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ABSTRACT
Click fraud is jeopardizing the industry of Internet adver-
tising. Internet advertising is crucial for the thriving of
the entire Internet, since it allows producers to advertise
their products, and hence contributes to the well being of e-
commerce. Moreover, advertising supports the intellectual
value of the Internet by covering the running expenses of
publishing content. Some content publishers are dishonest,
and use automation to generate traffic to defraud the ad-
vertisers. Similarly, some advertisers automate clicks on the
advertisements of their competitors to deplete their com-
petitors’ advertising budgets. This paper describes the ad-
vertising network model, and focuses on the most sophisti-
cated type of fraud, which involves coalitions among fraud-
sters. We build on several published theoretical results to
devise the Similarity-Seeker algorithm that discovers coali-
tions made by pairs of fraudsters. We then generalize the
solution to coalitions of arbitrary sizes. Before deploying our
system on a real network, we conducted comprehensive ex-
periments on data samples for proof of concept. The results
were very accurate. We detected several coalitions, formed
using various techniques, and spanning numerous sites. This
reveals the generality of our model and approach.
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1. INTRODUCTION
Internet advertising flourishes as the ideal choice for both

small and large businesses to target their marketing cam-
paigns to the appropriate customer body on the fly. An
Internet advertiser, e.g. ebay, provides an advertising com-
missioner, e.g. ValueClick, with its advertisements, allocates
a budget, and sets a commission for each customer action,
such as clicking an advertisement, bidding in an auction,
or making a purchase. The Internet publishers, e.g. mys-
pace.com, motivated by the commission paid by the adver-
tisers, contract with the commissioner to display advertise-
ments on their Web sites. The main orchestrators in this
setting are the commissioners, who are the brokers between
publishers and advertisers, and whose servers are the back-
stage for targeting and budgeting.

Whenever a surfer visits a publisher’s site, the surfer is re-
ferred to one of the servers of the commissioner, which picks
an advertisement, and embeds it in the publisher’s site on
the surfer’s Browser. If the surfer clicks the advertisement
on the publisher’s site, the surfer is referred to the com-
missioner, who logs the click for accounting purposes, and
clicks-through the surfer to the advertiser’s site.

Since publishers earn revenue on impressions (rendering
advertisements), as well as clicks they drive to advertisers,
there is an incentive for dishonest publishers to inflate the
number of impressions and clicks their sites generate [3, 5,
25, 28, 34, 35, 38, 45]. Moreover, dishonest advertisers sim-
ulate clicks on the advertisements of their competitors to
deplete their advertising budgets [32, 39], which limits the
exposure of their competitors’ advertisements. Fraudulent
traffic results in bad reputation for the commissioner, and
sometimes in paying forfeitures for advertisers [29, 30]. Hit
inflation fraud jeopardizes not only the Internet advertising
industry, but rather the entire Internet [32].

Hit inflation has been a concern to advertising commis-
sioners since their conception [47]1. Most of the research
investigates publishers’ fraud, since the discussion can be
generalized to advertisers’ fraud. Three main approaches
have been proposed to detect hit inflation attacks.

The first classical fraud detection approach employed a
set of tools that judge publishers based on how the adver-
tisements behave on their sites, such as how the ratio of
impressions to clicks (the Click Through Rate) for each ad-

1The complementary problem of advertisers’ hit shaving,
where advertisers do not pay commission on some of the
received traffic, was satisfactorily solved in [40].
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vertisement differs from the network-wide norms that are
supposedly exclusively known for commissioners [28]. How-
ever, fraudsters can make use of a specific publishers’ site
architecture [36], sample the network-wide metrics of adver-
tisements, acquire knowledge about the metrics of the adver-
tisements loaded on their site, and can hence fool the classi-
cal tools. In addition, the classical approach cannot detect
malicious intentions, and is designed to discard low-quality
traffic2, even if it is legitimate. Aggressively discounting
low-quality traffic “underpays” both honest publishers and
commissioners for a lot of the traffic their servers deliver.

The second cryptographic approach [5, 38] asks for the
cooperation of surfers to identify fraudulent traffic. This
entails changing the advertising network model to be non-
transparent to all surfer, which is unscalable. Moreover, for
the solution to be effective, the commissioner has to uniquely
identify surfers, which compromises surfers’ privacy.

We proposed the third data analysis approach in [34].
Data analysis tools perform statistical analysis on aggre-
gate data of surfers’ temporary identification, e.g. Cookie
IDs and IP addresses. Analysis of cookie IDs and IPs is more
privacy friendly than the cryptographic approach. Cookies
store no personal information, and they can be blocked, or
periodically cleared [33]. An IP is usually assigned to surfers
temporarily, and could be shared by several surfers. The phi-
losophy of the data analysis approach is not to change the
industry model, and to obfuscate individual surfers’ identi-
ties, but still achieve satisfactory levels of fraud detection.

Data analysis techniques [34, 35] can identify specific pat-
terns that characterizes fraudulent traffic [32]. For instance,
to uncover a primitive hit inflation attack where a script con-
tinuously simulates clicks on advertisements, we proposed a
simple Bloom-based [4] algorithm to detect duplicates in a
stream of impressions or clicks [34]. Experiments on a real
network were revealing. Interestingly, one of the advertise-
ments was clicked 10,781 times by the same cookie ID in
one day. Hence, this approach can reveal malicious inten-
tions, and thus complement the classical tools that cannot
distinguish low-quality traffic from fraudulent traffic.

The classical and the cryptographic approaches did not
distinguish between attacks made by one publisher or a
group of publishers forming a coalition. Meanwhile, mak-
ing this distinction is at the heart of the data analysis ap-
proach. By forming coalitions, fraudsters share large pools
of attacking machines. Hence, they avoid the cost and over-
head of launching highly distributed attacks individually. In
addition, coalition attacks are more difficult to detect since
the patterns of fraudulent traffic are shared by numerous
publishers. Therefore, coalition attacks can easily circum-
vent the classical tools. However, the data analysis approach
looks for signs of publishers’ coalitions. In [35], we devised
an algorithm that detects a specific attack [3].

