(v)] for α-1(u) < α-1(v) contains a p-expression 
representing exactly the paths from u to v that do not contain 
any intermediate vertex w such that α-1(w) < α-1(u).  

The process begins by initializing M[i, j] for 1 ≤ i, j ≤ N with a p-
expression representing a union of the set of edges between the 
nodes α(i), α(j). Then, this union p-expression is systematically 
updated to represent other paths that satisfy the above constraints. A 
naïve algorithm for the LU decomposition phase runs in O(N3). Its 
details and other optimizations are omitted for brevity but can be 
found in [29]. Then, the path sequence [29] for G is: the sequence of 
p-expressions (Xi, ui, vi) where α-1(ui) ≤ α-1(vi) in increasing order 
on α-1(ui) is followed by the sequence of p-expressions (Xi, ui, vi) 
for α-1(ui) > α-1(vi) in decreasing order on α(ui). This notion can also 
be defined in terms of the strongly connected components of Gα 
[29] which leads to a more efficient technique for computing path 
sequences.  
Definition 4 (Path Sequence by Strong Components) Let G1, G2, ..., 
Gk be a topologically ordered list of the strongly connected 
components of a graph G i.e., for i > j, there does not exist an edge 
from a component Gi to a component Gj. Further, let Ai be the path 
sequence for Gi and Bi be the elements: { (X, source(e), target(e))  | 
source(e) ∈ V(Gi) and target(e) ∉ V(Gi) } ordered arbitrarily. Then 
A1, B1, A2, B2 ,…, Ak-1, Bk-1, Ak is a path sequence of G.  
3.2.1 Labeling and Indexing Path Sequences   
Our goal is to support efficient evaluation of path queries on disk-
based databases which means that we need to develop an effective 
disk storage model for graphs. Now, a path sequence has what we 
will call the Single-Scan-Path-Preserving property which means 
that for any given node u in G, we can compute complete path 
information for u by aggregating the partial path fragments during a 
single scan of the path sequence. This suggests that it should be 
possible to index this sequence using a B+tree and then process 
queries using modified range queries. However, we must endeavour 
to minimize the width of the range retrieved to process each query. 
To achieve this goal, we should cluster p-expressions on the path 
sequence based on their likelihood of being relevant or irrelevant for 
the same class of queries. This will ensure that we minimize the 
number of disk requests and disk-seek operations needed when 
evaluating queries. On the other hand, a more fragmented 
organization of relevant and irrelevant p-expressions will lead to 
queries requiring many small relevant clusters that are scattered 
across the sequence and consequently many more disk seek 
operations.  This clustering is achieved logically by using a graph 
numbering or labelling scheme that assigns groups of related nodes 
and therefore associated p-expressions numbers in contiguous 
intervals. To enforce this clustering on disk, we exploit the fact that 
in BerkeleyDB, insertions are appended to a log file and are 
physically stored in the order that they are inserted. So we need to 
insert related p-expressions in path sequence order.  In the following 
section, we will consider some relationships between nodes that 
allow us to consider them related or “Prunable Equivalent” for 
some classes of queries.  

3.2.1.1 Prunable Equivalence   
We will explain this concept intuitively. Figure 2 shows an example 
RDF data graph with information about faculty, students, research 
projects, etc., and the relationships between them. Each node is 
labelled with a set of symbols in shaded boxes indicating its types 
(see legend at the bottom left of the picture). The dotted circles are 
the strong components (maximal subgraph where there is a path 
connecting each pair of nodes) of the graph. It is clear that for any 
non-singleton strong component i.e. strong component with more 
than one node, if a path contains one of its constituent nodes as an 
intermediate node, then there is a path containing all of its nodes as 
intermediate nodes. This means that if, given a path query we can 
determine that any constituent node of a strong component is 
“irrelevant” to the query, we can conclude the irrelevance of all the 
other constituent nodes and edges and losslessly ignore their 
associated p-expressions. Consequently, we say that all the p-
expressions associated with the nodes and edges of a non-singleton 
strong component are “Prunable Equivalent”. 

