
SPARQ2L: Towards Support for Subgraph Extraction
Queries in RDF Databases

Kemafor Anyanwu
LSDIS Lab

University of Georgia
Athens, GA 30602

anyanwu@cs.uga.edu

Angela Maduko
LSDIS Lab

University of Georgia
Athens, GA 30602

maduko@cs.uga.edu

Amit Sheth
Kno.e.sis Center

Wright State University
Dayton, OH 45435

amit.sheth@wright.edu

ABSTRACT
Many applications in analytical domains often have the need to
“connect the dots” i.e., query about the structure of data. In
bioinformatics for example, it is typical to want to query about
interactions between proteins. The aim of such queries is to
“extract” relationships between entities i.e. paths from a data graph.
Often, such queries will specify certain constraints that qualifying
results must satisfy e.g. paths involving a set of mandatory nodes.
Unfortunately, most present day Semantic Web query languages
including the current draft of the anticipated recommendation
SPARQL, lack the ability to express queries about arbitrary path
structures in data. In addition, many systems that support some
limited form of path queries rely on main memory graph algorithms
limiting their applicability to very large scale graphs.

In this paper, we present an approach for supporting Path Extraction
queries. Our proposal comprises (i) a query language SPARQ2L
which extends SPARQL with path variables and path variable
constraint expressions, and (ii) a novel query evaluation framework
based on efficient algebraic techniques for solving path problems
which allows for path queries to be efficiently evaluated on disk
resident RDF graphs. The effectiveness of our proposal is
demonstrated by a performance evaluation of our approach on both
real world and synthetic datasets.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features

General Terms
Algorithms, Languages.

Keywords
SPARQL Extensions, RDF, Querying Semantic Web Databases.

1. INTRODUCTION
As more and more organizations contemplate the value of adopting
Semantic Web technologies, it is likely that one of the deciding
factors will be the degree to which the needs of their applications
are supported. Therefore, it is important for Semantic Web storage
and querying facilities to provide a range of data exploration and
querying paradigms in order to promote broad uptake of the
Semantic Web technologies. While there is a measurable effort

being made towards the development of storage and querying
facilities for the Semantic Web, there is still a chasm between the
support provided by querying technologies and the needs of certain
classes of applications. In particular, investigative and analytical
applications in domains such as national security, bioinformatics
and business intelligence often have the need to identify
relationships that exist in data. In such scenarios, it is crucial to be
able find answers to questions like “How are A, B, C and D
related?”. Such queries referred to here as Subgraph Extraction
Queries, specify some anchor points in a data graph with the
semantics of “extracting” a data subgraph connecting the anchor
points. Often, queries will include some constraints on the kinds of
connections to be included in the result e.g., connecting paths must
contain some mandatory nodes or edges. The following describes
two real world analysis tasks involving the use of such queries.

Scenario Example 1. (Flight and Airport Risk Assessment) To assess
a potential threat to the safety of flights to certain airports, security
officials would like to investigate all high risk passengers scheduled
for such flights.

Find any relationships between passengers on flights to New York
or Washington DC, who either purchased their tickets less than
24hrs before departure time or purchased their tickets by cash,
particularly links associated with flight training.

Scenario Example 2. (Analysis of gene interactions involved in
advanced ovarian cancer adapted from [14]). Microarray analysis
data of tissue from advanced ovarian cancer revealed 1191
differentially expressed genes when compared to normal samples.
Researchers will like to analyze these genes with respect to the
biological pathways that they participate in to help understand the
mechanism of action of the disease.

Show the interaction network for all genes that are differentially
regulated in advance stage papillary serous ovarian cancer with
respect to the signaling pathways. Constrain the results to those
genes expressed in epithelial cells.

Both queries seek to retrieve paths or networks connecting specific
nodes and the qualifying paths are subject to some constraints e.g.
associated with flight training or genes expressed in epithelial cells.
Other example applications arise in the transportation and
telecommunications domains where network analysis is used for
planning; in financial applications such as anti-money laundering
analysis [25] and detecting potential biomedical patent infringement
[22]. Unfortunately, as far as we know, none of the existing
Semantic Web query languages support the expression of such
queries about constrained path relationships. The sentiment about
the need to extend Semantic Web query languages has been echoed
by some researchers [3] who have argued for querying RDF graphs
from a graph perspective. This will enable useful query paradigms

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

WWW 2007 / Track: Semantic Web Session: Query Languages and DBs

797

in Semantic Web query languages by interpreting them as standard
graph operations like path finding, neighborhood searches,
reachability and closure queries.

1.1 Background and Related Work
There are now several RDF query languages including RDQL[24],
TRIPLE[27] N3, RxPath[28], RQL[20] SeRQL[9], RDFQL, Versa
and the current W3C standard RDF query language proposal
SPARQL[2] which is a successor language to RDQL[24]. A query
algebra RAL[15] has also been proposed as a vehicle for studying
RDF query languages. These languages exhibit one of four styles:
SQL-like languages SPARQL, RDQL, SeRQL; functional query
languages such as RQL, SeRQL; rule-based languages such as
TRIPLE, N3 and graph traversal languages like Versa and RxPath.
CORESE[13] is a Semantic Web search engine based on conceptual
graphs that offers an RDF query language that uses the triple syntax.
Our discussion of these languages will be limited to their
expressiveness with respect to path query classes. For a detailed
comparative analyses of these languages see [3][18]. In general,
these languages focus on supporting graph pattern matching queries
via path expression constructs. A notable exception is RDFPath
which does allow for the expression of certain path queries if the
source node is fixed. However, queries such as shortest path queries
or those involving more complex constraints are not supported. It is
also possible to express fixed path length queries in CORESE[13].
However, no other types of path queries are supported. In the
languages that offer only a pattern matching paradigm, one could
get around their limited expressiveness if the need is to express
fixed path length queries using a union of queries capturing each of
the lengths. However, this is very cumbersome and optimizing such
queries is non trivial. There is a new proposed extension to
SPARQL called PSPARQL[2] which allows query graph patterns
involving regular expressions. This provides a lot of flexibility in
expressing graph patterns that can be matched. However,
PSPARQL like most of the other languages supports only a pattern
matching query paradigm. Another class of queries that is very
relevant to many applications is closure queries. Certain closure
queries are naturally expressible in the rule based languages such as
TRIPLE and N3, although Versa provides means to express
transitive closure queries.

Of the existing RDF storage and querying systems [1][7][9][12]
[16][31], a few [16][31] support bounded length and shortest path
finding operations via a programmatic interface but without a query
language. A limitation of most of these systems is that they either
rely on traversal algorithms on main-memory graph representations
- disadvantageous for massive graphs, or relational database storage
where these queries are evaluated using multi-way joins. What
would be desirable is to investigate the possibility of newer storage
and indexing approaches that will support efficient processing of
path queries. An effort in this direction is [6] which proposes an
index structure called ρ-index for optimizing ρ-queries [4] whose
foundation is path queries. However, the ρ-index approach is based
on a technique that transforms general graphs into trees blowing up
the size of the resulting graph when there are many non-tree edges.
This paper goes in the direction of enabling subgraph extraction
queries however, the discussion is limited to only path extraction
queries or path queries. It addresses both issues in query expression
and query evaluation. Our specific contributions are as follows:

1.2 Contributions
• We propose an extended SPARQL query language called

SPARQ2L (Recursively Protocol And RDF Query and Link

Language) which introduces the concept of path variables
along with path constraint expressions that allow for a wide
variety of useful path and reachability queries to become
expressible over RDF data.