In this paper, we devise a generalized technique that de-
tects all forms of coalition attacks. We first build on pub-
lished theoretical results to devise the Similarity-Seeker al-
gorithm that discovers coalitions of size 2. We then ex-
tend Similarity-Seeker to discover coalitions of arbitrary
sizes. Interestingly, when implemented on a real network,
Similarity-Seeker detected numerous coalitions of various
sizes launching attacks with a variety of techniques. The
rest of the paper is organized as follows. We start by setting

2The quality of a click or an impression is an estimate of the
probability that it yields a sale.

the stage for discovering coalition attacks in Section 2. We
describe two brute force algorithms in Section 3. Section 4
develops one of the brute force algorithms into Similarity-
Seeker that discovers coalitions made by pairs of sites. The
generalized problem of detecting coalitions of several sites
is explored in Section 5. We comment on the findings on a
real network in Section 6. We discuss the related work in
Section 7, and conclude with our future work in Section 8.

2. FRAUD DETECTION BY
TRAFFIC ANALYSIS

The basic premise of traffic analysis is to draw correla-
tions between the attacking machines, identified by IPs and
cookies, and fraudsters. To circumvent the data analysis
techniques, fraudulent publishers should dilute the strong
correlation between their sites and the machines from which
the attacks are launched. This can be done either on the
side of the attacking machines or on the side of the attack-
ers’ sites. Hence, the spectrum extremes of the hit inflation
attacks are:

• To dilute the correlation on the machine(s)’ side, non-
coalition attack are performed by one fraudster, while
obliterating or frequently changing the identification of
the machine(s), or using a huge number of machines.

• To dilute the correlation on the sites’ side, coalition
attack are performed by many fraudsters, where any
machine can be used to simulate traffic to any site.

If we detect both non-coalition and coalition attacks, then
any attacker on the spectrum is also detectable. Hence, the
attackers will have no leeway around the fraud detection
system, and the hit inflation problem is ultimately solved.

Understandably, the difficulty of detecting a non-coalition
attack increases as the number of machines from which the
attack is launched increases. In its simplest form, launching
an attack from one machine, identified by one cookie-ID,
can be detected trivially by checking for duplicate impres-
sions and clicks [34]. However, launching an attack from
multiple machines is much harder to detect, since the de-
tection algorithm has to examine the relationship between
each publisher and all the machines generating traffic.

Although the straightforward use of network anonymiza-
tion, e.g. tor.eff.org, is attractive for inexperienced fraud-
sters, it is not effective. Those services were designed to
protect surfers’ privacy. Hence, they block surfers’ cookies.
Therefore, using network anonymization can be trivially de-
tected by monitoring the percentage of cookie-less traffic per
publisher and investigating publishers whose traffic deviates
from the norm. Similarly, on real networks, we notice some
novice fraudsters generating a lot of traffic from ISPs that
assign virtual IP addresses to surfers, such as AOL r©. How-
ever, the ranges of IPs of those ISPs are well known, and
again, the ratio of the traffic of any publisher received from
those ISPs is highly stable across all the publishers. Hence,
such attacks are easily detected by examining the ratio of the
traffic received from ISPs assigning virtual IPs as compared
to the entire publisher’s traffic.

This is where the complexity of launching scalable at-
tacks becomes clear. Hard-to-detect attacks from several
machines could be costly and unscalable to launch. To have
a normal percentage of cookie-less traffic, and a normal per-
centage of non-virtual ISPs’ IPs, fraudsters are motivated
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(a) In non-coalition attacks, every
fraudster generates traffic to its site
only.
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(b) In coalition attacks, every fraud-
ster generates traffic to its and other
sites in the coalition.

Figure 1: Non-Coalition versus Coalition Attacks

to either own the attacking machines, or to control the ma-
chines of real surfers through Trojans in order to use the
IPs and cookies of real surfers. In other words, launching
scalable attacks entails high cost or requires some Trojan-
writing skills, since out-of-the-box Trojans are easily de-
tected with anti-virus softwares, and hence are unscalable.
Thus, the correlation between the difficulty of launching an
attack and the difficulty of detecting it is understandable.

2.1 Forming Fraudsters’ Coalitions
To avoid the cost of launching scalable hit inflation at-

tacks, fraudsters shift their strategy from launching dis-
tributed non-coalition attacks, to launching coalition attacks
where many fraudsters share their resources (machines used
in the attack). That is, the machines are used to generate
traffic for several sites.

For instance, assume attacker A can generate u hits from
each machine it controls, without being rejected by the com-
missioners’ non-coalition radars. Another attacker, B, can
simulate another u undetectable hits per controlled resource.
Assuming no overlap between A’s and B’s resources, it is
more scalable and cost effective to time-share the resources,
and generate 2u hits for each publisher, instead of doubling
the number of resources. The argument can be extended for
larger coalitions as illustrated in Figure 1.

Forming coalitions serves two main purposes. The first
purpose is to increase the traffic and the revenue while main-
taining the same cost per fraudster. The second purpose
is to blur the relationship between the identities (IPs and
cookie IDs) of the attacking machines and the attackers’
sites. Launching coalition attacks does not need specialized
Web development skills. It only needs minimal resources,
and the knowledge of other fraudsters.

For commissioners, detecting coalition attacks is challeng-
ing since the traffic coming from any attacking machine does

not exclusively go to one publisher (Figure 1). Rather, each
attacking machine contributes a small portion to the traf-
fic of each fraudster in the coalition. This hinders non-
coalition radars from associating any publisher with a rea-
sonable amount of resources. Therefore, forming coalitions
is the perfect solution for fraudsters to launch scalable at-
tacks from machines whose identifications are weakly corre-
lated with their sites.

2.2 Detecting Fraudsters’ Coalitions
To detect coalition attacks, the commissioner has to search

for publishers’ sites with highly similar traffic. A reliable fin-
gerprint of a site’s traffic is the set of IP addresses generating
the traffic3. Given the set of distinct IPs visiting each site,
the commissioner has to search for sites whose traffic entries
are generated from roughly the same set of IPs4.

Since the traffic entries of different publishers are inter-
leaved in the log file, the traffic is scanned first to obtain
the set of IPs visiting each site, which is then stored in a
separate file. For each publisher, A, let SA be the set of IPs
visiting A. Define SB analogously. Several measures of the
similarity between SA and SB exist [16], including the Dice

coefficient, 2 |SA∩SB |
|SA|+|SB| ; the cosine coefficient, |SA∩SB|√

|SA|×|SB| ;

and the Jaccard coefficient, |SA∩SB |
|SA∪SB | . The goal is to discover

all pairs of sites whose similarity exceeds some threshold, s.
Fortunately, as shown in Section 6, any two legitimate sites
have negligible similarity.

