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ABSTRACT
We present a family of measures of proximity of an arbitrary
node in a directed graph to a pre-specified subset of nodes,
called the anchor. Our measures are based on three different
propagation schemes and two different uses of the connec-
tivity structure of the graph. We consider a web-specific
application of the above measures with two disjoint anchors
— good and bad web pages — and study the accuracy of
these measures in this context.

Categories and Subject Descriptors: H.3.m [Informa-
tion Search and Retrieval]: Miscellaneous

General Terms: Algorithms, Experimentation.

Keywords: link propagation, proximity, harmonic rank

Introduction
Methods for producing a static (query-independent) rank-
ing of web pages, hosts, or domains using graph analysis
have been used employed successfully to combine informa-
tion from multiple perhaps-distant neighbors. These meth-
ods represent one of our most successful tools for cross-page
analysis of the web, in particular because they are efficiently
computable while allowing any node potentially to influence
any other, depending on the nature of the graph. Perhaps
due to the constraint on processing time, such schemes are
typically straightforward in nature, and make little use of
domain knowledge regarding the structure of the graph. The
dominant paradigm is the following: a random walk is ini-
tiated from a set of seed pages, and with some probability
at each step either continues forward, or restarts. The score
of a node is taken to be the steady state probability of the
node in this process.

In this note we present a family of measures of proximity
of an arbitrary node in a directed graph to a pre-specified
subset of nodes, called the anchor. Our measures are based
on three different propagation schemes and two different
uses of the connectivity structure of the graph. The in-
terpretation and presentation of the propagation measures
in the context of proximity to an anchor is novel.

We then consider a web-specific application of the above
measures with two disjoint anchors: good and bad. The key
assumption is that good web pages are highly unlikely to
link to bad web pages. The goal is to assign a goodness
quality score to all web pages. While the key assumption
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(like all assumptions) is violated on the web in many ways,
it remains largely true, and it gives us a starting point from
which to evaluate the quality of unknown web pages. Our
measures are especially applicable to combating web spam.

Preliminaries
Let G = (V, E) be a directed graph with |V | = n. Let M be
the matrix associated with the graph, i.e., mu,v = 1 if there
is an edge from u to v, and 0 otherwise. Let odu be the
out-degree of node u, i.e., odu =

Pn
v=1 mu,v. Likewise, let

idu be the in-degree of u, i.e., idu =
Pn

v=1 mv,u. Let out(u)
denote the out-neighbors of u.

Let R = [ru,v] be the row-normalized version of M : ru,v =
mu,v/odu. Similarly, let C = [cu,v] be the column-normalized
version of M : cu,v = mu,v/idv. R defines a Markov process
on the graph whose one-step update rule for any probability
distribution π over the n nodes is π ← RT · π. The matrix
C may be seen as the transpose of the row-normalized form
of MT . Thus, there is another natural Markov process on
G defined by walking backwards on the edges rather than
forwards. The update rule for this process is π ← C · π.

Proximity to an anchor
Let S ⊆ V be a subset of nodes in the graph, called the
anchor. We propose various notions of proximity of a given
node to this anchor. All of these notions compute a real-
valued score π(S; u) ∈ [0, 1] for every node u ∈ V \ S;
π(S; u) = 1 for u ∈ S.

The most natural way to define the proximity of u to S
would be to look at the connectivity of u to S. In this, we
have two options: either use the forward connectivity of u
to S or use the backward connectivity of S to u. We de-
note the former by π(S, f ; u) and the latter by π(S, b; u).
For simplicity, we present only the forward connectivity ap-
proaches. The backward connectivity approaches can be
easily realized either by reversing all edges in G or working
with the transpose of M .

A first cut approach would be to take the shortest path
from u to any node in S. Unfortunately, this is not robust
since it does not take into account multiple connections from
u to V . An alternate approach would be to compute the
maximum flow from u to the anchor S, realized by hooking
all nodes in S to a node v and then computing a u–v flow.
This has the advantage that parallel paths from v to S are
taken into account; however, the lengths of these paths are
ignored. Compromising these extremes, we consider various
natural propagation methods that take into account both
the length and the number of paths from u to S.
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Personalized PageRank. We assume that the reader is
familiar with the topic-sensitive PageRank notion [1]. We
take S to specify the personalization vector. Consider the
Markov chain of the following random walk on the nodes of
G. At each step, with probability 1 − α = 0.85, the walk
proceeds to a neighbor of u (if any), chosen uniformly at
random and if there are no neighbors, then the walk jumps
to a uniformly chosen node in V . With probability α = 0.15,
the walk jumps to a uniformly chosen node in S. The prox-
imity of u to S is then given by the stationary probability
of u in the Markov chain; thus we have the column vector

π(S, f, pr) = (1− α) ·RT · π(S, f, pr) + (α/|S|) · χS ,

where χS is the characteristic vector of S.