• We present the formal syntax and semantics of SPARQ2L
• We propose a novel persistent storage and query evaluation

framework that involves (i.) a preprocessing phase on RDF
graphs that computes partial path fragments which are indexed
and stored on disk based on a novel labeling scheme. (ii) a
query processing phase that retrieves relevant path fragments
from disk via the index and assembles them into complete path
representations. The framework proposed adapts efficient
algebraic techniques for solving path problems.

• We present a comprehensive evaluation of the fundamental
part of our evaluation framework. The evaluation is performed
on both real world and synthetic benchmark datasets and
shows an average of a 60% improvement in query response
time with our labeling scheme.

2. THE SPARQ2L LANGUAGE
2.1 Language Requirements
Based on our analysis of commonly expressed queries on different
kinds of data networks such as biological networks and social
networks, we developed some language requirements for
SPARQ2L. First, we identify three classes of constraints that should
be supported:

1) Constraints on Nodes and Edges - constrain paths based on the
presence or absence of certain nodes or edges.

2) Cost-based constraints – for weighted graphs, constrain paths
based on their “costs”.

3) Structure-based constraints – constrain paths based on
structural properties e.g. non-simple paths, presence of a
pattern on path, etc.

To allow the expression of such queries in SPARQ2L, we introduce
the notions of path variables and path filter expressions i.e.
constraints on path variables into SPARQL. In addition, we will
extend the query patterns supported to include RDF path patterns
which generalize standard SPARQL graph pattern expression to
include triple patterns with path variables in the predicate positions.
In the sequel, we will give an algebraic formalization of RDF path
patterns that builds on the formalization of SPARQL graph pattern
queries in [17].

Let I, L and B be pairwise disjoint infinite sets of IRIs, literals and
blank nodes respectively and are collectively referred to as RDF
Terms. An RDF triple is a 3-tuple (s, p, o) ∈ (I ∪ B) × I × (I ∪ B ∪
L) where s is the subject, p is the predicate and o is the object. A
directed edge-labeled graph is a graph G = (V, E, λ, ∑) such that E
⊆ V × V, and λ is a function from E to a set of labels ∑ i.e. λ: E
∑. An RDF triple graph for an RDF triple (s, p, o) is a directed
edge labeled graph G = ({s, o}, {(s, o)}, λ, {p}). An RDF database
graph for a set of triples {t1, t2, .. tn}is the directed edge labeled
graph formed from the union of the triple graphs for t1, t2, and tn. An
RDF path from node x to node y in an RDF database G is a
sequence of triples <(x, p1, o1), (s2, p2, o2), …, (sk, pk, y)> such
that oi, = si+1, i = 1, 2, …, k-1. An RDF path is simple if for all i,j,
i≠ j implies oi≠ oj i.e., no node is repeated on the path, otherwise
it is non-simple.

WWW 2007 / Track: Semantic Web Session: Query Languages and DBs

798

2.2 A Formal Syntax for SPARQ2L Path
Pattern Expressions
SPARQ2L’s path pattern expressions resemble SPARQL triple
patterns except that they could contain path variables in the
predicate position. A path pattern expression could consist of a
SPARQL graph pattern, a triple pattern [17] with a path variable in
the predicate position (called a path triple pattern) and some built-in
path filter conditions. To describe this formally, we need a few
definitions. Let VN and VP (regular and path variables respectively)
be two pairwise disjoint sets of variables that are also disjoint from I
∪ L ∪ B. A triple pattern is a tuple in (I ∪ L ∪ VN) × (I ∪ VN) ×
(I ∪ L ∪ VN) and we denote the set of all triple patterns as T. To be
able to specify a desired pattern on a path we need to support
regular expressions over triple patterns. Recall that a regular
expression over a set X is an expression formed in the following
way: if x ∈ X, then x, (x)*, (x)+, (x)? are regular expressions; if x
and y are regular expressions, then x • y, x ⏐ y are also regular
expressions. A T-Regular Expression is a regular expression over a
triple pattern or an extended regular expression of the form ([s , ·],
p, [· , o])+ where (s, p, o) a triple pattern. An extended regular
expression matches a path such that the subject of the first triple in
the path is s and object of last triple is o, · matches arbitrary
intermediate nodes on the path and all the predicates on the path are
p. We define R(T) as the set of regular and extended regular
expressions over T.

Definition 1 (Path Built-in Condition) Given the following built-in
path functions:

• containsAny : (VP, 2I) Boolean

• containsAll : (VP, 2I) Boolean

• containsPattern : (VP, R(T)) boolean

• isSimple : VP Boolean

• cost : VP
A path built-in condition is an expression built from I ∪ VP ∪ L ∪
R(T), the logical operators (¬, ∧) , the comparison operators (=, ≤)
and path builtin functions in the following manner - given a variable
??P ∈ VP, a constant c, C ⊆ I a set of IRIs, TP is a T-regular
expression, the following are path built-in conditions:

1) cost(??P) = c, containsAny(??P, C), containsAll((??P, C),
containsPattern(??P, TP), and isSimple(??P).

2) If BC1 and BC2 are path built-in conditions, then (¬BC1) and
(BC1 ∧ BC2) are path built-in conditions.

We can now define the notion of a SPARQ2L Path Pattern
Expression.

Definition 2 (Path Pattern Expression) A Path Pattern Expression
PP is defined recursively as follows:

• a 3-tuple q ∈ (I ∪ VN ∪ L) × VP × (I ∪ VN ∪ L) called a
path triple pattern is a path pattern

• if GP is a SPARQL graph pattern and PP is a path pattern then
(PP AND GP) is a path pattern

• if PP is an path pattern and F is a path built-in condition then
(PP PATHFILTER F) is a path pattern

2.3 The Semantics of Path Queries in
SPARQ2L
In [17], the semantics of a SPARQL graph pattern is defined in
terms of a function [[⋅]] which takes a pattern expression and
returns a set of mappings where a mapping μ is defined as a partial
function from VN to RDFT, RDFT = I ∪ L ∪ B. The function
dom(μ) is used to denote the subset of VN in which μ is defined.
We extend this definition for SPARQ2L’s path patterns.

Let 2RDFT be the set of possible tuples from RDFT. We introduce
the notion of a pmapping ω as a partial function from (VP ∪ VN) to
(2RDFT ∪ RDFT) such that ω(vp ∈VP) = p ∈ 2RDFT and ω(vn
∈VN) = RDFT. Then, for a path triple pattern tp, we denote by
ω(tp), the tuple formed by substituting any variables vn ∈ VN ∪ vp
∈VP in tp according to ω. The dom of ω is the subset of VP ∪ VN
in which ω is defined and is denoted by dom(ω). We extend the
notion of compatibility defined in [17] to include compability
between a mapping μ and a pmapping ω. We say that a mapping μ
is compatible with a pmapping ω if when x ∈ dom(μ) ∩ dom(ω),
then μ(x) ∈ ω(x). Next, we define the join of a set of mappings Ω
and a set of pmappings Θ in the following way:

Ω >< Θ = {μ ∪ ω | μ ∈ Ω , ω ∈ Θ are compatible}
Definition 3. (Path Pattern Solution) Let D be an RDF dataset over
RDFT, tp a path triple pattern whose variables are defined by
var(tp) and GP1 a graph pattern. Then, the solution of a path pattern
PP over D, denoted by [[⋅]]D is defined as recursively as follows:

i. [[tp]]D = { ω | dom(ω) = var(tp) and ω(tp) forms a path in D }

ii. [[(PP AND GP)]] D = [[PP]]D >< [[GP]]D

For the path patterns with PATHFILTER expressions, we say that a
pmapping ω satisfies a builtin condition F or ω =| F if given I’ a
subset of the set of IRIs and tr a tp-regular expression,

i. F is containsAny(??P, I’) and ??P ∈ dom(ω) and I’∩ ω(??P)
≠ ∅.

ii. F is containsAll(??P, I’) and ??P ∈ dom(ω) and I’⊆ ω(??P).
iii. F is containsPattern(??P, tr) and ??P ∈ dom(ω) and

ground(tr) is a subpath of ω(??P) .
iv. F is isSimple (??P’) and ??P ∈ dom(ω) and for x, y ∈

ω(??P), x ≠ y.
v. F is (¬F1), F1 is a built-in condition, ω ≠| F1
vi. F is (F1 F2), F1 and F2 are built-in conditions, ω |= F1 and ω

|= F2

2.4 SPARQ2L By Example
This section gives a feel of the SPARQ2L grammar by examples.

Query 1. (Non-Simple Path Query) Find any feedback loops (i.e.
non simple paths) that involve the compound Methionine

SELECT ??p
WHERE { ?x ??p ?x .