3. THE BRUTE FORCE ALGORITHMS
We start by describing the two brute force alternatives in

Sections 3.1, and 3.2. Since efficiently detecting coalitions
is hard, we develop the second algorithms further to detect
coalitions of pairs of sites in Section 4. In Section 5, we
extend the algorithm to detect coalitions of arbitrary sizes.

3.1 The First Brute Force Algorithm:
All-Pairs

The first algorithm considers every possible pair of sites.
For every pair, A and B, the All-Pairs algorithm calculates
any of the three aforementioned similarity coefficients be-
tween their sets of IPs by determining the size of the inter-
section (SA ∩ SB) using a sort-merge procedure. Assuming
the main memory cannot accommodate the entire traffic,
but can accommodate the traffic of any two sites, then the
sort-merge procedure can be done in memory. However, the
traffic is read from disk O(D) times, where D is the num-
ber of publishers’ sites. An average-sized commissioner has
around 50,000 sites.

The traffic of each site can be presorted. The presort-
ing step is O(D|S| log(|S|)), where S is the largest IP set.
The number of distinct IPs visiting a site in a day is around
25,000, but reaches 1,000,000 for some sites. Presorting re-
duces the total in-memory complexity from O(D2|S|2) to
O(D|S|(D + log(|S|))).
3Through the sequel, we concentrate on fraud detection, and
thus we assume the source IPs of the traffic are not spoofed.
Counteracting spoofing has been studied in [15].
4To simplify the presentation, we assume all the IPs are
equally treated. However, the entire discussion can be triv-
ially generalized for the case where special IPs, such as those
coming from a specific location or known to belong to Inter-
net Service Providers (ISPs), are given different weights.
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Optimizing All-Pairs.
The All-Pairs algorithm can be enhanced by using the tri-
angle inequality. This limits the optimization to the Jaccard

coefficient since 1− |SA∩SB |
|SA∪SB | , the Jaccard dissimilarity of SA

and SB, satisfies the triangle inequality. That is, for any

three sites A, B, and C, it is true that
(
1 − |SA∩SC|

|SA∪SC|

)
+(

1 − |SB∩SC |
|SB∪SC |

)
≥

(
1 − |SA∩SB|

|SA∪SB|

)
. The dissimilarity based

on the other two coefficients does not satisfy the triangle
inequality. The optimization entails looking for a third site,
C, such that A and B can be judged similar or dissimi-
lar using the similarity already calculated for the pair A
and C, and the pair B and C in a dynamic programming
scheme. Thus, when testing A and B for having similarity
exceeding the threshold s, if there exists a site, C, such that

(1 − s) ≥
(
1 − |SA∩SC |

|SA∪SC |

)
+

(
1 − |SB∩SC |

|SB∪SC |

)
, then (1 − s) ≥(

1 − |SA∩SB |
|SA∪SB |

)
, and A and B are similar.

Conversely, if there exists a site, C, such that (1 − s) ≤∣∣∣(1 − |SA∩SC |
|SA∪SC |

)
−

(
1 − |SB∩SC|

|SB∪SC|

)∣∣∣, then A and B are dis-

similar because (1 − s) ≤
(
1 − |SA∩SB |

|SA∪SB |

)
.

However, as shown in Section 6, legitimate sites have
slim similarity, which makes this optimization ineffective for
faster discovery of sites with similar traffic.

3.2 The Second Brute Force Algorithm:
All-IPs

Instead of performing a sort-merge for every possible pair
of sets of IPs, the All-IPs algorithm performs a sort-merge
for all the sets together. Hence, all sites sharing a specific IP
are identified, and All-IPs calculates the similarity of pairs
that have a common IP. Counting the number of IPs shared
by any pair of sites requires one scan on the sorted data.
However, the sort-merge is done out-of-memory5. Hence,
the traffic is read from disk O(log(D)) times. The first pre-
sorting scan has in-memory complexity of O(D|S| log(|S|)).
Then, O(log(D)) scans are made for merging, each has an in-
memory complexity of O(D|S|), yielding a total in-memory
complexity of O(D|S|(log(D) + log(|S|))).

The All-IPs brute force algorithm has been proposed be-
fore for measuring set similarity in the context of finding
similar files and domains on the Internet [9, 10, 13]. In a
collection of D documents, each document is represented by
the set of all statements of a specific length the document
contains. This is analogous to our problem of finding highly
similar sets of IPs among a large collection of sets.

Optimizing All-IPs.
To compact the sets, Broder et al. [9, 10, 13] proposed sam-
pling. Reducing the size of S decreases the computations.
Sampling results in the sort-merge producing fewer IPs as
well as fewer sites sharing any IP.

However, random sampling from the two sets SA and SB

greatly skews the size of the intersection. In the worst case,
random sampling can lead to an empty intersection even
though the actual intersection is not empty [17]. Therefore,
the sampling technique used should scale down |SA∩SB | by

the same factor it scales down |SA| + |SB |, √|SA| × |SB|,
or |SA ∪SB|, to conserve the Dice, cosine, or Jaccard coeffi-

5[46] gives a good survey on external memory algorithms.

cients, respectively. Three hash-based sampling techniques
were proposed by Broder et al. to conserve the similarity.
Since our final algorithm is based on the All-IPs brute force
algorithm, we discuss the three techniques in Section 4.

4. DETECTING COALITIONS OF
PAIRS OF SITES

In this section, we develop All-IPs to efficiently detect all
coalitions of size 2. In Section 4.1, we describe the sampling
of IPs visiting sites, and derive the sample size that guaran-
tees a specific error. In Section 4.2, we propose Similarity-
Seeker for detecting sites with similar traffic.

4.1 Similarity-Sensitive Sampling
The IP sets should be sampled, such that any pair of sites,

A and B, whose IP sets, SA and SB, have a similarity ex-
ceeding a threshold, s, is discovered with high probability.
For any set S defined on domain Ω ⊆ N , let π : Ω → Ω be a
permutation of Ω chosen uniformly at random; g : Ω → N
be an arbitrary injection; and MODy(S) be the subset of
the elements that are 0 modulo y. Yy,g,π(S), defined as
MODy(g(π(S))), is a similarity-sensitive sample of S . In [9],
|Yy,g,π (SA)∩Yy,g,π(SB)|
|Yy,g,π (SA)∪Yy,g,π(SB)| was shown to be an unbiased estima-

tor of the Jaccard coefficient, |SA∩SB |
|SA∪SB | . Although [9, 10, 13]

tackled the problem in the context of Jaccard similarity only,
we like to point out the generality of the sampling method.

