1
D. M. Blei, A. Y. Ng, and M. I. Jordan.
Latent dirichlet allocation.
J. Mach. Learn. Res., 3:993-1022, 2003.
2
Y. Choi, C. Cardie, E. Riloff, and S. Patwardhan.
Identifying sources of opinions with conditional random fields and
extraction patterns.
In Proceedings of HLT-EMNLP 2005, 2005.
3
A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the EM algorithm.
Journal of Royal Statist. Soc. B, 39:1-38, 1977.
4
K. Eguchi and V. Lavrenko.
Sentiment retrieval using generative models.
In Proceedings of the 2006 Conference on Empirical Methods in
Natural Language Processing, pages 345-354, July 2006.
5
C. Engstr¡§om.
Topic dependence in sentiment classification. master¡¯s thesis.
university of cambridge.
2004.
6
D. Gruhl, R. Guha, R. Kumar, J. Novak, and A. Tomkins.
The predictive power of online chatter.
In Proceedings of KDD '05, pages 78-87, 2005.
7
D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins.
Information diffusion through blogspace.
In Proceedings of the 13th International Conference on World
Wide Web, pages 491-501, 2004.
8
M. A. Hearst.
Clustering versus faceted categories for information exploration.
Commun. ACM, 49(4):59-61, 2006.
9
T. Hofmann.
Probabilistic latent semantic indexing.
In Proceedings of SIGIR '99, pages 50-57, 1999.
10
R. Krovetz.
Viewing morphology as an inference process.
In Proceedings of SIGIR '93, pages 191-202, 1993.
11
R. Kumar, J. Novak, P. Raghavan, and A. Tomkins.
On the bursty evolution of blogspace.
In Proceedings of the 12th International Conference on World
Wide Web, pages 568-576, 2003.
12
W. Li and A. McCallum.
Pachinko allocation: Dag-structured mixture models of topic
correlations.
In ICML '06: Proceedings of the 23rd international conference on
Machine learning, pages 577-584, 2006.
13
B. Liu, M. Hu, and J. Cheng.
Opinion observer: analyzing and comparing opinions on the web.
In WWW '05: Proceedings of the 14th international conference on
World Wide Web, pages 342-351, 2005.
14
G. J. McLachlan and T. Krishnan.
The EM Algorithm and Extensions.
Wiley, 1997.
15
Q. Mei, C. Liu, H. Su, and C. Zhai.
A probabilistic approach to spatiotemporal theme pattern mining on
weblogs.
In WWW '06: Proceedings of the 15th international conference on
World Wide Web, pages 533-542, 2006.
16
Q. Mei and C. Zhai.
Discovering evolutionary theme patterns from text: an exploration of
temporal text mining.
In Proceedings of KDD '05, pages 198-207, 2005.
17
Q. Mei and C. Zhai.
A mixture model for contextual text mining.
In KDD '06: Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 649-655, 2006.
18
G. Mishne and M. de Rijke.
MoodViews: Tools for blog mood analysis.
In AAAI 2006 Spring Symposium on Computational Approaches to
Analysing Weblogs (AAAI-CAAW 2006), pages 153-154, 2006.
19
G. Mishne and N. Glance.
Predicting movie sales from blogger sentiment.
In AAAI 2006 Spring Symposium on Computational Approaches to
Analysing Weblogs (AAAI-CAAW 2006), 2006.
20
Opinmind.
http://www.opinmind.com.
21
B. Pang and L. Lee.
A sentimental education: Sentiment analysis using subjectivity
summarization based on minimum cuts.
In Proceedings of the ACL, pages 271-278, 2004.
22
B. Pang and L. Lee.
Seeing stars: Exploiting class relationships for sentiment
categorization with respect to rating scales.
In Proceedings of the ACL, pages 115-124, 2005.
23
B. Pang, L. Lee, and S. Vaithyanathan.
Thumbs up? Sentiment classification using machine learning
techniques.
In Proceedings of the 2002 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 79-86, 2002.
24
L. Rabiner.
A tutorial on hidden markov models and selected applications in
speech recognition.
Proc. of the IEEE, 77(2):257-285, Feb. 1989.
25
T. Tao and C. Zhai.
Regularized estimation of mixture models for robust pseudo-relevance
feedback.
In SIGIR '06: Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in information retrieval, pages
162-169, 2006.
26
J. Wiebe, T. Wilson, and C. Cardie.
Annotating expressions of opinions and emotions in language.
Language Resources and Evaluation (formerly Computers and the
Humanities), 39, 2005.
27
J. Yi, T. Nasukawa, R. C. Bunescu, and W. Niblack.
Sentiment analyzer: Extracting sentiments about a given topic using
natural language processing techniques.
In Proceedings of ICDM 2003, pages 427-434, 2003.
28
C. Zhai, A. Velivelli, and B. Yu.
A cross-collection mixture model for comparative text mining.
In Proceedings of KDD '04, pages 743-748, 2004.