?z compound:name “ Methionine” .
PathFilter(containsAny(??p, ?z)) }

Query 2. (Path Query with Terminal Node Constraints) Is
PassengerX connected in anyway to entities on the CIA watchlist.?

SELECT ??p
WHERE { ?x ??p ?y .

WWW 2007 / Track: Semantic Web Session: Query Languages and DBs

799

?x foaf:name “PassengerX” .
?y rdf:type sec:CIA_Watchlist_Entities . }

Query 4. (Path Query with Constraint on Intermediate Nodes) Find
the paths of influence of Mycobacterium Tuberculosis MTB
organism on PI3K signaling pathways.

SELECT ??p
WHERE { ?x ??p ?y .

?x bio:name “MTB Surface Molecule” .
?y rdf:type bio:Cellular_Response_Event .
?z rdf:type bio:PI3K_Enzyme .
PathFilter(containsAny(??p, ?z)) }

Query 5. (Path Query with Path Length Constraint). Find all
close connections (< 4 hops) between SalesPersonA & CIO-Y.

SELECT ??p
WHERE { ?x ??p ?y .
 ?x foaf:name “salesPersonA”.
 ?y company:is_CIO ?z.
 ?z company:name “CompanyY” .
 PathFilter(cost(??p) < 4) }

Query 6. (Path query with path pattern constraint) Find social
relationships between potential jurors and a defendant.

SELECT ??p
WHERE { ?x ??p ?y .
 ?x foaf:name “defendantX” .
 ?y foaf:name “jurorY” .

PathFilter(containsPattern (??p, [?a, ·]
foaf:knows [· , ?b])+) }

3. QUERY EVALUATION FRAMEWORK
Our query evaluation framework derives from an algebraic
technique for solving path problems [29][30] which has a strong
relationship to the Gaussian elimination technique for solving a
system of linear equations by LU decomposition. Recall that to
solve a system of equations using this technique, a matrix
representing a system of linear equations Mx = b is decomposed
into two triangular matrices L and U. Then, the system is solved by
first solving the system Ly = b (frontsolving) then substituting y in
the system Ux = y and solving for the vector x (backsolving).
These triangular systems L and U can be used to solve for different
right hand sides i.e. different values of b, allowing for the
computationally dominant phase (the LU decomposition phase) to
be reused for different problem instances. In [29][30], the authors
show how by interpreting the sum and product operations
appropriately, we can solve a variety of path problems using this
technique. In general, solving a path problem instance using the
triangular matrices, we process each triangular matrix in a specific
order. Our work focuses on indexing and storing the contents of
these matrices so that we may “skip” processing submatrices that
are irrelevant to a query.

3.1 System Architecture Overview
Figure 1 shows our system for multi-paradigm querying of RDF
which includes support for pattern matching queries, path queries
as well as keyword queries. The first step in our approach is to load
RDF Schema and data documents into internal graph data
structures. Then, different preprocessing steps are performed on the
data which produces appropriate indexes on the data for each of the
querying paradigms i.e. Pattern Matching Indexes stored in the
Pattern Match Store, Path Index stored in the Path Store and

statistical and structural summaries used for Top-k queries stored in
the System Catalog.

Pattern
Match
Base

Catalog
Path
Base

Data
Preprocessor

SPARQ2L
Parser

Document
Loader

Result
Interface

Plan Path Query
Processor

Pattern
Matcher

Query
Planner

Pattern
Match

Pattern
Filter

Path
Finder

Path
Filter

Figure 1: System Architecture
Our storage layer uses the BerkeleyDB data storage system because
of its flexibility with respect to accommodating non-relational
storage models and arbitrary data types. The Query Processor
Module consists of three different kinds of query processors for
processing each type of query.
However, a query may be processed by multiple processors. For
example, Figure 1 shows an example query plan for a path query in
which some constraints involve standard graph pattern matching.
For brevity, we have omitted most of the components used to
support keyword queries.

3.2 Data Preprocessing
Our discussion on preprocessing will focus only on what is relevant
for path query processing which is the construction, labeling and
indexing of a graph’s path sequence. The LU decomposition phase
of preprocessing can be seen as computing partial path summaries.
This means that for certain pairs of nodes, some of the paths
connecting the nodes are computed at this phase. We use the term
“summaries” to imply a concise representation of path information
as opposed to an enumerated listing of paths. A good analogy for
path summarization is that of representing the set of strings in a
regular language using a regular expression. To give an example,
assume that we have the following triples (x, p1, y), (x, p2, y), (y, p3,
z) represented as labeled edges in an RDF graph. Then, we can
summarize the paths from x to z as (p1 ∪ p2 • p3). We will refer to a
triple of such a regular expression and the source and destination
nodes as a P-Expression e.g. ((p1 ∪ p2 • p3), x, z).While the
discussion here will continue to refer to p-expressions as strings, our
approach uses a more efficient implementation. P-expressions are
represented using a binary encoding scheme that enables the path
filtering step for path constraint evaluation to be performed
efficiently using bit operations. However, a detailed discussion of
the binary encoding scheme and path filtering algorithms is outside
the scope of this paper.
The LU decomposition of phase of the preprocessing requires that
an RDF graph G be ordered - Gα = (G, α) where α : {1, 2, …N}

 V(G) so that α(i) maps to some node v in G i.e. v ∈ V(G).
Conversely, α-1(v) maps a node in G to an integer between 1 and N.
(Our choice of α will be discussed in the next section). At the end of

WWW 2007 / Track: Semantic Web Session: Query Languages and DBs

800

the LU decomposition algorithm [29], the elements of M satisfy one
of two conditions: For u, v ∈ V(G):

• M[α-1(u), α-1(v)] for α-1(u) ≥ α-1(v) contains a p-expression
representing exactly the paths from u to v that do not contain
any intermediate vertex w such that α-1(w) > α-1(v).

• M[α-1(u), α-1(v)] for α-1(u) < α-1(v) contains a p-expression
representing exactly the paths from u to v that do not contain
any intermediate vertex w such that α-1(w) < α-1(u).