It is easy to show 2
|Yy,g,π(SA)∩Yy,g,π (SB)|
|Yy,g,π (SA)|+|Yy,g,π(SB)| is an unbiased es-

timator of the Dice coefficient, and
|Yy,g,π(SA)∩Yy,g,π (SB)|√
|Yy,g,π (SA)|×|Yy,g,π (SB)|

is an unbiased estimator of the cosine coefficient
Broder et al. proposed other techniques to estimate Jac-

card similarity in specific. For any set, S , from a totally
ordered domain, let MINz(S) be the subset containing the
smallest z elements in S if |S| ≥ z; otherwise MINz(S) = S .
Let SA and SB be the sets of IPs visiting sites A and B, re-
spectively. Define Zz,π(SA) as MINz(π(SA)), and define
Zz,π(SB) analogously. It was shown in [13] that an unbi-
ased estimator of the Jaccard coefficient of SA and SB is
given by

|MINz(Zz,π(SA)∪Zz,π(SB))∩Zz,π(SA)∩Zz,π(SB)|
|MINz(Zz,π(SA)∪Zz,π(SB))| .

The number of samples generated by the former method,
based on Yy,g,π(S), grows with |S|, which could be inconve-
nient; while the number of sample generated by the latter
method, based Zz,π(S), is fixed. On the other hand, the
former method is easier to calculate, and can be used for all
similarity coefficients. However, it is difficult to derive any
guarantees on the quality of both estimators.

In [10], a MinHash-based Jaccard estimator was adopted.
Since this is the only estimator that we can draw error guar-
antees for, we use it in the sequel. Let πi be a permutation
of Ω chosen uniformly at random. For a set S = {s1, s2, . . . }
on Ω, let minπi(S) be π−1

i (min(πi(s1), πi(s2), . . . )). There-
fore, for sets SA and SB, minπi(SA) = minπi(SB) if and only
if minπi(SA∪SB) ∈ (SA ∩SB). Since πi is chosen uniformly
at random, then all the elements in (SA ∪ SB) are equi-
probable to become minπi(SA ∪ SB). Hence, minπi(SA) =

minπi(SB) with probability |SA∩SB|
|SA∪SB| , which is the Jaccard

coefficient of SA and SB. Therefore, we can calculate an
unbiased estimate of the Jaccard coefficient of the pair SA

and SB as follows. Construct a set of n independent uni-
form permutations, π1, π2, . . . , πn, and calculate minπi(SA)
and minπi(SB) for 1 ≤ i ≤ n. The unbiased estimate is
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given by
Count(i|minπi

(SA)=minπi
(SB))

n
, which is the ratio of

permutations (samples) where both minimums agree.

4.1.1 How Big is n? Error Analysis of the Jaccard
Estimator.

In advertising networks, having guarantees on the qual-
ity of the results is very crucial. The commissioner has to
know, with very low error rate, sites whose traffic are highly
similar. Discarding sites erroneously reduces the commis-
sioner’s revenue, while charging advertisers for fraudulent
traffic puts the commissioner at risk. However, no robust
error analysis for the estimators in [9, 10, 13] was provided.

Since each permutation generates one sample, to discuss
error analysis, we use the two terms interchangeably. We
calculate the minimum number of samples, n, for a spe-
cific confidence interval estimate on the Jaccard coefficient
of SA and SB using the sampling method proposed in [10].
For each permutation πi, we model comparing the samples,
minπi(SA) and minπi(SB), as an independent Bernoulli trial

with unknown success probability, p = |SA∩SB|
|SA∪SB| .

A Bernoulli random variable is 1 with probability p, and
is 0 with probability (1−p). Based on n samples, the Maxi-

mum Likelihood Estimator of p is given by p̂ =
∑

xi
n

, where

the variance of p̂ is given by p(1−p)
n

. Since the distributions
of the samples are independent, and identical, the central
limit theorem and the law of large numbers state, for large
n, p̂ is approximately normally distributed. Thus, if Kα de-
notes the cdf of the standard normal distribution between

−∞ and α, then both Pr

(
−Kα/2 < p̂−p√

p(1−p)/n
< Kα/2

)

and Pr

(
−Kα < p̂−p√

p(1−p)/n

)
are equal to 1 − α.

Therefore, a two-sided (1−α) approximate confidence in-

terval for |SA∩SB |
|SA∪SB | is given by p̂±Kα/2

√
p̂(1−p̂)

n
, and a one-

sided (1 − α) approximate confidence interval is given by[
p̂ − Kα

√
p̂(1−p̂)

n
, 1

]
.

One-sided confidence intervals are more interesting for
our application, since we are looking for pairs of sites with
Jaccard coefficient exceeding a threshold s. Therefore, the
minimum size, n, of the permutations family that would
guarantee (1 − α) confidence that the estimator exceeds s

is n =

⌈
p̂(1 − p̂)

(
Kα
p̂−s

)2
⌉
. Clearly, the sample size is not

bounded in the general case. However, if p is to be esti-
mated within a margin of error of ε, then this bounds n by⌈(

Kα
2ε

)2
⌉

[7]. Statistically, this is interpreted as: with prob-

ability at least 1 − α, the estimator is no more than ε less
than the user threshold, s, i.e., Pr (p̂ > s − ε) ≥ 1 − α. For

instance, n =

⌈(
1.645

2×0.04

)2
⌉

= 423 permutations guarantees

that a pair of sites is estimated to be similar is truly similar
within an error of ε = 0.04 with probability 0.95.

