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ABSTRACT
In this paper, we propose a new similarity measure to com-
pute the pairwise similarity of text-based documents based
on suffix tree document model. By applying the new suf-
fix tree similarity measure in Group-average Agglomerative
Hierarchical Clustering (GAHC) algorithm, we developed
a new suffix tree document clustering algorithm (NSTC).
Experimental results on two standard document cluster-
ing benchmark corpus OHSUMED and RCV1 indicate that
the new clustering algorithm is a very effective document
clustering algorithm. Comparing with the results of tra-
ditional word term weight tf-idf similarity measure in the
same GAHC algorithm, NSTC achieved an improvement of
51% on the average of F-measure score. Furthermore, we
apply the new clustering algorithm in analyzing the Web
documents in online forum communities. A topic oriented
clustering algorithm is developed to help people in assessing,
classifying and searching the the Web documents in a large
forum community.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering;
E.1 [Data Structure]: Trees; H.3.1 [Content Analysis
and Indexing]: Linguistic Processing

General Terms
Algorithms, Experimentation

Keywords
Suffix tree, document model, similarity measure

1. INTRODUCTION
Knowledge collaboration includes contributing to, author-

ing within, discussing, sharing, exploring, and deploying a
collective knowledge base [12]. The World Wide Web opens
up new possibilities for people to share knowledge, exchange
information, and conduct knowledge collaboration. Numer-
ous kinds of knowledge collaborative online communities
sprang up the world. BBS, Weblog and Wiki have become
well-known words in our daily life. On the other hand, com-
puters have no understanding of the content and meaning of
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the submitted information data. Assessing and classifying
the information data have mainly relied on the manual work
of a few experienced people (the editors or moderators) in
these knowledge collaboration systems. With growth of a
community, the workload of the manual work will become
heavier and heavier. Especially in online BBS forum com-
munities, the more people join the discussion, the heavier
workload the forum moderators have to bear.
Document clustering and classification have long been stud-

ied as a post-retrieval document visualization technique [16,
3]. Document clustering algorithms attempt to group doc-
uments together based on their similarities; the documents
that are relevant to a certain topic will hopefully be allo-
cated in a single cluster [27]. The objective of our work is to
develop a document clustering algorithm to categorize the
Web documents in an online community. Such a clustering
result is absolutely helpful in speeding up the knowledge col-
laboration in the online community. For experienced mem-
bers and editors, an automatic Web document clustering
will help them to identify and assess high qualify documents
more easily and efficiently. For newbies and guests, an effi-
cient online searching service as well as a categorical index
of the whole forum will help them to look for their interested
topics.
Any clustering technique replies on four concepts: data

representation model, similarity measure, clustering model
and clustering algorithm that generates the clusters using
the data model and the similarity measure [7]. The Vector
Space Document (VSD) model [19] is a very widely used
data representation model for document classification and
clustering today. The common framework of this data model
starts with a representation of any document as a feature
vector of the words that appear in documents of the data set.
The term-weights (usually term-frequencies) of the words
are also contained in each feature vector [22]. The similar-
ity between two documents is computed with one of several
similarity measures based on two corresponding feature vec-
tors, e.g. cosine measure, Jaccard measure, and Euclidean
distance measure.
Suffix tree document model and Suffix Tree Clustering

(STC) algorithm were proposed by Zamir and Etzioni and
used in their meta-search engine [26]. STC is a linear time
clustering algorithm (linear in the size of the document set),
which is based on identifying phrases that are common to
groups of documents. A phrase is an ordered sequence of
one or more words [27]. There are two distinct characteris-
tics attracting us to study suffix tree document model and
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STC algorithm. Firstly suffix tree document model pro-
posed a new flexible n-grams approach to identify all overlap
nodes (phrases) among the documents as Longest Common
Prefixes (LCPs) [11]. Secondly, one or several phrases are
naturally selected to generate a topic summary to label the
corresponding cluster during building the clusters. After
implementing STC algorithm by following the description
of Zamir’s papers, we found that STC in point of fact can
still obtain quite good results in clustering standard doc-
uments as well as document snippets. However, STC al-
gorithm sometimes generates some large-sized clusters with
poor quality in our experiment results of clustering standard
documents. They desperately lower the overall effectiveness
of STC algorithm.
Through analyzing the original design of STC algorithm,