We can also consider similar equivalence relationships amongst sets 
of strong component nodes which form interesting subgraph 
structures. For example, consider the small subgraphs at the bottom 
right of the figure enclosed in the boxes numbered 3, 4, 5 – numbers 
in thick bordered boxes. We call these structures dangling trees 
because they form a tree structure (in these examples they are path 
structures) that “dangle” from a parent non-tree subgraph – the 
ancestor subgraph enclosed in the thick bordered box 2. Interesting 
properties of these structures is that (i.) no paths connect any pair of 
dangling trees, (ii.) there does not exist any paths from a dangling 
tree back to the parent non-tree subgraph. From the point of view of 
a path query from s to d, this implies that if we can determine that d 
is not a node of a dangling tree T, then we can conclude the 
irrelevance of all the nodes in T and we can losslessly ignore all p-
expressions associated with the strong component nodes and edges 
in T.  
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Figure 2: Hierarchical labelling of an RDF graph 

Therefore, we say that the p-expressions of strong component nodes 
and edges in a dangling tree are Destination-Induced Prunable 
Equivalent. This relationship trivially applies to disconnected 
subgraphs such as two disconnected subgraphs (left, right) with 
double bordered boxes 1 and 2 respectively.   

For the groups of strong components forming non-tree subgraphs, 
imposing a tree structure on them allows us to identify some 
interesting equivalence relationships. Recall that a spanning tree is a 
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tree subgraph of a graph that includes all the nodes in the graph. In 
the case of a graph with multiple source nodes, we introduce a root 
node as the parent of all source nodes. We call a spanning tree 
optimal if every edge (u, v) lies on the longest path from root of the 
tree to v. In Figure 2, the darkened edges are the edges of the 
optimal spanning tree (the introduced root node is omitted from the 
figure). This definition of the optimal spanning tree implies that for 
any node s at depth k in the tree, all of the nodes reachable from s 
are at level l > k while all nodes that can reach node s are at a level l 
< k. Consequently, we can say that the p-expressions for edges and 
strong component nodes at the same or lower depth in the optimal 
spanning tree are Treedepth-Induced Prunable Equivalent.    

3.2.2 Framework for Graph Labeling  
We would like to label the nodes and edges of a graph such that we 
can easily identify the groups of related nodes based on the 
relationships discussed in the previous section. To achieve this, we 
use a hierarchical labeling scheme that captures the above groupings 
at the three levels of abstraction. At the finest level, we have a 
component identifier which is a unique number assigned to each 
individual strong component which records the pre/post order visit 
time during a depth first traversal of the graph. In Figure 2, this is 
the second of the numbers in the rectangular boxes associated with 
strong components. The first number in the rectangle is the level 
identifier which is the depth of the strong component node in the 
optimal spanning tree. At the coarsest grouping we have what we 
call subgraph identifiers which identify disconnected non-tree 
subgraphs and the dangling tree subgraphs. The subgraph identifiers 
are the numbers in thick bordered boxes and the intervals of 
subgraphs identifiers for non-tree subgraphs and that of dangling 
tree subgraphs are non-overlapping. By default all the non-tree 
subgraphs are assigned subgraph identifiers lower than the tree 
subgraphs. The following statement states the properties of this 
labelling scheme that we exploit to determine relevance of strong 
component nodes and edges connecting them. 

NonReachability Property (PropertyNR). Given a path query q 
with s and d as source and destination nodes, let i and j be the 
subgraph identifiers of s and d respectively, and x and y be their 
level identifiers. Then 

• i ≠ j implies that q’s result is empty.  

• x > y implies that q’s result is empty.   

• any node u with level identifier k such that k < i or k > j 
implies that u  is not a member of q’s result set. 