4.1.2 A Discussion of Permutations.
Random permutations are needed to implement this Jac-

card estimator. Representing each truly random permuta-
tion requires |N | log |N | bits, where practically |N | = 264

[24]. This motivated Broder et al. to define min-wise inde-
pendent (MWI) permutations in [11]. F is a family of MWI
permutations on a domain Ω ⊆ N , if when π is chosen

Procedure: Samples-Select(Integer n)
begin

//Constructing permutations
for (Integer i = 1, i ≤ n, i + +){

Construct πi using the technique in [12];
}// end for
//Traffic separation
for each TrafficEntry e = (Site ID, IP ){

Write e to the traffic file of Site ID on disk;
}
//Selecting samples
for each Site ID{

IP Site-Samples[n] = empty array;
for each TrafficEntry e = (Site ID, IP ){

for (Integer j = 1, j ≤ n, j + +){
if (πj(IP ) < πj(Site-Samples[j])){

Site-Samples[j] = IP ;
}

}// end for
}// end for
let Site ID be stored at row i in Samples
Write Site-Samples to Samples[i] on disk;

}// end for
end;

Figure 2: The Samples-Select Procedure.

at random from F , then for any x ∈ Ω, Pr(min(π(Ω)) =
π(x)) = 1

|Ω| . That is, all the elements of any domain, Ω,

have equal chances to be the minimum element of the image
of Ω under any π. However, MWI families are impractical,
since the cardinality of any such family is at least e|Ω|−o(|Ω|)

[11]. In our case, Ω is the IP domain.
To achieve easy computation, Indyk proposed a relaxed

version of MWI, ε−MWI [24], defined as follows. For any
domain Ω ⊂ N , and x ∈ (N − Ω), if π : N → N is chosen
at random from F , then Pr(π(x) < min(π(Ω))) = 1±ε

|Ω|+1
.

We rewrite this in a simpler form as, if x ∈ Ω, then∣∣∣Pr(π(x) = min(π(Ω))) − 1
|Ω|

∣∣∣ ≤ ε
|Ω| . That is, all the ele-

ments of any domain, Ω, have almost equal chances to be
the minimum element of the image of Ω under any π. [24]
provides a construction of compact ε−MWI permutations.

An even more practical variation of MWI is pair-wise inde-
pendent (PWI) permutations [11]. F is a family of PWI per-
mutations if for any {s1, s2, t1, t2} ⊆ Ω, s1 = s2, t1 = t2, if π
is chosen at random from F then Pr((π(s1) = t1)∧(π(s2) =
t2)) = 1

|Ω|×(|Ω|−1)
. Although [11] showed that PWI families

can be viewed as ε−MWI families with ε as large as log Ω,
in practice, they have many implementations and are widely
used [12]. For instance, the performance of linear indepen-
dence, of the form πi(x) = aix + bi modulo c, is acceptable
in real life if Ω ⊆ {1, . . . , c}, Ω, c → ∞, c is a prime, ai and
bi are chosen at random, and ai = 0 [11, 6]. [12] provided an
efficient way to construct a family of ε−MWI permutations
using a random invertible Boolean matrix, coupled with a
redundant input representation, yielding an ε of 0.25 in the
worst case, and 0.06 in practice. We choose this implemen-
tation [12] due to its guaranteed tolerable error.

4.2 The Similarity-Seeker Algorithm
Now, we have a reliable sampling technique that efficiently

estimates the similarity of huge sets of IPs visiting sites.
Moreover, for a given error bound and confidence, we know
the number samples to collect. We use this sampling method
to describe the Similarity-Seeker algorithm.

The algorithm starts by collecting samples using the tech-
nique in [12]. It uses every permutation to discover all pos-
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Algorithm: Similarity-Seeker(Double s, ε, α, Integer l)
begin

//Calculating the number of samples

Integer n =

⌈(
Kα
2ε

)2
⌉
;

//Creating an array of samples
IP Samples[|Sites|][n] = empty D × n array;
Samples-Select(n);
//Allocating space for C
Set <SiteID, SiteID, Integer> C = empty set;
for (Integer j = 1, j ≤ n, j + +){// IPs loop

//Allocating space for H
HashTable <IP, SiteList> H = empty hash table;
for (Integer i = 1, i ≤ |Sites|, i + +){// Sites Loop

//Populating H with lists of sites sharing an IP
let Site ID be the SiteID at Samples[i]
let IP be the IP at Samples[i, j]
Insert Site ID into H[IP ].SiteList;

}// end for

//Incrementing similarity of sites sharing the jth IP
for each SiteList SL in H{

if (|SL| < l){// Sites do not share a popular IP
for each two sites, A and B, in SL{

if ((A, B) ∈ C){
C[(A, B)].Integer ++;
if (sn − 1 ≥ C[(A, B)].Integer > sn){

Output (A, B) as similar;
}

} else{
Insert (A, B, 1) into C;

}
}// end for

}
}// end for

}// end for
end;

Figure 3: The Similarity-Seeker Algorithm.

sible pairs of sites that share an IP in their samples. The
algorithm employs three data structures: Samples, C, and
H . Samples is a D × n array whose rows represent sites,
columns represent permutations, and cells represent sam-
ples for sites under permutations. The Samples array is
populated by the Samples-Select procedure described next.
C is a set of triplets: two site IDs and the number of shared
samples. C tracks pairs of sites with shared samples exceed-
ing sn, where s is the similarity threshold. H is a hash table
of tuples: a sample ID, and a list of sites sharing it.

4.2.1 Selecting the Samples.
To populate Samples, the Samples-Select, as sketched in

Figure 2, procedure makes two preliminary scans on the
traffic data. In the first scan, Samples-Select separates the
traffic of each site in an individual file that can fit in memory.
For each site, Samples-Select makes a second pass where it
hashes each traffic entry using all the permutations. After
collecting all the samples, the file is written back to the right
row in Samples. We only require the memory to accommo-
date one row or one column of Samples at a time. This
increases the scalability of the proposed algorithm. The in-
memory complexity of Samples-Select is O(D|S|n).

4.2.2 Discovering Similar Pairs.
Once Samples is populated, Similarity-Seeker reads it in

a column-major manner. For every column (permutation),
a hash table, H , is temporarily constructed for holding D
samples and their corresponding lists of sites sharing each
sample. The hash table is populated after one scan on the
column, and the list of sites sharing each IP is populated. A
scan is then made on H . Any list that contains a large num-
ber, l, of sites sharing a sample is discarded. This sample

is probably the IP address of an Internet Service Provider
(ISP) or a Network Address Translation (NAT) box, that is
shared by hundreds of computers. Otherwise, for each pair
in a list sharing a sample, a corresponding element is created
with a number of shared samples of 1, and is inserted in C, if
it does not already belong to C, or is incremented otherwise.
At any time, if the incremented pair satisfies the similarity
s, Similarity-Seeker outputs this pair as similar. The algo-
rithm for discovering all pairs with a similarity exceeding s
with confidence α and error ε is presented in Figure 3.