we identified the reason for dissipating the effort of STC al-
gorithm as that: there is no effective quality measure to eval-
uate the quality of clusters in STC, neither the base clusters
designated by the overlap nodes (phrases) in a suffix tree nor
the clusters generated by the cluster merging. Furthermore,
the weight of each overlap phrase is individually calculated
from its length (the number of words in it) and document
frequency df, the number of documents containing it (see
Section 3.1 or paper [26] for details). In summary, STC al-
gorithm lacks an efficient similarity measure to assess the
importance of each phrase in a global view of entire docu-
ment set. On the other hand, VSD model uses a feature vec-
tor to represent a document. The statistical features of all
words are taken into account of the word term weights (usu-
ally tf-idf ) and similarity measures. However, in contrast to
suffix tree document model, the sequence order of words is
seldom considered in the clustering algorithms based on this
model. In fact, two document models are isolated in current
information retrieval techniques [20].
Therefore we focused our work on how to combine the ad-

vantages of two document models in document clustering.
By mapping each node of a suffix tree (excludes the root
node) into a unique dimension of a M dimensional space
(M is the total number of nodes in the suffix tree except the
root node), each document is represented by a feature vec-
tor of M nodes. Then we rationally apply traditional term
weighting schemes to the nodes (phrases) in suffix tree doc-
ument model. Consequently we find out a simple solution
to successfully connect two document data models: firstly
the weight (term frequency tf and document frequency df )
of each node are recorded in building the suffix tree from
the documents, and then cosine similarity measure is used
to compute the pairwise similarity of any two documents.
With combination of the word’s sequence order considera-
tion of suffix tree model and the term weighting scheme of
VSD model, the new suffix tree similarity measure works
pretty good in GAHC algorithm. Our experimental results
show that, new suffix tree document clustering (NSTC) al-
gorithm is very effective in clustering standard documents
of the data sets generated from OHSUMED [24] and RCV1
[4] corpus.
Apart from Section 1, this paper is organized as follows:

Section 2 discusses related work. Section 3 starts with a brief
review of suffix tree model and STC algorithm, and then the
detailed design of the new suffix tree similarity measure. A
topic oriented Web document clustering approach follows in
Section 4. Section 5 illustrates some experimental results for
testing the effectiveness and efficiency of the new similarity

measure in GAHC algorithm with comparisons of traditional
word term weight similarity measure and original STC al-
gorithm. Finally Section 6 summarizes our work with some
considerations on future directions.

2. RELATED WORK
Text document clustering has been traditionally investi-

gated as a means of improving the performance of search
engines by pre-clustering the entire corpus [22], and a post-
retrieval document browsing technique as well [16, 3, 26].
The methods used for document clustering covers several
research areas, such as database, information retrieval, and
artificial intelligent including machine learning and natural
language processing. Agglomerative Hierarchical Cluster-
ing (AHC) algorithm might be most commonly used algo-
rithm among the numerous document clustering algorithms.
There are several variants from this algorithm, e.g. single-
link, group-average and complete-link. In practice, AHC al-
gorithm can often generate a high quality clustering result
with a tradeoff of a higher computing complexity [23].
In traditional document models such as VSDmodel, words

or characters are considered to be atomic elements in the sta-
tistical feature analysis and extraction. Clustering methods
based on VSD model mostly make use of single word term
analysis of document data set. In order to achieve more
accurate document clustering, the importance of developing
more informative features has received considerable atten-
tion in information retrieval literatures recently. Bigrams,
trigrams and much longer ngrams have been commonly used
in statistical natural language processing [2, 9, 25].
Suffix tree document model was firstly proposed in 1997

[13, 26]. Different from document models which treat a doc-
ument as a set of words and ignore the sequence order of
the words [1], suffix tree document model considers a doc-
ument to be a set of suffix substrings, the common prefixes
of the suffix substrings are selected as phrases to label the
edges of a suffix tree. STC algorithm is developed based
on this model and works well in clustering Web document
snippets returned from several search engines. However, the
properties of the suffix tree model and STC have not been
analyzed in their papers [26, 27]. Eissen’s paper [20] con-
tinued the work and pointed out, STC algorithm is a fusion
heuristic that efficiently evaluates the graph-based similar-
ity measure for large document collections. Furthermore,
they also propose several new graph-based similarity mea-
sures to compute the document similarities. Their experi-
mental evaluation results show that the similarity measures,
especially the hybrid similarity measure have achieved sig-
nificant performance improvements in MajorClust algorithm
and GAHC algorithm.

