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ABSTRACT
In a social network, nodes correspond to people or other social en-
tities, and edges correspond to social links between them. In an
effort to preserve privacy, the practice of anonymization replaces
names with meaningless unique identifiers. We describe a family
of attacks such that even from a single anonymized copy of a social
network, it is possible for an adversary to learn whether edges exist
or not between specific targeted pairs of nodes.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems

General Terms
Theory, Measurement

Keywords
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1. INTRODUCTION
Anonymized Social Networks. Digital traces of human social in-
teractions can now be found in a wide variety of on-line settings,
and this has made them rich sources of data for large-scale studies
of social networks. While a number of these on-line data sources
are based on publicly crawlable blogging and social networking
sites [6, 20, 22], where users have explicitly chosen to publish their
links to others, many of the most promising opportunities for the
study of social networks are emerging from data on domains where
users have strong expectations of privacy — these include e-mail
and messaging networks, as well as the link structure of closed (i.e.
“members-only”) on-line communities [1, 2, 17, 19, 21]. As a use-
ful working example, consider a “communication graph,” in which
nodes are e-mail addresses, and there is a directed edge (u, v) if
u has sent at least a certain number of e-mail messages or instant
messages to v, or if v is included in u’s address book. Here we will
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be considering the “purest” form of social network data, in which
there are simply nodes corresponding to individuals and edges in-
dicating social interaction, without any further annotation such as
time-stamps or textual data.

In designing studies of such systems, one needs to set up the
data to protect the privacy of individual users while preserving the
global network properties. This is typically done through anony-
mization, a simple procedure in which each individual’s “name” –
e.g., e-mail address, phone number, or actual name – is replaced
by a random user ID, but the connections between the (now anon-
ymized) people – encoding who spoke together on the phone, who
corresponded with whom, or who instant-messaged whom – are re-
vealed. The motivation behind anonymizing is roughly as follows:
while the social network labeled with actual names is sensitive and
cannot be released, there may be considerable value in allowing re-
searchers to study its structure. For such studies, including those
cited above, researchers are not specifically interested in “who”
corresponds to each node, but in the properties of the graph, such as
its connectivity, node-to-node distances, frequencies of small sub-
graphs, or the extent to which it can be clustered. Anonymization
is thus intended to exactly preserve the pure unannotated structure
of the graph while suppressing the “who” information.

Can this work? The hope is that being handed an anonymized
picture of a social network — just a graph with a random iden-
tifier attached to each node — is roughly akin to being given the
complete social network of Mars, with the true Martian names at-
tached to the nodes. Intuitively, the names are meaningless to earth-
dwellers: we do not “know” the Martians, and it is completely irrel-
evant to us whether a given node in the graph is labeled “Groark”
or “Zoark”. The difficulty with this metaphor, of course, is that
anonymous social network data almost never exists in the absence
of outside context, and an adversary can potentially combine this
knowledge with the observed structure to begin compromising pri-
vacy, de-anonymizing nodes and even learning the edge relations
between explicitly named (de-anonymized) individuals in the sys-
tem. Moreover, such an adversary may in fact be a user (or set of
users) of the system that is being anonymized.

For distinguishing among ways in which an adversary might take
advantage of context, it is useful to consider an analogy to the dis-
tinction between passive attacks and active attacks in cryptanalysis
— that is, between attacks in which an adversary simply observes
data as it is presented, and those in which the adversary actively
tries to affect the data to make it easier to decipher. In the case
of anonymized social networks, passive attacks are carried out by
individuals who try to learn the identities of nodes only after the
anonymized network has been released. In contrast, an adversary
in an active attack tries to compromise privacy by strategically cre-
ating new user accounts and links before the anonymized network
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is released, so that these new nodes and edges will then be present
in the anonymized network.

The present work: Attacks on anonymized social networks. In
this paper we present both active and passive attacks on anony-
mized social networks, showing that both types of attacks can be
used to reveal the true identities of targeted users, even from just
a single anonymized copy of the network, and with a surprisingly
small investment of effort by the attacker.