4.2.3 The Similarity-Seeker Complexity.
In addition to the two scans on the traffic date made

by Samples-Select, Similarity-Seeker makes only one scan
on Samples. Since Samples is typically smaller than the
entire traffic, then the traffic is considered to be scanned
only thrice, as compared to the O(log(D)) in the All-IPs
algorithm, where D is around 50,000. Calculating the in-
memory complexity of Similarity-Seeker is more involved.
To establish a bound on the in-memory complexity of pro-
cessing one column by Similarity-Seeker, we have to consider
two extreme cases. The first is where l − 1 sites share the
same sample, and all the other D−(l−1)

2
samples are shared

by two sites. The second is where all the D samples are
clustered to form lists of length l − 1. Then the complex-
ity of processing one column is O

(
max

(
l2 + D, lD

))
. The

complexity of any non-extreme case is clearly a linear combi-
nation of O

(
l2 + D

)
and O(lD). Since the lD factor dom-

inates, and there are n columns, the total complexity of
Similarity-Seeker is O

(
lD
ε2

)
with a tiny hidden constant. In

practice, the complexity is less due to the dissimilarity of IPs
visiting sites, and hence less clustering of sites. We examine
the relationship between the estimated sites’ similarity and
the parameter l in Section 6. Interestingly, some site pairs
retain their similarity, no matter how small l is set.

Due to the smaller number of sets, D, in our case (50,000
instead of all the Internet documents) we assumed that all
the D samples from one permutation can fit in memory.
Thus Similarity-Seeker avoids the out-of-memory sort-merge
performed by All-IPs with all the associated I/O and com-
putational overheads.

5. DETECTING COALITIONS OF
ARBITRARY SIZES

Similarity-Seeker can efficiently detect coalitions of pairs
of sites. However, as we discuss in Section 5.1, attackers
form coalitions of sizes exceeding 2 to stay under the radar
level by giving up some greed. Hence, we extend Similarity-
Seeker to detect larger coalitions in Sections 5.2, and 5.3.

5.1 Greed versus Subtleness Given a
Coalition Size

A group of attackers, of size Q, can make hard-to-detect
coalitions by not sharing all the resources together. Instead,
each publisher would share each resource it controls with
only q random attackers. Hence, as shown by Theorem 1 the
pairs’ similarities drop, while still gaining from coalitions.

Theorem 1. A group of attacking publishers, of size Q,
where each publisher shares each resource it controls with
only q < Q random publishers, reduces similarity between

pairs from 1 to q(q+1)
2(Q−1)+q(2Q−q−3)

and achieves a gain of q.
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Proof. Assume each site in the attacking group controls r
resources, the Jaccard coefficient is used for similarity, and
that a resource shared by A with B is not re-shared by B.
For any two sites, A and B, SA∩SB is given by the resources
shared by A with B, the resources shared by B with A, and
the resources shared by all the other Q− 2 nodes with both

A and B. This is equal to 2r q
Q−1

+ r(Q−2)× (q)(q−1)
(Q−1)(Q−2)

=

r(q+1) q
Q−1

. SA∪SB is given by the resources controlled by
A, the resources controlled by B, and the resources shared
by all the other Q − 2 nodes with either A or B. This

is equal to 2r + 2r(Q − 2) q
Q−1

− r(Q − 2) × (q)(q−1)
(Q−1)(Q−2)

.

Hence the Jaccard coefficient is given by q(q+1)
2(Q−1)+q(2Q−q−3)

.

The resources directing traffic to each site is r(q + 1), after
forming the coalition, instead of the r resources controlled
by each site. �

Corollary 1. By increasing the size of a coalition, at-
tackers can sustain similarity between pairs at a low level,
while still increasing their gains.

Proof. To keep pairs’ similarity below a detectable level,
s, the gain of each publisher is q, where q is given by 1

2(s+1)
×(

(2Q − 3)s − 1 +
√

(2Qs + 1)2 − (4Qs2 + 1) + (1 − s)2
)
.

Hence, similarity between pairs can be sustained at any
level, s, while increasing the gain, q, by forming larger groups,
i.e. increasing Q. �

From Theorem 1, if q > 1 and q =
√

Q, the Jaccard
coefficient is less than 1√

Q
. Fortunately, as shown in Sec-

tion 6, any two legitimate sites have negligible similarity.
Therefore, even if attackers form large coalitions, the subtle
similarity between pairs is still above the norm, and is still
detectable by Similarity-Seeker.

5.2 Detecting Large Coalitions based on
Pairs of Sites

Increasing the size of coalitions from pairs to large groups
shifts our focus from searching for pairs of sites with highly
similar traffic to searching for groups with moderate simi-
larity. For two main reasons, the solution in Section 4 has
to be extended for coalitions of arbitrary sizes. First, out-
putting one set of several sites, such that each pair of sites
have similar traffic, establishes the evidence for the fraud-
sters’ malicious intention. It is very unlikely, for any random
group of sites of size Q, that all possible pairs are similar. If
any two publishers’ sites can be mistakenly judged to have
similar traffic with probability ρ. Then, mistakenly judging
that Q random sites are involved in a coalition attack has

a probability of ρ
Q(Q−1)

2 . For instance, if ρ = 0.1, then er-
roneously judging a small group of 5 random sites to be in
coalition has a probability of 10−10.

Second, outputting one set of several sites is more concise
than outputting all the possible pairs in that set. For in-
stance, if 3 coalitions of size 50 fraudsters are discovered, it
is more convenient for the management to verify a list of 3
entries, each of size 50, than to examine 3 × 50×49

2
= 3225

entries, each of size 2. In addition, the output conciseness
gives a more panoramic picture of the coalition and facil-
itates manual investigations like checking for common fea-
tures of the sites, such as contract date, and earning rate.

Therefore, we need to condense the detected pairs of sites
into groups of sites. sites’ similarity can be modeled as an
undirected graph whose nodes represent sites, and whose

edges connect pairs of sites with similar traffic. The objec-
tive is to search for, instead of just edges, all maximal cliques
in this huge graph.