The process begins by initializing M[i, j] for 1 ≤ i, j ≤ N with a p-
expression representing a union of the set of edges between the
nodes α(i), α(j). Then, this union p-expression is systematically
updated to represent other paths that satisfy the above constraints. A
naïve algorithm for the LU decomposition phase runs in O(N3). Its
details and other optimizations are omitted for brevity but can be
found in [29]. Then, the path sequence [29] for G is: the sequence of
p-expressions (Xi, ui, vi) where α-1(ui) ≤ α-1(vi) in increasing order
on α-1(ui) is followed by the sequence of p-expressions (Xi, ui, vi)
for α-1(ui) > α-1(vi) in decreasing order on α(ui). This notion can also
be defined in terms of the strongly connected components of Gα
[29] which leads to a more efficient technique for computing path
sequences.
Definition 4 (Path Sequence by Strong Components) Let G1, G2, ...,
Gk be a topologically ordered list of the strongly connected
components of a graph G i.e., for i > j, there does not exist an edge
from a component Gi to a component Gj. Further, let Ai be the path
sequence for Gi and Bi be the elements: { (X, source(e), target(e)) |
source(e) ∈ V(Gi) and target(e) ∉ V(Gi) } ordered arbitrarily. Then
A1, B1, A2, B2 ,…, Ak-1, Bk-1, Ak is a path sequence of G.
3.2.1 Labeling and Indexing Path Sequences
Our goal is to support efficient evaluation of path queries on disk-
based databases which means that we need to develop an effective
disk storage model for graphs. Now, a path sequence has what we
will call the Single-Scan-Path-Preserving property which means
that for any given node u in G, we can compute complete path
information for u by aggregating the partial path fragments during a
single scan of the path sequence. This suggests that it should be
possible to index this sequence using a B+tree and then process
queries using modified range queries. However, we must endeavour
to minimize the width of the range retrieved to process each query.
To achieve this goal, we should cluster p-expressions on the path
sequence based on their likelihood of being relevant or irrelevant for
the same class of queries. This will ensure that we minimize the
number of disk requests and disk-seek operations needed when
evaluating queries. On the other hand, a more fragmented
organization of relevant and irrelevant p-expressions will lead to
queries requiring many small relevant clusters that are scattered
across the sequence and consequently many more disk seek
operations. This clustering is achieved logically by using a graph
numbering or labelling scheme that assigns groups of related nodes
and therefore associated p-expressions numbers in contiguous
intervals. To enforce this clustering on disk, we exploit the fact that
in BerkeleyDB, insertions are appended to a log file and are
physically stored in the order that they are inserted. So we need to
insert related p-expressions in path sequence order. In the following
section, we will consider some relationships between nodes that
allow us to consider them related or “Prunable Equivalent” for
some classes of queries.

3.2.1.1 Prunable Equivalence
We will explain this concept intuitively. Figure 2 shows an example
RDF data graph with information about faculty, students, research
projects, etc., and the relationships between them. Each node is
labelled with a set of symbols in shaded boxes indicating its types
(see legend at the bottom left of the picture). The dotted circles are
the strong components (maximal subgraph where there is a path
connecting each pair of nodes) of the graph. It is clear that for any
non-singleton strong component i.e. strong component with more
than one node, if a path contains one of its constituent nodes as an
intermediate node, then there is a path containing all of its nodes as
intermediate nodes. This means that if, given a path query we can
determine that any constituent node of a strong component is
“irrelevant” to the query, we can conclude the irrelevance of all the
other constituent nodes and edges and losslessly ignore their
associated p-expressions. Consequently, we say that all the p-
expressions associated with the nodes and edges of a non-singleton
strong component are “Prunable Equivalent”.

We can also consider similar equivalence relationships amongst sets
of strong component nodes which form interesting subgraph
structures. For example, consider the small subgraphs at the bottom
right of the figure enclosed in the boxes numbered 3, 4, 5 – numbers
in thick bordered boxes. We call these structures dangling trees
because they form a tree structure (in these examples they are path
structures) that “dangle” from a parent non-tree subgraph – the
ancestor subgraph enclosed in the thick bordered box 2. Interesting
properties of these structures is that (i.) no paths connect any pair of
dangling trees, (ii.) there does not exist any paths from a dangling
tree back to the parent non-tree subgraph. From the point of view of
a path query from s to d, this implies that if we can determine that d
is not a node of a dangling tree T, then we can conclude the
irrelevance of all the nodes in T and we can losslessly ignore all p-
expressions associated with the strong component nodes and edges
in T.

course_in

9

8

10

6

15

12

7

21

11

22

13

18

17

20

19

23

16

14

offers

project_in

advises

enrolled_in

taught_by

project_in

has_subject_area

author_of

enrolled_in

author_of

author_of

advises

editor_of

project_in

related_to_project

enrolled_in

current_project

advises

current_project

4

1

2

3

5

course_in

enrolled_in author_of

has_subject_area advises

3, 3

1 2

3 4

5
6

Subgraph ID

Strongly Connected
Component ID

Strongly Connected
Component

z

x, y

UniversityU

EditorE

ProfessorP

ProjectPr

CourseC

AuthorA

StudentS

Research AreaRA

PublicationPu

1, 5

4, 8

2, 2

1, 12, 4

2, 7

1, 6

1, 9

1, 1

2, 2

1, 1 1, 1

2, 2

1, 1

2, 2

1, 1

2, 2

3, 33, 5

4, 5

RARA
RA

RA

PuC

S, A

P

Pr Pr

S

Pr

Pu

S, A

P
P, A

Pu

RA

C

S

U

P, E

required_text

C

Figure 2: Hierarchical labelling of an RDF graph

Therefore, we say that the p-expressions of strong component nodes
and edges in a dangling tree are Destination-Induced Prunable
Equivalent. This relationship trivially applies to disconnected
subgraphs such as two disconnected subgraphs (left, right) with
double bordered boxes 1 and 2 respectively.

For the groups of strong components forming non-tree subgraphs,
imposing a tree structure on them allows us to identify some
interesting equivalence relationships. Recall that a spanning tree is a

WWW 2007 / Track: Semantic Web Session: Query Languages and DBs

801

tree subgraph of a graph that includes all the nodes in the graph. In
the case of a graph with multiple source nodes, we introduce a root
node as the parent of all source nodes. We call a spanning tree
optimal if every edge (u, v) lies on the longest path from root of the
tree to v. In Figure 2, the darkened edges are the edges of the
optimal spanning tree (the introduced root node is omitted from the
figure). This definition of the optimal spanning tree implies that for
any node s at depth k in the tree, all of the nodes reachable from s
are at level l > k while all nodes that can reach node s are at a level l
< k. Consequently, we can say that the p-expressions for edges and
strong component nodes at the same or lower depth in the optimal
spanning tree are Treedepth-Induced Prunable Equivalent.

3.2.2 Framework for Graph Labeling
We would like to label the nodes and edges of a graph such that we
can easily identify the groups of related nodes based on the
relationships discussed in the previous section. To achieve this, we
use a hierarchical labeling scheme that captures the above groupings
at the three levels of abstraction. At the finest level, we have a
component identifier which is a unique number assigned to each
individual strong component which records the pre/post order visit
time during a depth first traversal of the graph. In Figure 2, this is
the second of the numbers in the rectangular boxes associated with
strong components. The first number in the rectangle is the level
identifier which is the depth of the strong component node in the
optimal spanning tree. At the coarsest grouping we have what we
call subgraph identifiers which identify disconnected non-tree
subgraphs and the dangling tree subgraphs. The subgraph identifiers
are the numbers in thick bordered boxes and the intervals of
subgraphs identifiers for non-tree subgraphs and that of dangling
tree subgraphs are non-overlapping. By default all the non-tree
subgraphs are assigned subgraph identifiers lower than the tree
subgraphs. The following statement states the properties of this
labelling scheme that we exploit to determine relevance of strong
component nodes and edges connecting them.

NonReachability Property (PropertyNR). Given a path query q
with s and d as source and destination nodes, let i and j be the
subgraph identifiers of s and d respectively, and x and y be their
level identifiers. Then

• i ≠ j implies that q’s result is empty.