We describe active attacks in which an adversary chooses an ar-
bitrary set of users whose privacy it wishes to violate, creates a
small number of new user accounts with edges to these targeted
users, and creates a pattern of links among the new accounts with
the goal of making it stand out in the anonymized graph structure.
The adversary then efficiently finds these new accounts together
with the targeted users in the anonymized network that is released.
At a theoretical level, the creation of O(

√
log n) nodes by the at-

tacker in an n-node network can begin compromising the privacy
of arbitrary targeted nodes, with high probability for any network;
in experiments, we find that on a 4.4-million-node social network,
the creation of 7 nodes by an attacker (with degrees comparable to
those of typical nodes in the network) can compromise the privacy
of roughly 2400 edge relations on average. Moreover, experimental
evidence suggests that it may be very difficult to determine whether
a social network has been compromised by such an active attack.

We also consider passive attacks, in which users of the system do
not create any new nodes or edges — they simply try to find them-
selves in the released network, and from this to discover the exis-
tence of edges among users to whom they are linked. In the same
4.4-million-node social network dataset, we find that for the vast
majority of users, it is possible for them to exchange structural in-
formation with a small coalition of their friends, and subsequently
uniquely identify the subgraph on this coalition in the ambient net-
work. Using this, the coalition can then compromise the privacy of
edges among pairs of neighboring nodes.

There are some obvious trade-offs between the active and pas-
sive attacks. The active attacks have more potent effects, in that
they are guaranteed to work with high probability in any network
(they don’t force users to rely on the chance that they can uniquely
find themselves after the network is released), and the attacker can
choose any users it wants to target. On the other hand, while the
passive attack can only compromise the privacy of users linked to
the attacker, it has the striking feature that this attacker can simply
be a user of the system who sees the anonymized network and in-
dulges his or her curiosity; there is no observable “wrongdoing” to
be detected. Moreover, since we find in practice that the passive
attack will succeed for the majority of the population, it says in ef-
fect that most people in a large social network have laid the ground-
work for a privacy-breaching attack simply through their everyday
actions, without even realizing it.

These trade-offs naturally suggest the design of hybrid “semi-
passive” attacks, in which a user of the system creates no new ac-
counts, but simply creates a few additional out-links to targeted
users before the anonymized network is released. As we show later,
this can lead to privacy breaches on a scale approaching that of the
active attack, without requiring the creation of new nodes.

We now summarize the results more fully, before moving on in
subsequent sections to the details behind them.

The nature of the attacks. We assume the social network is an
n-node graph G = (V, E), representing interactions in an on-line
system. Nodes correspond to user accounts, and an edge (u, v) in-
dicates that u has communicated with v (again, consider the exam-

ple of an e-mail or instant messaging network). The attacks become
easier to carry out if the released graph data is directed; for most of
the paper we will therefore consider the harder case of undirected
graphs, in which we assume that the curator of the data — the agent
that releases the anonymized network — eliminates the directions
on the edges.

The active attacks will make use of the following two types of
operations. First, an individual can create a new user account on
the system; this adds a new node to G. Second, a node u can de-
cide to communicate with a node v; this adds the undirected edge
(u, v) to G. The goal of the attack is to take an arbitrary set of
targeted users w1, . . . , wb, and for each pair of them, to use the
anonymized copy of G to learn whether the edge (wi, wj) in fact
exists. This is the sense in which the privacy of these users will be
compromised. (Other privacy compromises, such as learning the
degree of a targeted user, also occur, but we focus our attention on
learning about edges.)

The structure of the active attack is roughly as follows. Before
the anonymized graph is produced, the attacker creates k new user
accounts (for a small parameter k), and it links them together to cre-
ate a subgraph H . It then uses these accounts to create links (e.g.
by sending messages or creating address book entries) to nodes in
{w1, . . . , wb}, and potentially other nodes as well. Now, when
the anonymized copy of G is released, this subgraph H will be
present, as will the edges connecting H to w1, . . . , wb. The at-
tacker finds the copy of H that it planted in G, and from this it
locates w1, . . . , wb. Having identified the true location of these
targeted users in G, the attacker can then determine all the edges
among them, thereby compromising privacy.