3.2.2.1 2-Color Path Sequences  
Based on the above labeling scheme we can develop an effective 
sequential representation for a graph which associates key values 
derived from the hierarchical labeling with elements of a path 
sequence. However, we need to take additional measures to ensure 
that the resulting sequence clusters “related” p-expressions. As a 
first step, we can co-index (assign same key value) all the p-
expressions associated with a non-singleton strong component since 
they are prunable equivalent with respect to every query. This will 
allow for collectively retrieving or skipping over all the p-
expressions associated with the strong component once its relevance 
is determined. For the same reason, we can co-index multiple edges 
connecting two strong components. For example, consider the 
components with rectangular boxes 1,6 and 2,4 which have two 
edges {“author_of”, “required_text”} connecting them but involve 
different constituent nodes 8 and 10. By co-indexing both edges, we 

can collectively retrieve or skip their associated p-expressions once 
the relevance of the source and destination components have been 
determined. For similar reasons, we would also like to cluster on 
disk, destination-induced and treedepth-induced prunable equivalent 
p-expressions. To achieve this, we will exploit a property of the 
BerkeleyDB log file system where insertions are always appended 
to a log file, so that clustering can be achieved using consecutive 
insertions. We will now propose a sequential representation that we 
can index using a BerkeleyDB B+tree. The next definition shows 
how we construct the sequential representation called a 2-Color 
Code.   

Definition 5. (2-Color Code) Let a label component be a triple of 
one of the forms (s, l, t) or (s, t, l) where s is subgraph identifier, l 
is level identifier and t is traversal identifier.  Then the 2-Color 
Code C for a graph G = (V, E) is a lexographically ordered 
sequence of 2-tuples of label components – denoted as SLT() and 
STL() for the two label component forms, such that:     

• for v ∈ V, if v is in a dangling tree then the tuple 〈STL(v), 
STL(v)〉 ∈ C otherwise 〈 SLT(v), SLT(v)〉 ∈ C 

• for e = (vi, vj) ∈ E,  if vj is in a dangling tree of G then 
〈STL(vj), label component of vi〉 ∈ C otherwise 〈STL(vi), 
STL(vj)〉 ∈ C 

We call each 2-tuple of label components a 2-Color Label denoted 
as 2CL(). The two different forms of label components and the 
reversing of source and destination label components in the 2-Color 
code of  edges connecting strong components is done to achieve an 
ordering that simulates the most appropriate way to process each 
type of subgraph - depth-first ordering for tree subgraphs and a 
breadth first ordering for non-tree subgraphs. The ordering induced 
by a 2-Color Code defined as above can be summarized the 
following way.  

Order Property (PropertyOP): For D and T, non-tree and tree 
subgraphs respectively of a graph G, 
• u ∈ V(D) and v ∈ V(T)  implies 2CL(u) <  2CL(v). Similarly, 

e ∈ E(D) and f ∈ E(T)  implies 2CL(e) <  2CL(f). 

• u ∈ V(D) and e = (u, v) ∈ E(D) implies 2CL(u) < 2CL(e) 
while u in V(T) and u = (v, u) ∈ E(T) implies  2CL(u) > 
2CL(e).  