3. A NEW SUFFIX TREE SIMILARITY
MEASURE

In this section, firstly a brief review of suffix tree docu-
ment model and STC algorithm is given, then the definition
new suffix tree similarity measure is explained in details.
After that, two important design issues will be discussed,
including the time complexity of computing the document
similarity based on the suffix tree document model.
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Figure 1: The suffix tree of tree documents “cat ate
cheese”, “mouse ate cheese too” and “cat ate mouse
too”

3.1 Suffix Tree Document Model
and STC Algorithm

In text-based information retrieval, a document model is
a concept that describes how a set of meaningful features
is extracted from a document. Suffix tree document model
considers a document d = w1w2...wm as a string consisting
of words wi, not characters (i = 1, 2, ..., m). A suffix tree
of document d is a compact trie containing all suffixes of
document d. Figure 1 is an example of a suffix tree com-
posed from three documents1. The nodes of the suffix tree
are drawn in circles. Each internal node has at least two
children. Each edge is labelled with a non-empty substring
of a document called a phrase, and its suffix node is labelled
by the phrase too. Then each leaf node in the suffix tree des-
ignates a suffix of a document; each internal node represents
an overlap phrase shared by at least two suffixes. The more
internal nodes shared by two documents, the more similar
the documents tend to be.
In Figure 1, each internal nodes is attached with a box

respectively (In the practical implementation, each node in-
cluding leaf node maintains a list storing the numbers dis-
played in the box.). The numbers in the box designate the
documents which have traversed the corresponding node.
Each upper number designates a document identifier, the
number below designates the traversed times of the docu-
ment.
The original STC algorithm is developed based on the

suffix tree document model. In detail, STC algorithm has
three logical steps.
Step 1. The common suffix tree generating A suffix tree

S for all suffixes of each document in D = {d1, d2, ..., dN}
is constructed. Each internal node containing at least two
different documents is selected to be a base cluster, which
is composed of the documents designated by the box, and
labelled by the phrase of the node.
Step 2. Base cluster selecting Each base cluster B is

assigned a score s(B),

s(B) = |B| · f(|P |) (1)

1We use the same example of paper [26] to describe the
design of the suffix tree similarity measure. But the numbers
in the box of a node designate the node’s term frequency and
document frequency.

Phrase: too
Documents: 2,3

    Phrase: ate
Documents: 1,2,3

Phrase: mouse
Documents: 2,3

Phrase: ate cheese
Documents: 1,2

Phrase: cheese
Documents: 1,2

Phrase: cat ate
Documents: 1,3

c

e f

a

d

b

Figure 2: The base cluster graph

where |B| is the number of documents in B, and |P | is the
number of words in P . Then all base clusters are sorted
by the scores, and the top k base clusters are selected for
cluster merging in Step 3.
Step 3. Cluster merging A similarity graph consisting of

the k base clusters is generated. An edge is added to connect
two base clusters Bi and Bj if the Jaccord coefficient of Bi

and Bj is larger than 0.5, say, when
|Bi

⋂
Bj |

|Bi

⋃
Bj |

> 0.5. The

connected components in this graph form the final clusters.
For example, the nodes a, b, c, d, e, f are selected to be
the base clusters in the suffix tree of Figure 1. Finally the 6
base clusters form a final cluster as shown in Figure 2 after
cluster merging.

3.2 The New Suffix Tree Similarity Measure
By mapping all nodes n of the common suffix tree to a

M dimensional space of VSD model (n = 1, 2, ..., M), each
document d can be represented as a feature vector of the
weights of M nodes,

d = {w(1, d), w(2, d), ..., w(M, d)} (2)

Term frequency - inverse document frequency (tf-idf) is a
commonly used information retrieval technique for assign-
ing weights to individual word terms appearing in all doc-
uments [22] [18]. When we represent each document as a
feature vector in the M dimensional space, it’s very easy to
understand that the document frequency of each node df(n)
is the number of the different documents that have traversed
node n; the term frequency tf(n, d) of a node n with respect
to a document d is the total traversed times of document d
through node n. For example in Figure 1, the df of node b
is df(b) = 3, the tf of the node with respect to document
1 is tf(b, 1) = 1 (assuming the document identifiers of the
three documents to be 1, 2, 3 ).
Therefore we can calculate the weight w(n, d) of node n

in document d using the following tf-idf formula:

tfidf(n, d) = (1 + log(tf(n, d))) · log(1 +
N

df(n)
) (3)

After obtaining the term weights of all nodes, it’s easy to
apply traditional similarity measures like the cosine simi-
larity to compute the similarity of two documents. In this
paper, we use cosine similarity measure to compute the pair-
wise similarities of all documents. The GAHC algorithm is
used to evaluate the effectiveness of the new suffix tree sim-
ilarity measure in document clustering.
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word1 word2 word3 . . . wordn.