There are a number of challenges in making this high-level ap-
proach actually work. First, if only a single copy of G is going to
be released, then the attacker needs to construct H before having
seen the structure of G. This means constructing a subgraph H
that is likely to be uniquely identifiable in G, regardless of what G
looks like. Second, the attacker needs to be able to efficiently find
its copy of H hidden within G — in other words, it needs to create
an instance of the subgraph isomorphism problem that is tractable
to solve, even in a graph G with several million nodes.

The passive attack is based on the observation that most nodes in
real social network data already belong to a small uniquely identifi-
able subgraph. Hence, if a user u is able to collude with a coalition
of k − 1 friends after the release of the network, he or she will be
able to identify additional nodes that are connected to this coalition,
and thereby learn the edge relations among them.

It is also worth noting, however, that even the active attacks only
involve the use of completely innocuous operations in the context
of the system being compromised — the creation of new accounts,
and the creation of links to existing accounts. In this sense, while
the active attacker’s aims are nefarious (and, in almost any imag-
inable scenario, prohibited either by research ethics guidelines or
the terms of service of the system, or both), none of the individ-
ual steps from which the attack is constructed could be viewed at
a syntactic level as “breaking into” parts of the system where it is
not allowed. We also note, without going into the technical details
here, that the active attacks are not something that degrade if many
people are trying to execute them: even if many separate parties
simultaneously run copies of the active attack, the high probability
outcome is that all of them will succeed.

Parameters of the active attacks. To produce a subgraph likely
to be unique in the network, an active attacker can use random gen-
eration: it creates k user accounts, and produces links by creating
an edge between each pair independently at random.
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We present two different active attacks employing this high-level
idea, but differing in their specifics. For the first attack, we show
that with k = Θ(log n) new accounts, a randomly generated sub-
graph H will be unique with high probability, regardless of what
G looks like and regardless of how H is attached to the rest of
G. Moreover, if the maximum node degree in H is Θ(log n), then
H is recoverable efficiently, together with the identities of up to
b = Θ(log2 n) targeted nodes to whom the attacker created links
from H . The recovery algorithm for H uses a search over short
walks in G, and accordingly we call it the walk-based attack.

In practice, k can be set to values even smaller than the bounds
suggest, and recovery is very efficient. In computational experi-
ments on a 4.4-million-node social network, a subgraph built using
k = 7 new nodes, and degrees comparable to those of typical nodes
in the network, can reveal an average of 70 targeted nodes, and
hence the

`
70
2

´
= 2415 edge relations among them. We also pro-

vide evidence that it may be hard to detect whether such a subgraph
H has been inserted into G; we will discuss the issue of detection in
more detail below. Finally, we note that for the passive attack, we
use the efficient recovery algorithm designed for this walk-based
attack in order to identify a small coalition of existing nodes in the
anonymized network.

The second active attack is similar in flavor; it also constructs
H by including edges at random, but it attaches H to G using very
few edges and recovers it using a more complex computation based
on Gomory-Hu cut trees [16, 18]. Hence we will refer to it as
the cut-based attack. The “thin” attachment of H to the rest of G
implies that H will likely be unique and efficiently findable at an
asymptotically smaller value of k: the cut-based attack uses k =
O(
√

log n) to reveal the identities of Θ(
√

log n) targeted nodes.
There are some trade-offs between the two active attacks. The

walk-based attack comes with an extremely fast recovery algorithm
that easily scales to millions of nodes, and it appears to be very hard
to detect. The cut-based attack has the advantage of matching the
tight theoretical bound on the number of nodes needed — we can
show that an attacker must create at least Ω(

√
log n) new nodes

in the worst case to begin compromising the privacy of arbitrary
targeted nodes. The use of Gomory-Hu trees in the cut-based at-
tack makes its recovery algorithm more expensive than that of the
walk-based attack (though see the recent successes with Gomory-
Hu computations on large-scale network analysis in [16]). Finally,
the walk-based attack has the potential to compromise Θ(k2) users,
while the cut-based attack can only compromise O(k), and it also
appears easier to detect that the cut-based attack has taken place.