This says that the ordering induced by the 2-Color code is such that 
all p-expressions associated with non-tree subgraphs appear before 
the p-expressions of tree subgraphs. Also, within each disconnected 
subgraph the p-expressions are in level order for non-tree subgraphs 
and depth-first order for tree subgraphs. Finally, for non-tree 
subgraphs p-expressions associated with an edge appears after the p-
expression for the edge’s source node whereas the reverse is the 
case for tree subgraphs. These properties are exploited during query 
processing as will be seen in the next section. Figure 3 shows a 
labelled path sequence of 43 key-value pairs. Singleton strong 
components have a key representing the node and an empty value 
set e.g. element 1. Non-singleton strong components have a key and 
a value which is the set of p-expressions of its constituent nodes and 
edges e.g. element 16. All other keys identify two connected 
components that have at least one edge connecting them. The key 
represents the pair of nodes and the value is the set of p-expressions 
for all the connecting edges e.g. element 17.  
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1: [ (1,1,1), (1,1,1), { } ], 2: [ (1,1,1), (1,2,2), { (advises, 1, 2) } ], 3: [ (1,2,2), (1,2,2), { } ],
4: [ (1,2,2), (1,3,3), { (author_of, 2, 3) } ], 5: [ (1,2,2), (1,3,5), { (enrolled_in, 2, 4) } ], 
6: [ (1,3,3), (1,3,3), { } ], 7: [ (1,3,3), (1,4,5), { (has_subject_area, 3, 5) } ], 
8: [ (1,3,5), (1,3,5), { } ], 9: [ (1,3,5),(1,4,5), { (course_in, 3, 4) } ], 10: [ (1,4,5), (1,4,5), { } ],
11: [ (2,1,1), (2,1,1), { } ], 12: [ (2,1,1), (2,2,2), { (advises, 6, 12) } ],
13: [ (2,1,1), (2,2,4), { (editor_of, 6, 13) } ], 14: [ (2,1,5), (2,1,5), { } ],
15: [ (2,1,5), (2,3,3), { (offers, 7, 15) } ], 16: [ (2,1,6), (2,1,6), { (enrolled_in, 8, 10),
(advises•enrolled_in, 9, 10), ( (taught_by•advises•enrolled_in)*, 10, 10),
(taught_by, 10, 9), (advises, 9, 8) } ], 
17: [ (2,1,6), (2,2,4), { (author_of, 8, 13), (required_text, 10, 13)}],
18: [ (2,1,6), (2,2,7), { (author_of, 8, 14) } ], 19: [ (2,1,6), (2,3,3), { (enrolled_in, 8, 15) } ],
20: [ (2,1,9), (2,1,9), { } ], 21: [ (2,1,9), (2,2,4), { (author_of, 11, 13) } ], 
22: [ (2,2,2), (2,2,2), { } ], 23: [ (2,2,2), (2,3,3), { (enrolled_in, 12, 15) } ], 
24: [ (2,2,4), (2,2,4), { } ], 25: [ (2,2,7), (2,2,7), { } ], 
26: [ (2,2,7), (2,4,8), { (has_subject_area, 14, 16) } ], 27: [ (2,3,3), (2,3,3), { } ], 
28: [ (2,3,3), (2,4,8), { (course_in, 15, 16) } ], 29: [ (2,4,8), (2,4,8), { } ], 
30: [ (3,1,1), (2,4,2), { (related_to_project, 13, 17) } ], ∗ ∗ ∗ 31: [ (3,1,1), (3,1,1), { } ], 
32: [ (3,2,1), (3,1,1), { (project_in, 17, 18) } ], 33: [ (3,2,2), (3,2,2), { } ], 
34: [ (4,1,1), (2,9,1), { (current_project, 11, 19) } ], 35: [ (4,1,1), (4,1,1), {} ], 
36: [ (4,2,1), (4,1,1), { (project_in, 19, 20) } ], 37: [ (4,2,2), (4,2,2), { } ], 
38: [ (5,1,1), (2,9,1), { (advises, 11, 21) } ], 39: [ (5,1,1), (5,1,1), { } ], 
40: [ (6,1,1), (2,1,1), { (current_project, 6, 22) } ], 41: [ (6,1,1), (6,1,1), { } ], 
42: [ (6,2,1), (6,1,1), { (project_in, 22, 23) } ], 43: [ (6,2,2), (6,2,2), { } ]

Figure 3: 2-Color Code for Example Graph 

For a graph of n nodes, m edges and k strong components, the 
overall time for preprocessing includes the time to find strong 
components O(m + n), the optimal spanning tree O(k + m′) where 
m′ < m is the number of edges connecting strong components, and 
the time to run the LU decomposition algorithm for all strong 

components: 
3

1
'∑

= ktoi
inO where ni′ is the number of nodes in 

strong component i.  

3.3 Path Query Processing  
This presents the approach for evaluating unconstrained path queries 
which is also fundamental for evaluating constrained queries. The 
discussion of constrained queries is outside the scope of this paper.    

3.3.1 Evaluation of Unconstrained Path Queries 
The Path Finder evaluates a query by successively retrieving the 
relevant p-expressions from disk and composing them into larger p-
expressions that comprise the solution. Path Finder achieves this 
using the Path-Solve algorithm shown in Listing 1 below. The 
algorithm begins by initializing a matrix (Result) which keeps track 
of the composed p-expressions. To retrieve p-expressions from disk, 
the openDBCursor sub-routine returns a database non-treeCursor, 
treeCursor or joinCursor, depending on the subgraph in which the 
source and destination of the query is located.    