word1 word2 word3 . . wordm

word1 word2 word3 . . . wordn.

word1 word2 word3 . . wordm

Document A

A suffix sub-string of Document B

Figure 3: Comparing a suffix sub-string of document
B with all suffix sub-strings of document A to find
out a maximum length matched path

simcos(~di, ~dj) =
~di • ~dj

|~di| × |~dj |
(4)

3.3 A Closer Look to Suffix Tree Document
Model

3.3.1 A Simple Efficiency Analysis of the Suffix Tree
Similarity Measure

A suffix tree is a data structure that admits efficient string
matching and querying. Suffix trees have been studied and
used extensively in fundamental string problems such as
large volumes of biological sequence data searching [14], ap-
proximate string matches [5] and text features extraction
in spam email classification [17]. In suffix tree document
model, a document is considered as a string consisting of
words, not characters. During constructing the suffix tree,
each suffix of document B is compared to all suffixes which
exist in the tree already to find out a position for insert-
ing it (as depicted in Figure 3). The naive, straightforward
method to build a suffix tree for a document of m words
takes O(m2) time. Ukkonen’s paper [21] provided a algo-
rithm to build a suffix tree in time linear with the size of a
document. The time complexity of building a suffix tree is
O(m). Ukkonen’s algorithm is argued for lack of space effi-
ciency in building a suffix tree [6]. However, with the trade
off of space cost, Ukkonen’s algorithm makes it possible to
build a large incremental suffix tree online, which allows us
to insert a document into the suffix tree and remove it dy-
namically.
Indeed, suffix link data structure allows the searching al-

gorithms to move quickly from one part of the tree to a
distant part of the tree in a large suffix tree. In particu-
lar, the doubly-linked list data structure (node ¿ edge ¿
suffix node) also leaves a large room for us to develop dif-
ferent kind of search strategies in building an online clus-
tering algorithm. In our current searching algorithm design,
a bottom-up search is chosen to extract all internal nodes
that traversed by a document.
Assuming that there are N distinct documents in a data

set D, the average length of the documents is m (by words).
Then there are a maximum of N ·m leaf nodes in the suffix
tree generated from N documents (each leaf node represents
one or more suffixes of the documents). Thus finding out m
leaf nodes representing all suffixes of a document requires
a full traverse of m · N leaf nodes (the tree data structure
directly maintains a list of all leaf nodes), the average time
cost is m · N . Because each node in a suffix tree has only
one uplink node, the cost for calling back all parent internal

nodes of a leave node is trivial in the bottom-up search2.
Consequently the time cost of extracting the all nodes tra-
versed by two documents and computing the cosine simi-
larity is time linear to the size of document set (2 · m · N),
regardless of the total number of nodes M in the suffix tree.
Finally the total time cost for computing all pairwise sim-
ilarities for all documents is N · (N − 1) · m · N = m · N 3.
In practice, the time cost of manipulating the suffix tree to
compute the document similarities is very close to the cost
of same operation on an inverted index.

3.3.2 Stopword or Stopnode
Stopwords are frequently occurring, insignificant words

that appear in the documents. They are useless to index
or use in search engines or other search indexes. Stopwords
Lists and stemming algorithms are two commonly used in-
formation retrieval techniques for preparing text document.
We also use a standard Stopwords List and Porter stemming
algorithm [15] to preprocess the documents to get “clean”
documents. However, we find there still exist some com-
monly occurring words slightly affecting the precision of the
suffix tree similarity measures.
Although tf-idf weighting scheme has provided a solution

to reduce the negative effect of these words, almost all popu-
lar document clustering algorithms including STC algorithm
still prefer to consider these words as new stopwords, and
ignore them in their document similarity measure. For ex-
ample, STC algorithm maintains a stoplist that is supple-
mented with Internet specific words in computing the score
of each base cluster, e.g. “previous”, “java”, “frames” and
“mail”. Words appearing in the stoplist, or that appear in
too few or too many documents receives a score of zero in
computing the score s(B) of a base cluster.
We clearly understand the positive effectiveness of the

method in VSD model. The question is, does this idea work
in suffix tree document model? Recalling the suffix tree sam-
ple in Figure 1 and Step 2, 3 of STC algorithm, the base
clusters generated by the suffix tree are illustrated by Fig-
ure 2. The node b is labelled with a phrase “ate”, and the
phrase “ate” has a maximum document frequency df = 3
in the graph. If we consider word “ate” as a stopword, the
node b should not be selected to be a base cluster because
it gets a zero score. As a result, other 5 base clusters in the
graph will not form a single cluster after the cluster merging.
This problem has not been discussed in original STC al-

gorithm. Conventional document models, like VSD model
ignores the occurring position of words. Simply ignoring
these words in the similarity measure is reasonable. On the
contrary, suffix tree document model is trying to keep the se-
quential order of each word in a document, the same phrase
or word might occur in different nodes of the suffix tree.
Simply ignoring the words (or phrases) becomes impractical
in our approach.
In our document similarity measure, the term of a word

is replaced by the term of a node in the suffix tree. We pro-
posed a new definition “stopnode”, which applies the same
idea of stopwords in the suffix tree similarity measure com-
putation. A node with a high document frequency df can