Harmonic rank. Consider the simple random walk given
by the matrix R. We will modify the walk to begin at a
specific start node u. We will then create two absorbing
states: s, corresponding to the anchor S, and r, correspond-
ing to the notion of “re-start” of the random process. We
will modify all pages to link with probability α to r; for
pages with no outlinks, we will modify them to link to r
with probability 1. We will then modify the result so that
all nodes in S link with probability 1 instead to the state
s. This new walk must be absorbed into either the state s
or the restart state r. If the start node u has many short
paths to S, then it is much more likely to be absorbed into
s. Let π(S, f, hr; u) be the probability that the walk is ab-
sorbed into s, so with probability 1−π(S, f, hr; u), the walk
is absorbed into r instead.

We show this quantity can be computed efficiently. Let
F = [fu,v] be the matrix for the walk described above. F
is a row stochastic matrix with fu,v representing forward
walk from node u. F incorporates a certain probability α to
jump to restart state s. The remaining probability is evenly
distributed over all outgoing links starting from u. Thus,
fu,v = α if v = r and (1− α)/odu otherwise.

The proximity score of a node is related to those of its
out-neighbors by the following harmonic equation:

π(S, f, hr; u) =

8><>:
0 u = r
1 u ∈ S ∪ {s}P
v∈out(u)

fu,v · π(S, f, hr; v) otherwise

Consider a distribution π over the nodes in which π(r) = 0
and π(s) = 1. Then the harmonic equation given above may
be rewritten as π ← F · π. Observe that this steady-state
equation is quite different from the steady-state equation for
a single step in the random walk: π ← F T ·π. The solutions
to this latter equation are non-zero in only the states r and
s, and the values depend on the start location of the walk.
The former equation, which is of interest to us, does not
represent a walk and is expressed as a column-stochastic
rather than a row-stochastic matrix. Thus, the absorption
probabilities of n markov processes, each tailored to a single
start state, may be efficiently computed simultaneously, due
to the special structure of this matrix.

Non-conserving rank. Consider a propagation rule in
which each node u begins with some initial score pu, and
the score is updated by the rule π ← π + γMT π, where
γ is an attenuation parameter that controls how much a
particular score decays as it propagates. Generally, we may

perform this propagation infinitely many steps, resulting in
a final equation for π based on some initial vector p:

π(S, f, nr) =

∞X
j=0

γi(MT )iv = (I − γMT )−1p.

If M is stochastic, observe that this equation is similar to
the equation for personalized pagerank with reset distribu-
tion given by p, and reset probability given by (1 − γ). If
M is not row-stochastic, we must check that the sum con-
verges; but as long as this is the case, the new measure is a
natural generalization of personalized pagerank.

Non-conserving rank has a desirable property in the con-
text of spam resilience: if a spammer’s destination page is
marked as spam, then all pages created by the spammer
to direct traffic towards this destination page will also be
marked as spam. Even if the spammer is able to manipulate
the graph by adding other links, the score of the inlinking
pages will never be demoted by this manipulation.

Experiments and results
We illustrate a primary application of this technique in the
detection of spam (bad) pages. We are given two anchors,
namely, good pages and bad pages. The crucial assumption
we deploy is: a good page will not typically choose to link
to a bad page. Therefore, pages with links from good pages
are more likely to be good, and pages that link to bad pages
are more likely to be bad.

We consider a graph of 48 million web domains (nodes)
and obtained two non-overlapping anchors of three million
bad nodes and two million good nodes. For evaluation, we
used leave-one -out validation with 1000 random nodes from
each anchor removed before propagation. The success of a
technique is measured as the fraction of the 2000 nodes clas-
sified correctly. We consider the proximity measures that
are consistent with the above assumption and computed the
accuracies. The results are tabulated below.

Measure Acc. Measure Acc.
π(G, f, pr) 82.06 π(B, b, pr) 82.06
π(G, b, hr) 83.89 π(B, f, hr) 85.71
π(G, f, nr) 84.49 π(B, b, nr) 83.89

Clearly, harmonic rank works best for the bad anchor and
non-conserving rank works best for the good anchor. We
then used logistic regression and multilayer perceptron to
combine multiple proximity measures. The following table
presents the performance of the combinations. Harmonic
rank achieves the best performance.

Measure Acc.
π(·, ·, pr) 82.97
π(·, ·, hr) 86.93
π(·, ·, nr) 85.71
π(·, ·, ·) 86.93

Above, we illustrated an application of the proximity mea-
sures to web spam. However, the techniques are quite gen-
eral, and will apply for other definitions of the good and
bad anchors. For example, we may employ a set of known
pornographic pages as the bad anchor. Or we may select
a set of high-caliber blogs as the good anchor, and a set of
lower-caliber blogs as the bad anchor, in order to determine
the likely caliber of a set of unknown blogs.
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