5.3 Discovering All Maximal Cliques in the
Sites’ Similarity Graph

Let G = (V, E) be the sites’ similarity graph, where the
set of nodes V represent sites, and E is a set of edges con-
necting pairs of sites if and only if their similarity is at least
s. We will be interchangeably referring to sites and nodes
representing them.

For a subset W ⊆ V , G(W ) = (W,E(W )) with E(W ) =
{(v, w) ∈ W × W |(v, w) ∈ E} is called a subgraph of G
induced by W , and G is called a supergraph of G(W ). G(W )
is said to be a clique if and only if (v,w) ∈ E ∀ v, w ∈ W .
G(W ) is a maximal clique if it is not a proper subgraph of
another clique. The objective is to find all maximal clique
in the sites’ similarity graph G. The graph Ḡ = (V, Ē) is a
complementary graph of G if Ē = {(v, w) ∈ V × V |(v, w) /∈
E}. A subset W ⊆ V is an independent set if and only if
(v, w) /∈ E ∀ v, w ∈ W . W is a maximal independent set if it
is not a proper subgraph of another independent set. Finding
all maximal clique in a graph G is equivalent to finding all
maximal independent sets in Ḡ.

Two seminal algorithm for enumerating all cliques are
provided in [14]. The first algorithm is a basic recursive
branch and backtrack technique. The second algorithm is
an optimized variation that prunes the search space faster.

The complexity of the second algorithm is O
(
|V |3 |V |

3

)
[43].

Among all the variations [19, 26, 43, 44] of the algorithms

in [14], [43] was able to reach a complexity of O
(
3

|V |
3

)
by

integrating the output function into the algorithm. This is

optimal, since a graph can contain up to 3
|V |
3 cliques 6 [37].

The maximal cliques enumeration algorithm in [43] has
polynomial storage requirements, and is optimal in the worst
case. However, since the sites’ similarity graph is extremely
sparse as shown in Section 6, quantifying the complexity
in terms of the number of maximal cliques in the graph is
crucial to our application. Although this involves complex
analysis [43], the original experiments in [14] showed the
average time to identify a maximal clique, i.e., a coalition
attack, is not dependent on the size of the graph or the
number of maximal cliques.

We recommend the implementation of [43] due to its op-
timal worst case complexity, though other algorithms estab-
lished complexity bounds in terms of the number of maximal
cliques in the graph, i.e., the number of coalitions. For in-
stance, [44] combined the pruning techniques in [2] and [14]
to find all the maximal independent sets with a complexity of
O(|V ||E|µ), where |V |, |E|, and µ are the numbers of nodes
(sites), edges, and cliques in the graph. This algorithm was

improved in [19] to O(a(G)|E|µ), where a(G) ≤ O(
√|V |).

6. FINDINGS ON A REAL NETWORK
We have devised Similarity-Seeker for detecting coalitions

of pairs of attackers, and then extended it for coalitions of
arbitrary sizes. To check the validity and the effectiveness
of our development, we comment on our comprehensive set

6For instance, let G be a graph of x triplets, i.e., |V | = 3x.
Two nodes are connected if they belong to different triplet.
Hence, there are 3x cliques, each of size 3.
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Figure 4: The Number of Pairs (Logarithmic Scale) Having a Specific Similarity.

of experiments using real data. We describe our experience
with building a fraud detection system at Fastclick, Inc., a
ValueClick company. For proof of concept, we analyzed a
data sample of 54,045,873 traffic entries using Similarity-
Seeker to discover site pairs with similar traffic. To reduce
the noise, we excluded all the IPs that visited a large number
of sites, because such IPs probably belong to NAT boxes.
We repeated the experiment and progressively increased the
parameter l, the number of sites beyond which the IPs are
disregarded, from 10 to 1,000. The results are plotted in
Figure 4, with a logarithmic scale on the vertical axis.

It is interesting to note that when l was 1,000, 98.94% of
the pairs had less than 1% of similarity. When l was 10,
99.98% of the pairs had less than 1% of similarity. Clearly,
the similarity between sites’ IP sets is negligible. For each
run, Similarity-Seeker output all the pairs with similarity
more than 10%, and we fed the output to the cliques enu-
meration algorithm [43] to discover larger coalitions.

In particular, when l, the number of sites beyond which
the IPs are disregarded, was 10, Similarity-Seeker output
81 pairs with similarity, s, at least 0.1. The 81 pairs con-
tained 5 coalitions of size 3. As l increased, more pairs were
discovered. For instance, when l was 30, 189 pairs of sites
were found. Since more IPs shared by the disjoint compo-
nents were considered, the cliques enumeration algorithm
was able to connect some of these components into bigger
coalitions. However, many of the cliques were overlapping.

As l increased to 40, 647 pairs were found. It became
clear that the cliques discovered are highly overlapping and
noisy, since popular IPs that are shared by many legitimate
sites are not discarded. To reduce the noise, we increased
the minimum traffic similarity gradually beyond 0.1. When
s reached 0.5, for the same l of 40, the output of Similarity-
Seeker comprised 406 pairs of sites that translated into ex-
actly 1 perfect clique of size 29. That was clearly a coalition
attack, as discussed below.

As l, the number of sites beyond which the IPs are disre-
garded, increases, more legitimate pairs are output as simi-
lar, since popular IPs shared by those sites are not discarded.
To overcome this problem, it is advisable to increase the
minimum required traffic similarity, s, as we increase l.

We increased l to 50 sites and increased s gradually up to
0.6. There were 680 pairs. With very few anomalies that
can be manually identified, there was the original coalition
of size 29, sharing 15 sites with another coalition of size 22.
There were 8 other disjoint coalitions of sizes between 3 and
10, some isolated pairs, and a star of size 6.

Among all the discovered 680 sites, there were strong ev-
idences that more than 93% of them were real fraudsters.

Most of the coalitions had all their sites signed up with
the commissioner around the same date. The noticeable
characteristic of the coalitions of size 29 and 22 was that
their traffic was of moderate size, yet coming from IPs all
over the world. After further investigations, we found that
the Referer fields in the HTTP requests were coming from
pages that do not have the commissioner’s advertisements;
and sometimes no advertisements at all. We suspect the
attackers had some form of readily available traffic through
a network of Trojans, and that they do not work for the
domains they signed up for. When the commissioner sent
the account activation e-mails7, the publishers somehow ac-
quired the attached activation secrets and activated the ac-
counts. Since the activation secrets are stored in a hashed
form, the attackers must have compromised some machines
on those domains, and hence, acquired the attached secrets.