2The time cost for finding all nodes traversed by a suffix is
decided by the length of its longest common prefix (LCP) in
the suffix tree. The maximum length of LCPs in the suffix
tree of standard documents is only 5 in our experimental
data sets. Thus we say, the time cost is trivial.
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be ignored in the similarity measure, but the corresponding
phrase and its words might be kept by other nodes in the suf-
fix tree. In our practical document clustering algorithm, a
threshold idfthd of inverse document frequency (idf) is given
to identify whether a node is a stopnode. The experiments
in Section 5 also provide a sufficient proof to this design
issue.

4. A PRACTICAL APPROACH: WEB
DOCUMENT CLUSTERING IN ONLINE
FORUM COMMUNITIES

As mentioned in Section 1, the objective of our work is to
develop a clustering algorithm for analyzing the Web docu-
ments in an online forum community.
Almost all Web forum systems use the same client-server

system design: a Web server works with its inside programs
as a preprocessor to handle HTTP requests and compose
Web pages, a database server (usually a SQL server) works
as a data storage. All forum data are processed into formal
text content and stored in some tables with well-defined re-
lationships.
We developed the clustering algorithm with C and PHP

languages based on the same platform of a Web based BBS
forum system developed by us before [8]. Generally, the
Web document clustering algorithm has three logical steps:
(1) document preparing, (2) document clustering, and (3)
cluster topic summary generating.

4.1 Document Preparing
Different from the Web pages, which are composed by the

forum system for people to read in a Web browser (usually
Internet Explorer or Firefox ), the content of a topic thread
in a forum consists of a topic post and the reply posts. Each
post is saved as a tuple in the corresponding table. Besides
the text of the post, a tuple also has several fields storing
some relevant information of the post, such as the subject ti-
tle, submitted time, author, view clicks (the number of clicks
to the post), and recommend clicks (the number of recom-
mending clicks to the post). As a Web document, the text
of a post might contain HTML tags, BBcode, emotion icon
tags or other non-word tokens. There often exist some posts
containing only one or several words, that are used to ex-
press the author’s responsive emotion without any signifi-
cant meaning, e.g. “thanks”, “good post”, “well done” and
etc.
To prepare a text document with respect to a topic thread,

we access the tuples from database table directly and com-
bine all posts of the same thread into a single document.
Before adding a post into the document, a document “clean-
ing” procedure is executed for the post: first all non-word
tokens are stripped off; second the text is parsed into words;
third all stopwords are identified and removed; forth Porter
stemming algorithm is applied to all words; finally all stem-
med words are incorporated to be a new plain text post. Af-
ter the document “cleaning”, the posts containing at least
3 distinct words are selected for document merging.
During the document merging, the subject title of the topic

post (the first post which creates the thread in the forum)
is selected as the title of the document, the text of all se-
lected posts are added into the document in the order of
their submitted time. Some fields of each post such as view
clicks and recommend clicks are also aggregated to the sums

respectively. Of course, the constructed document is saved
into a table along with the sums for further processing of
clustering algorithm.

4.2 Document Clustering
With the description of Section 3, it’s quite simple to ex-

plain how the suffix tree clustering algorithm works.
Each thread document is fetched from the correspond-

ing table, and inserted into a suffix tree. The tf and df
of each node have been calculated during constructing the
suffix tree, and the corresponding weight (tf-idf ) is obtained
as well. Thus the pairwise similarity of two documents can
be computed with cosine similarity measure. Finally these
pairwise similarities are used in GAHC algorithm to build a
final clustering result.

