
XML-Based XML Schema Access

Erik Wilde
UC Berkeley

Felix Michel
ETH Zürich

ABSTRACT
XML Schema’s abstract data model consists of components,
which are the structures that eventually define a schema as
a whole. XML Schema’s XML syntax, on the other hand,
is not a direct representation of the schema components,
and it proves to be surprisingly hard to derive a schema’s
components from the XML syntax. The Schema Component
XML Syntax (SCX) is a representation which attempts to
map schema components as faithfully as possible to XML
structures. SCX serves as the starting point for applications
which need access to schema components and want to do so
using standardized and widely available XML technologies.
Categories and Subject Descriptors: D.2.10 [Software]:
Software Engineering — Design — Representation; H.3 [Infor-
mation Systems]: Information Storage and Retrieval
General Terms: Design, Standardization, Documentation
Keywords: XML, XML Schema, SCX

1. INTRODUCTION
XML Schema [4] is today’s most important XML schema

language. It is more powerful than DTDs, but also is more
complex and less easy to handle. For example, while DTD
authors often work with DTDs in their textual form, XML
Schema’s syntax is harder to use and thus alternative inter-
faces (such as graphical editors) are more frequently used.

At first sight, XML Schema’s XML syntax might seem
like a syntax that is not ideal for humans, but good for
machines, but on closer inspection it can be seen that the
syntax is a hybrid between ease of use for humans, and ease
of use for machines. Writing code which works on XML
Schema’s XML syntax and should in fact work on the un-
derlying schema components is not easy. In this paper, we
present the Schema Component XML Syntax (SCX), which
is designed to be as faithful a XML-oriented representation
of XML Schema components as possible.

SCX explores the side of the syntax spectrum which should
be ideal for machine interpretation. XML Schema’s XML
syntax is somewhere in the middle, and a non-XML DTD-
like syntax [5] is on the other side of the spectrum. SCX
attempts to deliver the promise of true XML Schema access
using standard XML technologies, instead of having to pro-
vide specialized APIs [2] (currently, there is no standardized
API for XML Schema) for working with XML Schemas.

2. USE CASES
Working with the information contained in XML Schemas

Copyright is held by the author/owner(s).
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

can be useful in a variety of scenarios, and we briefly describe
some of these uses cases here. So far we have only explored
one of these areas writing code based on SCX.

User Interface Generation based on XML Schemas
and on declarative UI languages such as XForms can tra-
verse the structures of an XML Schema and generate a UI
for the schema. This process would probably require addi-
tional information for improving the UI, but if such informa-
tion is available in XML Schema’s annotations in a machine-
readable way, this information could also be accessed while
processing the schema.

Versioning-Aware XML Processing adds schema ac-
cess to XML processing code and thus adds the possibility
to inspect the schema of an instance before processing it.
Based on annotations (such as mustUnderstand or similar
concepts), the code can then automatically cast the instance
to a different version (or generate an error if this is not pos-
sible). In this scenario, schema access is only required in the
adaptation layer between instance parsing and application
processing.

Composite Schemas is the idea of embedding additional
information in schema annotations which cannot be formally
expressed in XML Schema. While for example the combi-
nation of the grammar features of XML Schema and the
rule-oriented approach of Schematron [1] are a useful com-
bination, the question remains how to author and maintain
such a “composite schema” and how to use it for validation.
SCX can be used to automatically extract a Schematron
schema from an XML Schema, which means that the “two
schemas” are always aligned.

Best Practices are often defined in XML Schema user
groups to limit the variability allowed by XML Schema.
SCX can be used to define these best practices in a more
formal way, in the simplest case by defining a Schematron
schema for SCX documents.

Canonicalization and Normalization are areas which
are comparable to the best practices checking described above,
but instead of just checking a schema for conformance with
a set of rules, they transform the input to adhere to a set
of rules. Canonicalization often is used to term some set of
rules, whereas normalization usually refers to a specific set
of rules which, in terms of the affected data model, leads to
a model which is in its most simplified form.

Schema Documentation is the process of producing
human-readable documentation for an XML Schema. There
are several tools on the market which generate schema docu-
mentation. Using SCX and XSLT, we are currently working
on X2Doc [3], a flexible and extensible documentation tool.
The advantage of X2Doc is that it uses standard XSLT tem-
plates, which means that it is open and easily extensible.