Related work. In a variety of settings different from the social
network context here, recent work has considered ways of attack-
ing anonymization and related schemes using content analysis of
the text generated by users [7, 25], time series analysis of the time-
stamps of user actions [24], or linkages among user records in dif-
ferent datasets [26]. In our case, however, both the passive and
active attackers do not have access to highly resolved data like
time-stamps or other numerical attributes; they can only use the
binary information about who links to whom, without other node
attributes, and this makes their task more challenging. Indeed,
constructing the subgraph H can be seen as a kind of structural
steganography, hiding secret messages for later recovery using just
the social structure of G.

In this way, our approach can be seen as a step toward under-
standing how techniques of privacy-preserving data mining (see
e.g. [8, 10, 12, 15, 23] and the references therein) can inform how
we think about the protection of even the most skeletal social net-
work data. We take up this discussion further in the final section.

2. THE WALK-BASED ATTACK
We begin by describing the specifics of the walk-based attack;

we then analyze the method in Section 2.2, and report on computa-
tional experiments with it in Section 2.3.

2.1 Description of the Attack
Let G = (V, E) be the n-node graph representing the anony-

mized social network that is released. As noted above, we consider
the undirected case, in which there is an undirected edge (u, v) if
at least one of the directed edges (u, v) or (v, u) is present. We
focus on the undirected case because the attack becomes easier if
the graph is directed.

Let us consider the problem from the perspective of the attacker.
For ease of presentation, we begin with a slightly simplified version
of the attack, and then show how to extend it to the attack we really
use. We first choose a set of k named users, W = {w1, . . . , wk},
that we wish to target in the network — we want to learn all the
pairs (wi, wj) for which there are edges in G. To find each wi

in the anonymized graph, we use the following strategy. We first
create a set of k new user accounts, X = {x1, . . . , xk}, which
will appear as nodes in the system. We include each undirected
edge (xi, xj) independently with probability 1/2. This produces a
random graph H on X .

We also create an edge (xi, wi) for each i. (As discussed above,
this involves having xi send wi a message, or include wi in an
address book, or some other activity depending on the nature of
the social network.) For describing the basic version of the attack,
we also assume that, because the account xi corresponds to a fake
identity, it will not receive messages from any node in G−H other
than potentially wi, and thus will have no link to any other node in
G − H . However, we will see later that the attack can be made to
work even when this latter assumption does not hold.

When the anonymized graph G is released, we need to find our
copy of H , and to correctly label its nodes as x1, . . . , xk. Having
found these nodes, we then find wi as the unique node in G−H that
is linked to xi. We thus identify the full labeled set W in G, and we
can simply read off the edges between its elements by consulting
G.

A number of technical ingredients are needed in order to make
this plan work, based on whether certain subgraphs have the same
structure as each other, and whether they have any internal symme-
tries. To express such questions, we use the following terminology.
For a set of nodes S, we let G[S] denote the subgraph of G induced
by the nodes in S. An isomorphism between two sets of nodes S
and S′ in G is a one-to-one correspondence f : S → S′ that maps
edges to edges and non-edges to non-edges: (u, v) is an edge of
G[S] if and only if (f(u), f(v)) is an edge of G[S′]. In this case,
G[S] and G[S′] are isomorphic — they are the same graph up to
relabeling. An automorphism is an isomorphism from a set S to it-
self — a relabeling of the nodes f : S → S that preserves graph’s
structure. An automorphism f is non-trivial if it is not the identity
function.