A non-treeCursor (treeCursor) is always set to the 2-Color label for 
the strong component of the source (destination) node. The p-
expressions needed to process the query are obtained using the next 
cursor function, until the end of the cursor (i.e. the 2-Color label for 
the strong component of the destination (source)) is reached. To 
illustrate this, consider a query for paths from node 8 to node 16 in 
Figure 2. These nodes are in the same non-tree sub-graph thus a 
non-tree cursor set to 16th element in Figure 3 is returned by 
openDBCursor. In the processNon-Tree() sub-routine, the next 
cursor function returns the 17th to the 29th elements which are 
processed by calls to processPE sub-routine. 

Algorithm 2 Path-Solve(Node s, Node d, int
Result[])

01 Result[id(s)] = ε //id(x) = α-1(x) ie the id 
of node x

02 for each v ∈ V – {s} set Result[id(v)] = ∅
03 cursor ← openDBCursor(s, d)
04 if (cursor is treeCursor)
05 Result ← processTree(cursor, Result, 

α-1(d))
06 else if (cursor is non-treeCursor)
07 Result ← processNon-Tree(cursor, 

Result)
08 else
09 Result ← processJoin(cursor, Result)

10 return Result
openDBCursor(Node s, Node d)
01 if ((s & d) ∈ same non-tree sub-graph)
02 return non-treeCursor(s, d)
03 else if ((s & d) ∈ same tree sub-graph)
04 return treeCursor(s, d)
05 else if (s ∈ sub-graph g & d ∈ a dangling tree 

t of g)
06 return joinCursor(s, c, d) //c is the cut 

vertex of g ∪ t
07 else return null.

processNon-Tree(cursor, int Result[])
01 while ((Xi, vi, wi) ← cursor→next()) <> 

null) 
02 Result = processPE((Xi, vi, wi))
03 return Result
processTree(cursor, int Result[], int dest)
01 Result[dest] = ε
02 while ((Xi, vi, wi) ← cursor→next()) <> 

null)
03 Result[dest] = processPE((Xi, vi, 

wi))• Result[dest]
04 (Xi, vi, wi) ← cursor→prev()
05 Result[dest] ← Xi • Result[dest]
06 cursor→set(vi)
07 return Result
processPE(int Result[], p-expression (Xi, vi, 

wi))
01 if (vi = wi ) then  Result[wi] ← Result[vi] 

• Xi
02 else Result[wi] ←Result[wi] ∪ Result[vi] •

Xi
03 return Result

 
Listing 1: Path-Solve Algorithm  

On the other hand, processTree proceeds in a bottom-up manner, 
successively using the next and prev cursor functions to obtain the 
relevant p-expressions. Since p-expressions obtained from a 
treeCursor begin with the destination up to the source, p-expressions 
of tree edges (obtained with the prev cursor function) are prepended 
to the p-expression in Result[α-1(d)]. 

Given Result and a p-expression (Xi, vi, wi), ProcessPE computes a 
larger p-expression (Xi, ui, wi) by appending (Xi, vi, wi) to an 
existing p-expression in Result of type (Xj, ui, vj) (line 01). Further, 
a larger p-expression is computed as the union of any p-expression 
(X, ui, wi) which already exists in Result, but only if vi is different 
from wi. As an example, consider again the query for all paths from 
node 8 to node 16th. Result[8] initially contains ε, as shown in 
Figure 4a. To process the first p-expression (enrolled_in, 8, 10) of 
the 16th element, Result[8] is concatenated to enrolled_in and stored 
in Result[10], as shown in Figure 4b. Processing 
(advises•enrolled_in, 9, 10) implies concatenating Result[9] to 
advises•enrolled_in and storing to Result[10]. However Result[9] is 
null, thus Result[10] remains unchanged. Figure 4c-j, show the 
changes made to Result as the rest of the p-expressions are 
processed. 