• x > y implies that q’s result is empty.

• any node u with level identifier k such that k < i or k > j
implies that u is not a member of q’s result set.

3.2.2.1 2-Color Path Sequences
Based on the above labeling scheme we can develop an effective
sequential representation for a graph which associates key values
derived from the hierarchical labeling with elements of a path
sequence. However, we need to take additional measures to ensure
that the resulting sequence clusters “related” p-expressions. As a
first step, we can co-index (assign same key value) all the p-
expressions associated with a non-singleton strong component since
they are prunable equivalent with respect to every query. This will
allow for collectively retrieving or skipping over all the p-
expressions associated with the strong component once its relevance
is determined. For the same reason, we can co-index multiple edges
connecting two strong components. For example, consider the
components with rectangular boxes 1,6 and 2,4 which have two
edges {“author_of”, “required_text”} connecting them but involve
different constituent nodes 8 and 10. By co-indexing both edges, we

can collectively retrieve or skip their associated p-expressions once
the relevance of the source and destination components have been
determined. For similar reasons, we would also like to cluster on
disk, destination-induced and treedepth-induced prunable equivalent
p-expressions. To achieve this, we will exploit a property of the
BerkeleyDB log file system where insertions are always appended
to a log file, so that clustering can be achieved using consecutive
insertions. We will now propose a sequential representation that we
can index using a BerkeleyDB B+tree. The next definition shows
how we construct the sequential representation called a 2-Color
Code.

Definition 5. (2-Color Code) Let a label component be a triple of
one of the forms (s, l, t) or (s, t, l) where s is subgraph identifier, l
is level identifier and t is traversal identifier. Then the 2-Color
Code C for a graph G = (V, E) is a lexographically ordered
sequence of 2-tuples of label components – denoted as SLT() and
STL() for the two label component forms, such that:

• for v ∈ V, if v is in a dangling tree then the tuple 〈STL(v),
STL(v)〉 ∈ C otherwise 〈 SLT(v), SLT(v)〉 ∈ C

• for e = (vi, vj) ∈ E, if vj is in a dangling tree of G then
〈STL(vj), label component of vi〉 ∈ C otherwise 〈STL(vi),
STL(vj)〉 ∈ C

We call each 2-tuple of label components a 2-Color Label denoted
as 2CL(). The two different forms of label components and the
reversing of source and destination label components in the 2-Color
code of edges connecting strong components is done to achieve an
ordering that simulates the most appropriate way to process each
type of subgraph - depth-first ordering for tree subgraphs and a
breadth first ordering for non-tree subgraphs. The ordering induced
by a 2-Color Code defined as above can be summarized the
following way.

Order Property (PropertyOP): For D and T, non-tree and tree
subgraphs respectively of a graph G,
• u ∈ V(D) and v ∈ V(T) implies 2CL(u) < 2CL(v). Similarly,

e ∈ E(D) and f ∈ E(T) implies 2CL(e) < 2CL(f).

• u ∈ V(D) and e = (u, v) ∈ E(D) implies 2CL(u) < 2CL(e)
while u in V(T) and u = (v, u) ∈ E(T) implies 2CL(u) >
2CL(e).

This says that the ordering induced by the 2-Color code is such that
all p-expressions associated with non-tree subgraphs appear before
the p-expressions of tree subgraphs. Also, within each disconnected
subgraph the p-expressions are in level order for non-tree subgraphs
and depth-first order for tree subgraphs. Finally, for non-tree
subgraphs p-expressions associated with an edge appears after the p-
expression for the edge’s source node whereas the reverse is the
case for tree subgraphs. These properties are exploited during query
processing as will be seen in the next section. Figure 3 shows a
labelled path sequence of 43 key-value pairs. Singleton strong
components have a key representing the node and an empty value
set e.g. element 1. Non-singleton strong components have a key and
a value which is the set of p-expressions of its constituent nodes and
edges e.g. element 16. All other keys identify two connected
components that have at least one edge connecting them. The key
represents the pair of nodes and the value is the set of p-expressions
for all the connecting edges e.g. element 17.

WWW 2007 / Track: Semantic Web Session: Query Languages and DBs

802

1: [(1,1,1), (1,1,1), { }], 2: [(1,1,1), (1,2,2), { (advises, 1, 2) }], 3: [(1,2,2), (1,2,2), { }],
4: [(1,2,2), (1,3,3), { (author_of, 2, 3) }], 5: [(1,2,2), (1,3,5), { (enrolled_in, 2, 4) }],
6: [(1,3,3), (1,3,3), { }], 7: [(1,3,3), (1,4,5), { (has_subject_area, 3, 5) }],
8: [(1,3,5), (1,3,5), { }], 9: [(1,3,5),(1,4,5), { (course_in, 3, 4) }], 10: [(1,4,5), (1,4,5), { }],
11: [(2,1,1), (2,1,1), { }], 12: [(2,1,1), (2,2,2), { (advises, 6, 12) }],
13: [(2,1,1), (2,2,4), { (editor_of, 6, 13) }], 14: [(2,1,5), (2,1,5), { }],
15: [(2,1,5), (2,3,3), { (offers, 7, 15) }], 16: [(2,1,6), (2,1,6), { (enrolled_in, 8, 10),
(advises•enrolled_in, 9, 10), ((taught_by•advises•enrolled_in)*, 10, 10),
(taught_by, 10, 9), (advises, 9, 8) }],
17: [(2,1,6), (2,2,4), { (author_of, 8, 13), (required_text, 10, 13)}],
18: [(2,1,6), (2,2,7), { (author_of, 8, 14) }], 19: [(2,1,6), (2,3,3), { (enrolled_in, 8, 15) }],
20: [(2,1,9), (2,1,9), { }], 21: [(2,1,9), (2,2,4), { (author_of, 11, 13) }],
22: [(2,2,2), (2,2,2), { }], 23: [(2,2,2), (2,3,3), { (enrolled_in, 12, 15) }],
24: [(2,2,4), (2,2,4), { }], 25: [(2,2,7), (2,2,7), { }],
26: [(2,2,7), (2,4,8), { (has_subject_area, 14, 16) }], 27: [(2,3,3), (2,3,3), { }],
28: [(2,3,3), (2,4,8), { (course_in, 15, 16) }], 29: [(2,4,8), (2,4,8), { }],
30: [(3,1,1), (2,4,2), { (related_to_project, 13, 17) }], ∗ ∗ ∗ 31: [(3,1,1), (3,1,1), { }],
32: [(3,2,1), (3,1,1), { (project_in, 17, 18) }], 33: [(3,2,2), (3,2,2), { }],
34: [(4,1,1), (2,9,1), { (current_project, 11, 19) }], 35: [(4,1,1), (4,1,1), {}],
36: [(4,2,1), (4,1,1), { (project_in, 19, 20) }], 37: [(4,2,2), (4,2,2), { }],
38: [(5,1,1), (2,9,1), { (advises, 11, 21) }], 39: [(5,1,1), (5,1,1), { }],
40: [(6,1,1), (2,1,1), { (current_project, 6, 22) }], 41: [(6,1,1), (6,1,1), { }],
42: [(6,2,1), (6,1,1), { (project_in, 22, 23) }], 43: [(6,2,2), (6,2,2), { }]

Figure 3: 2-Color Code for Example Graph

For a graph of n nodes, m edges and k strong components, the
overall time for preprocessing includes the time to find strong
components O(m + n), the optimal spanning tree O(k + m′) where
m′ < m is the number of edges connecting strong components, and
the time to run the LU decomposition algorithm for all strong

components:
3

1
'∑

= ktoi
inO where ni′ is the number of nodes in

strong component i.