4.3 Cluster Topic Summary Generating
The topic summary generating characteristic is a very im-

portant design issue arousing our study of suffix tree docu-
ment model and STC algorithm. Unfortunately GAHC al-
gorithm cannot provide this function to the new clustering
algorithm. How to generate a new topic summary becomes
another interesting design issue in our approach. In fact,
topic summary generating concerns two important informa-
tion retrieval work: (1) ranking the documents in a cluster
by a quality score, (2) extracting common phrases as the
topic summary of the corresponding cluster.
Evaluating quality of cluster and its documents is still a

challenging research topic in modern information retrieval.
However, the Web documents of a forum system can pro-
vide some additional human assessments for the document
quality evaluation. For instance, there are three statistical
scores provided in our forum system, view clicks, reply posts
and recommend clicks. The quality score of a document d
can be calculated with the following formula.

q(d) = |d| · v · r · c (5)

where |d| is the number of words in the document, v is view
clicks, r is reply posts, and c is recommend clicks of the
document respectively.
Thus all documents in the same cluster are sorted by their

quality scores. We choose the top 10% documents as the
representatives of the cluster (at least 5 documents for each
cluster). Then the nodes traversed by the representative
documents are selected and sorted by their idf in ascend or-
der. Finally the top 5 nodes are selected (excluding stopn-
odes). The original words in their phrases (without stem-
ming) form a topic summary to label the cluster.

5. EVALUATION
In this section, we empirically evaluate the effectiveness of

the new suffix tree similarity measure and traditional word
term weight (tf-idf ) similarity measure in the same GAHC
algorithm. The original STC algorithm is compared as well.
To achieve a fair comparison, at first some standard docu-
ment collections without any bias must be provided, then
some standard clustering quality measures shall be exam-
ined.
We choose F-Measure for evaluating and comparing three

clustering algorithms. The F-Measure is commonly used in
evaluating the effectiveness of clustering and classification
algorithms [22, 10]. It combines the precision and recall
ideas from information retrieval: Let C = {C1, C2, ..., Ck}
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be a clustering of document set D, C∗ = {C∗
1 , C∗

2 , ..., C∗
l }

designate the ”correct” class set of D. Then the recall
of cluster j with respect to class i, rec(i, j) is defined as
|Cj

⋂
C∗

i |/|C
∗
i |. The precision of cluster j with respect to

class i, prec(i, j) is defined as |Cj

⋂
C∗

i |/|Ci|. The F-Measure
combines both values according to the following formula.

Fi,j =
2 · prec(i, j) · rec(i, j)

prec(i, j) + rec(i, j)
(6)

Based on this formula, the F-Measure for overall quality of
cluster set C is defined by the following formula.

F :=
l∑

i=1

|C∗
i |

|D|
· max

j=1,...,k
{F (i, j)} (7)

Since there is no original binary or source code of STC
algorithm and its evaluating document collections provided
as the reference for our experiments. We wrote our own
code for original STC algorithm following the description in
Zamir’s paper and PHD thesis, the corresponding document
collection of OHSUMED [24] is also generated by ourselves
as well.

5.1 Document Collections

5.1.1 OHSUMED Document Collection
The OHSUMED medical abstracts corpus was created to

assist information retrieval research [24]. It is a clinically ori-
ented MEDLINE subset consisting of 348,566 references (out
of a total of over 7 million), and covers all references from
270 medical journals from 1987 to 1991. Each OHSUMED
document has at least one primary and one secondary Medi-
cal Subject Heading (MeSH) indexing terms, discriminating
between the focused topics and the briefly mentioned topics.
We also use a subset of OHSUMED corpus, which is very

similar to the one used in paper [26]. However, all docu-
ments of the corpus are used to create the document col-
lection. Because the earliest version of Mesh index that we
can obtain is 2004, it contains a full version of Mesh index
(only the documents in 90-91 are used in the experiments of
paper [26]). We only select the documents having at least
one MeSH index term in the “C14-Cardiovascular Diseases
(C14)” sub-branch of MeSH hierarchy. The corpus provides
us a total of 293,856 documents.
We created a set of disjoint groups of OHSUMED doc-

uments, each relating to a specific topic. These groups of
documents are created as follows.
There are 494 index terms under the “C14” term in the

MeSH hierarchy. For each term we collected its document
group: each selected OHSUMED document contains this
term as a primary index term, but does not contain any in-
dex term that has been selected before. We discarded doc-
ument groups with less than 100 documents, and also dis-
carded document groups whose term was an ancestor (in the
MeSH hierarchy) of another selected term. In the end, we
created 8 groups of document sets, each group with 100 doc-
uments. The MeSH index terms are: MSH1058, MSH1262,
MSH1473, MSH1486, MSH1713, MSH2025, MSH2030 and
MSH2235 as identified by a TREC-9 MeSH topics file, named
“query.mesh.1-4904”. The document collection that we cre-
ated has a total of 800 documents, containing 6,281 distinct
words after document preprocessing. The average length of
the documents is about 110 (by words).