For some of the isolated pairs, we noticed almost simul-
taneous traffic entries for the two sites of the coalition. We
suspect that those attacks were launched using the attack
in [3] that will be discussed shortly in Section 7.

As l grew further, the cliques enumeration algorithm did
not connect those coalitions, but rather started to output
groups that share extremely popular IPs. We checked those
IPs on www.arin.net/whois, and they are ISP-owned IPs.

We recommend setting l and s initially to small values,
say 5 sites and 0.1 similarity. From there, the commissioner
can tune the values of l and s according to the noise in
the results, as described above. The noise is usually mani-
fested in the number of isolated pairs, small coalitions, and
overlapping coalitions. From our experience, an appropriate
value for the error ε is s

10
, and the plausible range for the

confidence α is between 0.01 to 0.1.

7. RELATED WORK
The work related to ours can be classified into two cate-

gories. The first category is the recent research in discover-
ing densely connected subgraphs in huge graphs. The second
category is our previous work on coalition attacks.

7.1 Discovering Dense Subgraphs
Due to the NP-hardness of the cliques enumeration prob-

lem, it was recently attempted to approximate this prob-
lem as discovering densely connected subgraphs or clusters.

7When a publisher signs up with FastClick, FastClick sends
the publisher an e-mail on the domain signed up, with a
secret key. The publisher can activate the account only using
this secret key. This ensures that the publisher has an e-mail
account on the domain (s)he signed up for.
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Three main approximations were proposed. The conduc-
tance measure [8, 18, 22, 27] of a subgraph is a measure of
the number of the external edges (bridges to the rest of the
graph), in comparison to the internal edges of the subgraph,
and the internal edges of the rest of the graph. The sec-
ond cluster editing approximation [41] bounds the number
of edges to be added or deleted to transform a subgraph into
an isolated clique. The third approximation [1] bounds the
average internal degree of nodes. However, discovering any
cluster with a bound on any of the three approximations is
proved to be NP-complete [23, 42]. Being as hard as the
original problem, the approximations are of limited use.

The algorithm in [21] efficiently discovers dense clusters.
However, the algorithm associates no connectivity metrics
with the identified clusters. It hence provides no guaran-
tees on the clustering quality. The algorithm cannot answer
queries about clusters with a specific threshold on a con-
nectivity metric, since the identified clusters can be either
split or combined to satisfy the query threshold. Although
the algorithm is suitable for link spam detection, it is not
applicable in money-sensitive fraud detection.

7.2 Previous Work on Coalition Attacks
We have previously proposed an algorithm to detect the

coalition attack identified in [3]. The attack in [3] involves
a coalition of a dishonest publisher, P , with a dishonest
Web site, S. S’s page will have a script that runs on the
surfer’s machine when its page loads, and automatically re-
directs the surfer to P ’s Web site. P will have two versions
of its Web page, a non-fraudulent page; and a fraudulent
page. The non-fraudulent page is a normal page that dis-
plays the advertisement, and the surfer is totally free to
click it or not. The fraudulent page has a script that runs
on the surfer’s machine when it loads, and automatically
clicks the advertisement. P selectively shows the fraudulent
page when the Web site that referred the surfer to P is S.
The attack silently converts every innocent visit to S to a
click on the advertisement in P ’s page. Several factors make
the attack virtually impossible to detect. First, if the com-
missioner directly visits P ’s page, the non-fraudulent page
will be loaded. Second, the commissioner cannot know the
Referer fields of the HTTP requests to publishers. To iden-
tify S, the commissioner has to check all the Internet sites,
which is infeasible. Third, the attack is done in an automatic
way that is hidden from the surfer.

In [35], we proposed a solution this sophisticated coalition
attack via a collaboration between commissioners and ISPs.
By analyzing the aggregate stream of HTTP requests, the
ISP can detect sites that are usually visited before a specific
site, without violating the surfers’ privacy. Bearing in mind
the size and the speed of HTTP requests made to ISPs,
the problem boils down to identifying associations between
HTTP requests that are not widely separated in a traffic
stream. We devised the Streaming-Rules algorithm to detect
associations among stream elements.

Although the solution proposed in [35] is effective, it is
very specific to the attack in [3]. The solution is not effec-
tive against other coalition attacks. For instance, if each
attacker in the coalition controls a network of surfers’ ma-
chines through Trojans, then HTTP requests for attackers
could be widely separated in the ISP HTTP stream, and
hence, are not detected by the solution in [35]. However,
the general solution proposed in this paper detects coalition

attacks in their full generality, including the attack in [3]
without the need to the ISPs’ support.

8. DISCUSSION AND FUTURE WORK
We have proposed a generalized solution for detecting gen-

eralized coalition attacks of hit inflation. Since sites’ traffic
is highly dissimilar, any similarity is usually suspicious. We
modeled the problem of detecting fraud coalitions in terms
of the set similarity problem. We built on several pub-
lished theoretical results to propose our Similarity-Seeker
algorithm that uncovers coalitions of site pairs. We then
extended the detection algorithm to detect coalitions of any
size by finding all maximal cliques in a graph. On real net-
work data, 93% of the detected sites were provably fraud-
sters. This shows how accurate our model and algorithm
are regardless of how the attack is designed.

However, several publishers can collude to attack more
than one commissioner. Each commissioner can only know
the traffic of its publishers, and no commissioners can detect
the similarity between the traffic of the attackers. Then, to
detect attacks that span several advertising networks, we
anticipate the development of new specialized auditing, or
“detective”, entities that are trusted by commissioners.

Our future work focuses on two directions. The first di-
rection is to compare several cliques enumeration using real
data. Although [43] has an optimal worst case bound, other
algorithms can outperform it for extremely sparse graphs.
The algorithms in [19, 20, 31, 43] were never experimentally
compared, to the best of our knowledge. The second direc-
tion of our future work is to extend the algorithms to the
streaming environment. Bearing in mind that an average-
sized commissioner has around 50,000 publishers’ sites, and
receives around 70M traffic entries per hour, it is desirable
to detect coalition attacks using only one scan on the data.
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