WWW 2007 / Poster Paper Topic: XML

1351



<scx:type-definition uid="d11e34" document="ipo.xsd" path="schema[1]/complexType[2]" position="13">
<scx:name>RestrictedPurchaseOrderType</scx:name>
<scx:target-namespace>http://www.example.com/IPO</scx:target-namespace>
<scx:base-type-definition>d11e18</scx:base-type-definition>
<scx:category>complex</scx:category>
<scx:derivation-method>restriction</scx:derivation-method>
<scx:abstract>false</scx:abstract>
<scx:attribute-uses>
<scx:attribute-use>
<scx:required>false</scx:required>
<scx:attribute-declaration>d11e31</scx:attribute-declaration>

</scx:attribute-use>
</scx:attribute-uses>
<scx:content-type>
<scx:variety>element-only</scx:variety>
<scx:particle path="schema[1]/complexType[2]/complexContent[1]/restriction[1]/sequence[1]">
...

</scx:particle>
</scx:content-type>

</scx:type-definition>

3. SCX DESIGN
SCX is as closely aligned with XML Schema’s abstract

data model as possible. This makes it much easier to access
information on the component level than in the XML syntax.
For example, it is not trivial to determine what the effective
type of a derived complex type is. The reason for this is
that both restriction and extension work in a way which
sometimes require to collect information along the complete
derivation chain. In addition, the rules how the effective
type is determined are quite complex, for type restriction
for example attributes which are not repeated are part of
the restricted types, but attribute wildcards are not.

The above SCX example shows a small part from the ex-
ample schema of the XML Schema primer. The attribute use
is part of the RestrictedPurchaseOrderType, even though
the type definition does not explicitly contain this attribute,
it is inherited from the supertype. Generally, SCX makes
the structure of an XML Schema more accessible by merg-
ing several sources of information, as shown in the following
figure, and representing them in an easily accessible way.

.xsd xsd.xsd

.xsd .xsd

i
n
c
l
u
d
e

import

i
n
c
l
u
d
e

.xsd

.xsd .xsd

i
n
c
l
u
d
e

i
n
c
l
u
d
e

.scx

.xsd .xsd

targetNamespace ① targetNamespace ② xsd namespace

targetNamespace ① targetNamespace ②

XSD Specification 
Prose

SCX takes various input sources; the schema documents
for a schema, any imported schemas, the schema for schemas
(which contains the type definitions for the built-in types),
and information from the specification which is not formally
defined (for example the fact that list types always have a
fixed whitespace="collapse" facet).

If applications use SCX for schema manipulations, the
modified SCX can be transformed to the XML syntax of
XML Schema in a final step, so that the schema can be
used as input for schema-aware applications.

In some cases, components do not capture all informa-
tion in an XSD document. For example, in XSD markup,
type definitions can contain annotations in various locations.
Schema components do contain all those annotations as a
set, but they do not preserve the original location of each
annotation. This might lead to problems, because location
information for annotations often is semantically relevant.
SCX therefore preserves this information in attributes.

4. CONCLUSIONS
Even though XML Schema is a core component of the

XML technology landscape today, its essence so far is sur-
prisingly inaccessible using standard XML technologies. SCX
enables XML-based access to XML Schemas, and thus opens
its data model to XML technologies, most notably XPath
and thus XSLT and XQuery. XML-centric applications are
often built with the assumption that the underlying schema
will not change, but when moving towards a more flexible
and robust approach where schemas can change, technolo-
gies for providing access to schemas are critically needed.

5. REFERENCES
[1] International Organization for Standardization.

Information Technology — Document Schema Definition
Languages (DSDL) — Part 3: Rule-based Validation —
Schematron. ISO/IEC 19757-3, April 2006.

[2] Elena Litani. XML Schema API. World Wide Web
Consortium, Member Submission SUBM-xmlschema-api-
20040309, March 2004.

[3] Felix Michel and Erik Wilde. Extensible Schema Docu-
mentation with XSLT 2.0. In Poster Proceedings of the 16th
International World Wide Web Conference, Banff, Alberta,
May 2007. ACM Press.

[4] Henry S. Thompson, David Beech, Murray Maloney,
and Noah Mendelsohn. XML Schema Part 1: Structures
Second Edition. World Wide Web Consortium, Recommen-
dation REC-xmlschema-1-20041028, October 2004.

[5] Erik Wilde and Kilian Stillhard. Making XML Schema
Easier to Read and Write. In Poster Proceedings of the
Twelfth International World Wide Web Conference, Bu-
dapest, Hungary, May 2003.

WWW 2007 / Poster Paper Topic: XML

1352


	Introduction
	Use Cases
	SCX Design
	Conclusions
	References