5.1.2 RCV1 Document Collection
We also generated a document collection of RCV1 cor-

pus [4]. RCV1 is a corpus that was published by Reuters
Corporation for research purposes. It contains 806,792 doc-
uments, each consisting of hundreds up to thousands words.
The documents have been manually enriched by meta infor-
mation like category (also called topic), geographic region,
or industry sector. RCV1 has 103 different categories, ar-
ranged within a hierarchy of four top level categories.
OurOHSUMED document collection has 8 disjoint groups

of documents already. It is not necessary to build a new doc-
ument collection under such a strict condition again. The
purpose of the new RCV1 document collection is that, we
want to test the effectiveness of three clustering algorithms
in a more complicated situation near to practice.
We manually identify 10 irrelevant categories according to

our knowledge. The category index terms are: C11, C12,
C21, C41, E11, GREL, GSCI, GSPO, GWEA, and M11.
We build a group of documents with regard to each category
of C11, C12, C21, C41, E11, M11 : firstly all documents us-
ing the index term as their first class term are selected, then
200 documents are randomly chosen from them to form the
document group. For documents of categoriesGREL, GSCI,
GSPO, GWEA, because the documents share a same first
class term GCAT, we randomly select 200 documents from
all documents whose second class term are the corresponding
term for each category. Finally the document collection has
10 groups of documents, containing 19,229 distinct words.
The average length of documents is about 150.

5.2 Results and Discussion
We constructed 3 document sets from OHSUMED and

RCV1 document collections respectively. The overview of
the 6 document sets is illustrated in Table 1, where #nodes
designates the total number of nodes in the suffix tree gen-
erated by the data set, and #overlap nodes designates the
number of overlap nodes shared by at least two different
documents.
The original STC algorithm selects the 500 highest scoring

base clusters for further cluster merging, but only the top
10 clusters are selected from the merged clusters as the final
clustering result. Thus we also allowed GAHC algorithm
to generate 10 clusters in the our experiments to conduct
as fair as possible comparisons. We still recorded the total
number of clusters generated by the cluster merging in STC,
and also computed the F-measure score for each clustering
result respectively.
Table 2 lists the F-measure scores computed from the clus-

tering results of three clustering algorithms on 6 document
sets, where NSTC designates the results of the new suffix
tree similarity measure; TDC designates the results of tradi-
tional word tf-idf cosine similarity measure; STC designates
the results of all clusters generated by STC algorithm, and
STC-10 designates the results of the top 10 clusters gener-
ated by original STC algorithm; #clusters designates the
amount of clusters generated by STC algorithm for each
document set.
Comparing with the results of STC-10, NSTC algorithm

has a performance improvement of 80% on the average F-
measure scores of 6 document sets. Comparing with re-
sults (TDC) of traditional word tf-idf cosine similarity mea-
sure with the same GAHC algorithm, NSTC algorithm also
achieved an improvement of 51% on the average F-measure
scores.
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Table 1: Overview of the Document Sets (Corpus Type: O-OHSUMED, R-RCV1)
Document Set DS1 DS2 DS3 DS4 DS5 DS6
Corpus Type O O O R R R
#categories 3 5 8 4 6 10
#documents 300 500 800 400 600 2,000
#nodes 57,490 100,172 151,289 233,323 313,965 505,405
#overlap nodes 5,342 8,914 13,259 29,644 37,945 57,855

Table 2: F-measure Scores of the clustering results for 6 Document Sets
Document Set DS1 DS2 DS3 DS4 DS5 DS6 Average
STC 0.70 0.72 0.67 0.73 0.68 0.56 0.68
#clusters 452 473 474 445 451 482 457
STC-10 0.56 0.38 0.28 0.77 0.47 0.28 0.46
TDC 0.73 0.67 0.33 0.62 0.59 0.37 0.55
NSTC 0.91 0.94 0.80 0.83 0.85 0.67 0.83
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Figure 4: The F-measure scores for different idfthd

values

The results of STC also discover a potential improvement
in STC algorithm, because STC can obtain quite high F-
measure scores (0.68) in the 6 document sets when all final
clusters are taken into account. The experimental results
indicate the major reason decreasing the effort of STC al-
gorithm - there is no effective measure to evaluate the qual-
ity of the clusters during the cluster merging (single-link),
eventually the quality of merged clusters cannot be assessed.
Thus STC algorithm seldom generated large size clusters
with high quality in the experiments. In contrast, NSTC
can achieve significant performance improvements with the
efficient evaluation measure provided by GAHC algorithm.
Figure 4 shows the effect of threshold idfthd for ignor-

ing the stopnodes in NSTC algorithm, the results are ob-
tained from DS3 document set, which contains all docu-
ments of OHSUMED document collection. The F-measure
score reaches the top score of 0.801 while idfthd is set to be
2.3.
DS6 document set contains all documents of 10 groups

in RCV1 document collection. We use class1-10 to repre-
sent the 10 groups respectively. Figure 5, 6, and 7 respec-
tively illustrate the Precision, Recall, F-measure scores of
each cluster in the clustering result of DS6 (there are only