3.3 Path Query Processing
This presents the approach for evaluating unconstrained path queries
which is also fundamental for evaluating constrained queries. The
discussion of constrained queries is outside the scope of this paper.

3.3.1 Evaluation of Unconstrained Path Queries
The Path Finder evaluates a query by successively retrieving the
relevant p-expressions from disk and composing them into larger p-
expressions that comprise the solution. Path Finder achieves this
using the Path-Solve algorithm shown in Listing 1 below. The
algorithm begins by initializing a matrix (Result) which keeps track
of the composed p-expressions. To retrieve p-expressions from disk,
the openDBCursor sub-routine returns a database non-treeCursor,
treeCursor or joinCursor, depending on the subgraph in which the
source and destination of the query is located.

A non-treeCursor (treeCursor) is always set to the 2-Color label for
the strong component of the source (destination) node. The p-
expressions needed to process the query are obtained using the next
cursor function, until the end of the cursor (i.e. the 2-Color label for
the strong component of the destination (source)) is reached. To
illustrate this, consider a query for paths from node 8 to node 16 in
Figure 2. These nodes are in the same non-tree sub-graph thus a
non-tree cursor set to 16th element in Figure 3 is returned by
openDBCursor. In the processNon-Tree() sub-routine, the next
cursor function returns the 17th to the 29th elements which are
processed by calls to processPE sub-routine.

Algorithm 2 Path-Solve(Node s, Node d, int
Result[])

01 Result[id(s)] = ε //id(x) = α-1(x) ie the id
of node x

02 for each v ∈ V – {s} set Result[id(v)] = ∅
03 cursor ← openDBCursor(s, d)
04 if (cursor is treeCursor)
05 Result ← processTree(cursor, Result,

α-1(d))
06 else if (cursor is non-treeCursor)
07 Result ← processNon-Tree(cursor,

Result)
08 else
09 Result ← processJoin(cursor, Result)

10 return Result
openDBCursor(Node s, Node d)
01 if ((s & d) ∈ same non-tree sub-graph)
02 return non-treeCursor(s, d)
03 else if ((s & d) ∈ same tree sub-graph)
04 return treeCursor(s, d)
05 else if (s ∈ sub-graph g & d ∈ a dangling tree

t of g)
06 return joinCursor(s, c, d) //c is the cut

vertex of g ∪ t
07 else return null.

processNon-Tree(cursor, int Result[])
01 while ((Xi, vi, wi) ← cursor→next()) <>

null)
02 Result = processPE((Xi, vi, wi))
03 return Result
processTree(cursor, int Result[], int dest)
01 Result[dest] = ε
02 while ((Xi, vi, wi) ← cursor→next()) <>

null)
03 Result[dest] = processPE((Xi, vi,

wi))• Result[dest]
04 (Xi, vi, wi) ← cursor→prev()
05 Result[dest] ← Xi • Result[dest]
06 cursor→set(vi)
07 return Result
processPE(int Result[], p-expression (Xi, vi,

wi))
01 if (vi = wi) then Result[wi] ← Result[vi]

• Xi
02 else Result[wi] ←Result[wi] ∪ Result[vi] •

Xi
03 return Result

Listing 1: Path-Solve Algorithm

On the other hand, processTree proceeds in a bottom-up manner,
successively using the next and prev cursor functions to obtain the
relevant p-expressions. Since p-expressions obtained from a
treeCursor begin with the destination up to the source, p-expressions
of tree edges (obtained with the prev cursor function) are prepended
to the p-expression in Result[α-1(d)].

Given Result and a p-expression (Xi, vi, wi), ProcessPE computes a
larger p-expression (Xi, ui, wi) by appending (Xi, vi, wi) to an
existing p-expression in Result of type (Xj, ui, vj) (line 01). Further,
a larger p-expression is computed as the union of any p-expression
(X, ui, wi) which already exists in Result, but only if vi is different
from wi. As an example, consider again the query for all paths from
node 8 to node 16th. Result[8] initially contains ε, as shown in
Figure 4a. To process the first p-expression (enrolled_in, 8, 10) of
the 16th element, Result[8] is concatenated to enrolled_in and stored
in Result[10], as shown in Figure 4b. Processing
(advises•enrolled_in, 9, 10) implies concatenating Result[9] to
advises•enrolled_in and storing to Result[10]. However Result[9] is
null, thus Result[10] remains unchanged. Figure 4c-j, show the
changes made to Result as the rest of the p-expressions are
processed.

A joinCursor retrieves p-expressions like a treeCursor until it meets
p-expression for the cut vertex, after which it switches to a non-
treeCursor behavior. To illustrate, consider a query for paths from
node 11 to node 20. Node 11 is in a non-tree sub-graph which has a
dangling tree that contains node 20. Thus, openDBCursor returns a
joinCursor set to the 37th element in Figure 3. Its associated p-
expression is empty, so that Result[20] is unchanged. A call to the
prev cursor function returns the p-expression (project_in, 19, 20),
which is prepended to ε, so that project_in is stored to Result[20].

WWW 2007 / Track: Semantic Web Session: Query Languages and DBs

803

ε

8

enrolled_in

10

(enrolled_in•(taught_by•advises•enrolled_in)*)•taught_by

9

enrolled_in •(taught_by•advises•enrolled_in)*

10

(((enrolled_in•(taught_by•advises•enrolled_in)*)•taught_by)•advises)*

8

((((enrolled_in•(taught_by•advises•enrolled_in)*)•taught_by) •advises)*)•author_of

13

((((enrolled_in•(taught_by•advises•enrolled_in)*)•taught_by) •advises)*)•author_of

14

((((enrolled_in•(taught_by•advises•enrolled_in)*)•taught_by) •advises)*)•enrolled_in

15

(((((enrolled_in•(taught_by•advises•enrolled_in)*)•taught_by) •advises)*)•author_of)•has_subject_area

16

(((((enrolled_in•(taught_by•advises•enrolled_in)*)•taught_by) •advises)*)•author_of)•has_subject_area
∪

(((((enrolled_in•(taught_by•advises•enrolled_in)*)•taught_by) •advises)*)•enrolled_in) •course_in

16

(a) (b) (c)

(d)

(e)

(f)

(g)

(h)

(j)

(i)

Figure 4:An illustration of the Path-Solve

The cursor is then set to the 35th element, which also contains an
empty p-expression. The next call to prev returns the 34th element
with the p-expression (current_project, 11, 19), which is prepended
to project_in and stored back to Result[20]. Since this element
represents the bridge edge, the cut vertex is noted and set sets the
cursor to the 2-Color label of the source of the query, which is the
20th element. Since its associated p-expression is empty, no change
is made to Result[11]. Since this element is the cut vertex, the result
of the query is obtained with a final concatenation of Result[11] and
Result[20].

At the end of the Path-Solve algorithm, Result[i] contains a p-
expression of type (Xi, α-1(s), wi), representing all paths from node
s to node i.

4. PERFORMANCE EVALUATION
In this section, we describe an empirical evaluation of our query
processing approach by comparing the performance when using our
2-Color Code (2CC) vs. five other several other randomly chosen
topological orderings.

4.1 Experimental Setup
Implementation. We implemented our algorithms using Java 1.5,
on a 1.8GHz Dual AMD Opteron processor with 10GB available
RAM. We used Berkeley DB Java Edition for storage and indexing
and performed all matrix implementations using the sparse matrix
implementation of the Colt distribution. We used Brahms [16], an
efficient main-memory storage to obtain a temporary graph
representation of the RDF graphs in memory.