A joinCursor retrieves p-expressions like a treeCursor until it meets 
p-expression for the cut vertex, after which it switches to a non-
treeCursor behavior. To illustrate, consider a query for paths from 
node 11 to node 20. Node 11 is in a non-tree sub-graph which has a 
dangling tree that contains node 20. Thus, openDBCursor returns a 
joinCursor set to the 37th element in Figure 3. Its associated p-
expression is empty, so that Result[20] is unchanged. A call to the 
prev cursor function returns the p-expression (project_in, 19, 20), 
which is prepended to ε, so that project_in is stored to Result[20].  
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Figure 4:An illustration of the Path-Solve 

The cursor is then set to the 35th element, which also contains an 
empty p-expression. The next call to prev returns the 34th element 
with the p-expression (current_project, 11, 19), which is prepended 
to project_in and stored back to Result[20]. Since this element 
represents the bridge edge, the cut vertex is noted and set sets the 
cursor to the 2-Color label of the source of the query, which is the 
20th element. Since its associated p-expression is empty, no change 
is made to Result[11]. Since this element is the cut vertex, the result 
of the query is obtained with a final concatenation of Result[11] and 
Result[20].   

At the end of the Path-Solve algorithm, Result[i] contains a p-
expression of type (Xi, α-1(s), wi), representing all paths from node 
s to node i. 

4. PERFORMANCE EVALUATION  
In this section, we describe an empirical evaluation of our query 
processing approach by comparing the performance when using our 
2-Color Code (2CC) vs. five other several other randomly chosen 
topological orderings.   

4.1 Experimental Setup 
Implementation. We implemented our algorithms using Java 1.5, 
on a 1.8GHz Dual AMD Opteron processor with 10GB available 
RAM. We used Berkeley DB Java Edition for storage and indexing 
and performed all matrix implementations using the sparse matrix 
implementation of the Colt distribution. We used Brahms [16], an 
efficient main-memory storage to obtain a temporary graph 
representation of the RDF graphs in memory. 

Datasets. We used a real world SwetoDBLP-Jan2006 [32] dataset 
and a synthetic dataset generated using the Lehigh University 
Benchmark with 6 Universities (UBA6). Table 1 below shows the 
properties of the datasets. SwetoDBLP has 9,921 non-tree sub-
graphs with a total of about 300,000 scc nodes and 760,000 scc 
edges and 340,000 tree sub-graphs with a total of about 410,000 scc 
nodes. One of these non-tree subgraphs is very large (about 250,000 
nodes and 660,000 edges) and the smallest sub-graph contains 2 scc 
nodes and 2 scc edges. It also contains about. The smallest and 

largest tree sub-graphs have a single scc node and 25 scc nodes 
respectively, with a maximum depth of 1. UBA6 however is more 
connected, containing a single non-tree subgraph with 118,195 
strongly connected component (scc) nodes and 357,578 scc edges. 
Although it contains 61 tree subgraphs, each tree contains just a 
single scc node. Literal nodes and incident edges are ignored. 

Table 1: Properties of the Datasets 

 UBA6 SWETO_DBLP 

Number of nodes 118,566 724,874 

Number of edges 357,950 836,555 

# of strong components 118,256 723,669 

#of p-expressions   476,448 1,561,008 

 

Performance Metrics. We evaluate the performance of the 
techniques by observing 1) the size of the reduced path sequence i.e. 
the number of p-expressions brought into memory from disk. This 
metric measures the goodness of our approach for identifying 
irrelevant p-expressions – those that were not retrieved from disk, 2) 
the query processing time including disk access time.  

Query Workload. Our query workload consists of six different 
query types. First we have as positive (path exists) and negative 
(paths do not exist) and we denote positive or connected queries as 
(C-Queries) and negative or disconnected queries as (D-Queries). 
Then we identify queries based on whether their source/destination 
nodes are in tree or non-tree subgraphs. Queries with source and 
destination nodes in non-tree sub-graphs are denoted (NT-NT) 
queries, (NT-T) denotes source node is in a non-tree sub-graph and 
the destination node in a tree sub-graph and (T-T) denotes queries 
with both source and destination nodes in tree sub-graphs. We 
randomly selected 40 distinct source-destination pairs for each of 
the six categories and measured the average running time of all 
queries where the running time of a query is also an average over 
several executions of the query.  