9 non-empty clusters in the result). It’s easy to find that,
the 5th cluster is composed of the documents of 3 classes,
namely class1, class2, class4 (C11, C12, C41 ). The cluster
shows that some intersections possibly appear among the
documents of the 3 classes. In fact, the method that we
used to build RCV1 document collection just ensures the
first or second class term of the documents to be disjoint.
It is possible that the documents in different classes share
a same second or third class term of the corpus category
index. The average F-measure scores that we obtained in
DS4, DS5, DS6 is 0.783, which is very close to the average
F-measure scores of 0.78 achieved by paper [20]. However,
unlike the hybrid measure that they proposed combining
single word tf-idf similarity measure and graph-based sim-
ilarity measure, the complexity of our suffix tree similarity
measure is simpler and more feasible in practice.
Figure 8 captured a snapshot from a clustering result of

the Web document clustering algorithm as presented in Sec-
tion 4. It demonstrates the Topic Summary and the top 5
threads’ subject title of two categories. The post data in
the experiment are from Apple discussion community (dis-
cussions.apple.com). It’s a commercial technical support fo-
rum for the products of Apple Company. We choose 500
threads in the forum “ iPOD with color display - Connect-
ing to Windows” for this experiment. (We wrote a Web
crawler to automatically download the Web pages of the
online forum community in Nov. 2005, all these Web pages
were parsed into posts and stored in several tables for our
research [8].)

6. CONCLUSIONS AND FUTURE WORK
Both traditional vector space model and suffix tree model

play important roles in text-based information retrieval. How-
ever, the two models are used in two isolated ways: almost
all clustering algorithms based on VSD model ignore the
occurring position of words in the document, the differ-
ent semantic meanings of a word in different sentences are
unavoidably discarded. Suffix tree document model keeps
all sequential characteristics of the sentences for each docu-
ment, phrases consisting of one or more words are used to
designate the similarity of two documents. But the origi-
nal STC algorithm cannot provide an effective evaluation
method to assess the quality of clusters. This paper pro-
poses a new suffix tree similarity measure to successfully
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Figure 5: The Precision scores for each cluster in
the result of DS6 document set
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Figure 6: The Recall scores for each cluster in the
result of DS6 document set
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Figure 7: The F-measure scores for each cluster in
the result of DS6 document set

 + Category 1. iPOD, file, update, iTunes, fold

 |- 2 ipods on one computer

 |- Can I hook up my ipod to a friends computer to get his songs

 |- Songs on Hard drive vs.songs on source list.

 |- help! all existing songs will be replaced if i update?

 |- 60GB Photo iPod Replacement - STILL problems

+ Category 2. iPOD, USB, connect, update, device

 |- Cant Format Ipod.

 |- iPod 60GB won't power off.

 |- Computer eror happened during reformating

 |- Screen Frozen w Apple Image

 |- Belkin firewire card

.  .  .

Figure 8: A demo: the topic summaries of two cat-
egories in the Web document clustering result

connect both two document models. By completely map-
ping all nodes in the common suffix tree into a M dimen-
sional space of VSD model, the advantages of two document
models are smoothly inherited in the new document similar-
ity measure. The significant improvement of the clustering
performance in our experiments clearly indicates that word
order preservation is critical to document clustering and cat-
egorization. We believe that the new similarity measure is
suitable to not only hierarchical clustering algorithm but
also most traditional clustering algorithms based on VSD
model, e.g. K-means, single-pass. More performance eval-
uation comparisons for these clustering algorithms with the
new suffix tree similarity measure have been in the consid-
eration of our further work.
The concept of the suffix tree similarity measure is very

simple, but the implementation is quite difficult. Our work
presented in this paper is mainly focused on improving the
effectiveness of document clustering algorithms. Efficiency
optimization of the algorithm has been a target of our cur-
rent work, both the time efficiency and the space efficiency.
We can also foresee the potential power of the suffix tree
similarity measure in processing documents of other eth-
nological languages. Applying the new similarity measure
in Chinese document clustering is also a part of our future
work.
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