Datasets. We used a real world SwetoDBLP-Jan2006 [32] dataset
and a synthetic dataset generated using the Lehigh University
Benchmark with 6 Universities (UBA6). Table 1 below shows the
properties of the datasets. SwetoDBLP has 9,921 non-tree sub-
graphs with a total of about 300,000 scc nodes and 760,000 scc
edges and 340,000 tree sub-graphs with a total of about 410,000 scc
nodes. One of these non-tree subgraphs is very large (about 250,000
nodes and 660,000 edges) and the smallest sub-graph contains 2 scc
nodes and 2 scc edges. It also contains about. The smallest and

largest tree sub-graphs have a single scc node and 25 scc nodes
respectively, with a maximum depth of 1. UBA6 however is more
connected, containing a single non-tree subgraph with 118,195
strongly connected component (scc) nodes and 357,578 scc edges.
Although it contains 61 tree subgraphs, each tree contains just a
single scc node. Literal nodes and incident edges are ignored.

Table 1: Properties of the Datasets

 UBA6 SWETO_DBLP

Number of nodes 118,566 724,874

Number of edges 357,950 836,555

of strong components 118,256 723,669

#of p-expressions 476,448 1,561,008

Performance Metrics. We evaluate the performance of the
techniques by observing 1) the size of the reduced path sequence i.e.
the number of p-expressions brought into memory from disk. This
metric measures the goodness of our approach for identifying
irrelevant p-expressions – those that were not retrieved from disk, 2)
the query processing time including disk access time.

Query Workload. Our query workload consists of six different
query types. First we have as positive (path exists) and negative
(paths do not exist) and we denote positive or connected queries as
(C-Queries) and negative or disconnected queries as (D-Queries).
Then we identify queries based on whether their source/destination
nodes are in tree or non-tree subgraphs. Queries with source and
destination nodes in non-tree sub-graphs are denoted (NT-NT)
queries, (NT-T) denotes source node is in a non-tree sub-graph and
the destination node in a tree sub-graph and (T-T) denotes queries
with both source and destination nodes in tree sub-graphs. We
randomly selected 40 distinct source-destination pairs for each of
the six categories and measured the average running time of all
queries where the running time of a query is also an average over
several executions of the query.

4.2 Experimental Results
Figure 5a – Figure 5l show the result of our experiments on the
SwetoDBLP dataset. 2CC had the best performance for all the query
workloads. The best performance of 2CC for C-Queries is observed
in the T-T queries where only 4 p-expressions were brought into
memory, with a total of 0.4 milliseconds query processing time.
This is natural since the T-T queries for this dataset are single edge
paths. For the D-Queries, 2CC performed very well using at most
0.025 milliseconds to determine that the result set is null. For these
queries, no p-expression was brought into memory. As is expected
the performance of the labeling schemes varied with the queries.
This can be observed in Figure 5a – Figure 5b and Figure 5e –
Figure 5f.

WWW 2007 / Track: Semantic Web Session: Query Languages and DBs

804

NT-NT C-Queries

0
200
400
600
800

1000
1200
1400

2CC Top0 Top1 Top2 Top3 Top4

Labeling schemes

Ti
m

e
in

 M
illi

se
co

nd
s

NT-T C-Queries

0

200

400

600

800

1000

2CC Top0 Top1 Top2 Top3 Top4

Labeling schemes

Ti
m

e
in

 M
illi

se
co

nd
s

T-T D-Queries

0

100

200

300

400

2CC Top0 Top1 Top2 Top3 Top4

Labeling schemes

Ti
m

e
in

 M
illi

se
co

nd
s

NT-NT C-Queries

0

20000

40000

60000

80000

2CC Top0 Top1 Top2 Top3 Top4

Labeling schemes

N
um

be
r o

f P
at

h
Ex

pr
es

si
on

s

NT-T C-Queries

0
10000
20000
30000
40000
50000
60000
70000

2CC Top0 Top1 Top2 Top3 Top4

Labeling schemes

N
um

be
r o

f P
at

h
Ex

pr
es

si
on

s

T-T D-Queries

0
5000

10000
15000
20000
25000
30000
35000

2CC Top0 Top1 Top2 Top3 Top4

Labeling Schemes

N
um

be
r o

f P
at

h
Ex

pr
es

si
on

s

T-T C-Queries

0
100
200
300
400
500
600
700

2CC Top0 Top1 Top2 Top3 Top4

Labeling schemes

Ti
m

e
in

 M
illi

se
co

nd
s

NT-NT D-Queries

0
200
400
600
800

1000
1200

2CC Top0 Top1 Top2 Top3 Top4

Labeling Schemes

Ti
m

e
in

 M
illi

se
co

nd
s

NT-T D-Queries

0

200

400

600

800

1000

2CC Top0 Top1 Top2 Top3 Top4

Labeling Schemes

Ti
m

e
in

 M
illi

se
co

nd
s

T-T C-Queries

0
10000
20000
30000
40000
50000
60000

2CC Top0 Top1 Top2 Top3 Top4

Labeling schemes

N
um

be
r o

f P
at

h
Ex

pr
es

si
on

s

NT-NT D-Queries

0

20000

40000

60000

80000

2CC Top0 Top1 Top2 Top3 Top4

Labeling Schemes

N
um

be
r o

f P
at

h
Ex

pr
es

si
on

s

NT-T D-Queries

0
10000
20000
30000
40000
50000
60000
70000

2CC Top0 Top1 Top2 Top3 Top4

Labeling Schemes

N
um

be
r o

f P
at

h
Ex

pr
es

si
on

s

Figure 5: SwetoDBLP DataSet Figures

NT-NT C-Queries

0
1000
2000
3000
4000
5000
6000
7000

2CC Top 0 Top 1 Top 2 Top 3 Top 4

Labeling schemes

Ti
m

e
in

 M
illi

se
co

nd
s

NT- NT C-Queries

0

50000

100000

150000

200000

250000

2CC Top 0 Top 1 Top 2 Top 3 Top 4

Labeling Schemes

N
um

be
r o

f P
at

h
Ex

pr
es

si
on

s

NT-NT D-Queries

0

500

1000

1500

2000

2CC Top 0 Top 1 Top 2 Top 3 Top 4

Labeling schemes

Ti
m

e
in

 M
illi

se
co

nd
s

NT-NT D-Queries

0
20000
40000
60000
80000

100000
120000

2CC Top 0 Top 1 Top 2 Top 3 Top 4

Labeling schemes

N
um

be
r o

f P
at

h
Ex

pr
es

si
on

s

Figure 6: LUBM Dataset, Figures

While Top1 had the best performance amongst the topological
labeling schemes for the NT-NT C-Queries, Top2 performed best
for the NT-T C-Queries. Top0 performed worst for most of the
query workloads but had the best performance in the NT-T D-
Queries and T-T D-Queries (Figure 5i – Figure 5l). We note that
although performance of 2CC surpasses that of all the other
topological labeling schemes, the ratio of the time performance is
always larger than the ratio of the size performance. This is as a
result of the additional time the 2CC spends in pruning the p-
expressions from the reduced path sequence based on properties
PropertyNR and PropertyOP.

Figure 6a – Figure 6d show the results of our experiments on
UBA6. As we mentioned earlier, the tree sub-graphs in UBA consist
of only single nodes, so that T-T queries are meaningless for this
dataset. Furthermore, NT-T queries translate to either (a) finding the
bridge edges or (b) finding paths through the bridge edges. Our
experiments on the SwetoDBLP dataset showed that the
performance of 2CC is very good when finding single edge paths.