4.2 Experimental Results 
Figure 5a – Figure 5l show the result of our experiments on the 
SwetoDBLP dataset. 2CC had the best performance for all the query 
workloads. The best performance of 2CC for C-Queries is observed 
in the T-T queries where only 4 p-expressions were brought into 
memory, with a total of 0.4 milliseconds query processing time. 
This is natural since the T-T queries for this dataset are single edge 
paths. For the D-Queries, 2CC performed very well using at most 
0.025 milliseconds to determine that the result set is null. For these 
queries, no p-expression was brought into memory. As is expected 
the performance of the labeling schemes varied with the queries. 
This can be observed in Figure 5a – Figure 5b and Figure 5e – 
Figure 5f. 
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Figure 5: SwetoDBLP DataSet Figures 

NT-NT C-Queries

0
1000
2000
3000
4000
5000
6000
7000

2CC Top 0 Top 1 Top 2 Top 3 Top 4

Labeling schemes

Ti
m

e 
in

 M
illi

se
co

nd
s

NT- NT C-Queries 

0

50000

100000

150000

200000

250000

2CC Top 0 Top 1 Top 2 Top 3 Top 4

Labeling Schemes

N
um

be
r o

f P
at

h
Ex

pr
es

si
on

s

NT-NT D-Queries

0

500

1000

1500

2000

2CC Top 0 Top 1 Top 2 Top 3 Top 4

Labeling schemes

Ti
m

e 
in

 M
illi

se
co

nd
s

NT-NT D-Queries 

0
20000
40000
60000
80000

100000
120000

2CC Top 0 Top 1 Top 2 Top 3 Top 4

Labeling schemes

N
um

be
r o

f P
at

h
Ex

pr
es

si
on

s

 
Figure 6: LUBM Dataset, Figures

While Top1 had the best performance amongst the topological 
labeling schemes for the NT-NT C-Queries, Top2 performed best 
for the NT-T C-Queries. Top0 performed worst for most of the 
query workloads but had the best performance in the NT-T D-
Queries and T-T D-Queries (Figure 5i – Figure 5l). We note that 
although performance of 2CC surpasses that of all the other 
topological labeling schemes, the ratio of the time performance is 
always larger than the ratio of the size performance. This is as a 
result of the additional time the 2CC spends in pruning the p-
expressions from the reduced path sequence based on properties 
PropertyNR and PropertyOP.  

Figure 6a – Figure 6d show the results of our experiments on 
UBA6. As we mentioned earlier, the tree sub-graphs in UBA consist 
of only single nodes, so that T-T queries are meaningless for this 
dataset. Furthermore, NT-T queries translate to either (a) finding the 
bridge edges or (b) finding paths through the bridge edges. Our 
experiments on the SwetoDBLP dataset showed that the 
performance of 2CC is very good when finding single edge paths. 

We observed a similar performance for this dataset and omit the 
results on the NT-T queries which can be inferred from the 
performance of (b) the NT-NT queries.  

Figure 6a and Figure 6b show the performance of the labelling 
schemes for the NT-NT C-Queries. Again, 2CC performs best 
amongst all the labeling schemes. However, its performance on 
UBA6 is worse than on SwetoDBLP because UBA6 is very 
connected, having only 1 non-tree sub-graph as opposed to 
SwetoDBLP which is fragmented into 9, 921 non-tree sub-graphs. 
Thus, queries in this workload have many more and longer paths. 
This is also reflected in the results of the NT-NT D-Queries shown 
in Figure 6c and 5d. Although 2CC also performed best, there were 
some queries for which determining non-reachability required more 
than a constant time check using labels leading the an average 
performance of 188 milliseconds for processing 3927 p-expressions. 
The disparity in the ratios of the time and size performances of 2CC 
to the other labelling schemes is also evident in the results. In spite 
of this, the time performance of 2CC is at least half of the time 

(a) 

(e) (f) (h) (g) 

(l) (k) (j) (i) 

(c) (b) (a) 

(b) (c) (d) 

(d) 
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performance of the best topological labelling scheme (Top1) for 
both the C-Queries and the D-Queries. 

5. CONCLUSION 
This paper addresses the issue of providing support for path 
extraction queries in RDF databases. This feature while crucial for 
many applications has limited support from most RDF querying 
systems. We address both the issues of how such queries can be 
expressed using SPARQ2L – an extended SPARQL language, and 
how to efficiently evaluate queries on disk based stores. In the 
future, we will address the issue of efficiently evaluating path 
extraction queries with complex filtering conditions. 
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