We observed a similar performance for this dataset and omit the
results on the NT-T queries which can be inferred from the
performance of (b) the NT-NT queries.

Figure 6a and Figure 6b show the performance of the labelling
schemes for the NT-NT C-Queries. Again, 2CC performs best
amongst all the labeling schemes. However, its performance on
UBA6 is worse than on SwetoDBLP because UBA6 is very
connected, having only 1 non-tree sub-graph as opposed to
SwetoDBLP which is fragmented into 9, 921 non-tree sub-graphs.
Thus, queries in this workload have many more and longer paths.
This is also reflected in the results of the NT-NT D-Queries shown
in Figure 6c and 5d. Although 2CC also performed best, there were
some queries for which determining non-reachability required more
than a constant time check using labels leading the an average
performance of 188 milliseconds for processing 3927 p-expressions.
The disparity in the ratios of the time and size performances of 2CC
to the other labelling schemes is also evident in the results. In spite
of this, the time performance of 2CC is at least half of the time

(a)

(e) (f) (h) (g)

(l) (k) (j) (i)

(c) (b) (a)

(b) (c) (d)

(d)

WWW 2007 / Track: Semantic Web Session: Query Languages and DBs

805

performance of the best topological labelling scheme (Top1) for
both the C-Queries and the D-Queries.

5. CONCLUSION
This paper addresses the issue of providing support for path
extraction queries in RDF databases. This feature while crucial for
many applications has limited support from most RDF querying
systems. We address both the issues of how such queries can be
expressed using SPARQ2L – an extended SPARQL language, and
how to efficiently evaluate queries on disk based stores. In the
future, we will address the issue of efficiently evaluating path
extraction queries with complex filtering conditions.

6. ACKNOWLEDGMENTS
This work is funded by NSF-ITR-IDM Award#0325464 and
#0714441 titled ‘SemDIS: Discovering Complex Relationships in
the Semantic Web.’

7. REFERENCES
[1] S. Alexaki, V. Christophides, G. Karvounarakis, D.

Plexousakis, and K. Tolle. The ICS-FORTH RDFSuite:
Managing Voluminous RDF Description Bases. In SemWeb
2001.

[2] Alkhateeb, F., Baget JF., Euzenat, J. Complex path queries for
RDF. Poster paper in ISWC2005 , 6th - 10th Nov. 2005,
Galway, (Ireland).

[3] Angles, R., Gutierrez, C. Querying RDF Data from a Graph
Database Perspective , ESWC2005, May 2005, Heraklion,
Greece.

[4] Anyanwu, K., Sheth, A. ρ-Queries: enabling querying for
Semantic Associations on the Semantic Web. WWW 2003.

[5] Bailey, J. Bry, F., Furche, T., Schaffert, S. Web and Semantic
Web Query Languages: A Survey.

[6] Barton, S: Designing Indexing Structure for Discovering
Relationships in RDF Graphs. DATESO 2004

[7] D. Beckett. The design and implementation of the Redland
RDF application framework. Computer Networks, 39(5):577--
588, 2002

[8] Bonstrom, V., Hinze, A., Schweppe, H. “Storing RDF as a
Graph,” la-web, p. 27, (LA-WEB’03), 2003.

[9] J. Broekstra. SeRQL: Sesame RDF query language. In M.
Ehrig et al., editors, SWAP Deliverable 3.2 Method Design,
pages 55--68. 2003

[10] J. Broekstra, A. Kampman, F. v. H. 2001. Sesame: An
architecture for storing and querying rdf data and schema
information. In D. Fensel, J. Hendler, H. L., and Wahlster, W.,
eds., Semantics for the WWW. MIT Press.

[11] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds,
Andy Seaborne, Kevin Wilkinson: Jena: implementing the
semantic web recommendations. WWW (ATPP) 2004: 74-83

[12] Corby, O., Dieng-Kuntz, R., Faron-Zucker, C., Gandon. F.
“Searching the Semantic Web: Approximate Query Processing
Based on Ontologies,” IEEE Intelligent Systems, vol. 21,
no. 1, pp. 20-27, Jan/Feb, 2006.

[13] Corby, O., Dieng-Kuntz, R., Faron-Zucker, C.. Querying the
Semantic Web with the corese search engine. ECAI/PAIS2004,
Valencia (ES), August 2004. IOS Press.

[14] Donninger, H., Bonome, T., Radonovich, M., Pise-Masison, C.
A., Brady, J., Shih, J. H., Barrett, J., Birrer, M. J. Whole
genome expression profiling of advance stage papillary serous
ovarian cancer reveals activated pathways. Oncogene (2004)
23, 8065−8077

[15] Flavius Frasincar, Geert-Jan Houben, Richard Vdovjak, Peter
Barna: RAL: An Algebra for Querying RDF. World Wide
Web 7(1): 83-109 (2004)

[16] Janik, M., Kochut, K.: BRAHMS: A WorkBench RDF Store
and High Performance Memory System for Semantic
Association Discovery. ISWC2005: 431-445

[17] Jorge Perez, Marcelo Arenas and Claudio Gutierrez. Semantics
and Complexity of SPARQL. ISWC’06, Athens, GA, USA,
2006.

[18] Peter Haase, Jeen Broekstra, Andreas Eberhart, Raphael Volz:
A Comparison of RDF Query Languages. ISWC’04: 502-517

[19] Harth, A., Decker. S. Optimized index structures for querying
RDFfrom the web. In LAWEB 2005.

[20] G. Karvounarakis, S. Alexaki, V. Christophides, D.
Plexousakis, and M. Schol. RQL: A Declarative Query
Language for RDF. WWW’02, Honolulu, Hawaii, USA,
May7-11 2002.

[21] Lassila, O., Swick, R. RDF Model and Syntax Specification.
W3C Recommendation

[22] Mukherjea, S., Bamba, B. BioPatentMiner: An Information
Retrieval System for BioMedical Patents. VLDB 2004: 1066-
1077

[23] Prud’hommeaux E., Seaborne, A. SPARQL Query Language
for RDF. W3C Candidate Rec. 6 April 2006.

[24] Seaborne, A. RDQL — A Query Language for RDF,
WWWConsortium, Member Submission SUBM-RDQL-
20040109, January 2004.

[25] A. Sheth, B. Aleman-Meza, I. B. Arpinar, . Ramakrishnan, C.
Halaschek, C. Bertram, Y. Warke, C David Avant, F. S.
Arpinar, K. Anyanwu, K. Kochut, Semantic Association
Identification and Knowledge Discovery for National Security
Applications, JDM,16 (1), Jan-March 2005.

[26] Wolf Siberski, Jeff Z. Pan, Uwe Thaden: Querying the
Semantic Web with Preferences. ISWC 2006: 612-624

[27] M. Sintek and S. Decker. TRIPLE - an RDF query, inference
and transformation language. In DDLP, 2001.

[28] A. Souzis. RxPath specification proposal.
http://rx4rdf.liminalzone.org/RxPathSpec

[29] Tarjan, R. E. “Fast Algorithms for Solving Path Problems”.
JACM, Vol. 28, No. 3, July 1981, pp. 594-614

[30] Tarjan. R.E. A Unified Approach to Path Problems. JACM,
28:3:577--593, 1981.

[31] Oracle® Spatial Resource Description Framework (RDF) 10g
Release 2 (10.2) Manual

[32] SWETO-DBLP
http://lsdis.cs.uga.edu/projects/semdis/swetodblp/

WWW 2007 / Track: Semantic Web Session: Query Languages and DBs

806

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