Thus, the construction of H succeeds if

(i) there is no S 6= X such that G[S] and G[X] = H are iso-
morphic;

(ii) the subgraph H can be efficiently found, given G; and
(iii) the subgraph H has no non-trivial automorphisms.
If (i) holds, then any copy of H we find in G must in fact be the one
we constructed; if (ii) holds, then we can in fact find the copy of H
quickly; and if (iii) holds, then once we find H , we can correctly
label its nodes as x1, . . . , xk, and hence find w1, . . . , wk.

The full construction is almost as described above, with the fol-
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lowing three additions. First, the size of the targeted set W can
be larger than k. The idea is that rather than connect each wi to
just a single xi, we can connect it to a subset Ni ⊆ X , as long
as wi is the only node in G − H that is attached to precisely the
nodes in Ni — this way wi will still be uniquely identifiable once
H is found. Second, we will explicitly randomize the number of
links from each xi to G − H , to help in finding H . And third,
to recover H , it is helpful to be able to traverse its nodes in order
x1, x2, . . . , xk. Thus, we deterministically include all edges of the
form (xi, xi+1), and randomly construct all other edges.

The Construction of H. With this informal discussion in mind,
we now give the full specification of the attack.

(1) We choose k = (2 + δ) log n, for a small constant δ >
0, to be the size of X . We choose two constants d0 ≤ d1 =
O(log n), and for each i = 1, 2, . . . , k, we choose an external
degree ∆i ∈ [d0, d1] specifying the number of edges xi will have
to nodes in G − H . Each ∆i can be chosen arbitrarily, but in
our experiments with the algorithm, it works well simply to choose
each ∆i independently and uniformly at random from the interval
[d0, d1].

(2) Let W = {w1, w2, . . . , wb} be the users we wish to target,
for a value b = O(log2 n). We also choose a small integer constant
c (c = 3 will suffice in what follows). For each targeted node wj ,
we choose a set Nj ⊆ {x1, . . . , xk} such that all Nj are distinct,
each Nj has size at most c, and each xi appears in at most ∆i of the
sets Nj . (This gives the true constraint on how large b = O(log2 n)
can be.) We construct links to wj from each xi ∈ Nj .

(3) Before generating the random internal edges of H , we add
arbitrary further edges from H to G−H , so that each node xi has
exactly ∆i edges to G−H . We construct these edges subject only
to the following condition: for each j = 1, 2, . . . , b, there should
be no node in G − H other than wj that is connected to precisely
the nodes in Ni.

(4) Finally, we generate the edges inside H . We include each
edge (xi, xi+1), for i = 1, . . . , k − 1, and we include each other
edge (xi, xj) independently with probability 1/2. Let ∆′

i be the
degree of xi in the full graph G (this is ∆i plus its number of edges
to other nodes in X).

This concludes the construction. As a first fact, we note that stan-
dard results in random graph theory (see e.g. [9]) imply that with
high probability, the graph H has no non-trivial automorphisms.
We will assume henceforth that this event occurs, i.e., that H has
no non-trivial automorphisms.

Efficiently recovering H given G. When the graph G is released,
we identify H by performing a search to find the path x1, x2, . . . , xk.
We start at every node in G of degree ∆′

1, and successively try
adding any node with the correct degree and the correct edges back
to nodes already on the path. In this way, we are pruning the search
based on two kinds of tests: a degree test, that each possible candi-
date for node xi should have the correct degree ∆′

i; and an internal
structure test, that each possible candidate for node xi should have
edges to the correct subset of {x1, x2, . . . , xi−1}.

Here is a full description of the search algorithm.
(1) A rooted search tree T represents the progress of our search.

Each node α in T other than the root corresponds to a node in G,
which we will denote f(α), and the same node in G can poten-
tially appear multiple times in T . We construct T so that for every
path of nodes α1, . . . , α` from the root, the corresponding nodes
f(α1), . . . , f(α`) form a path in G with the same degree sequence
and same internal edges as x1, . . . , x`; and conversely every such
path in G corresponds to a distinct rooted path in T .

(2) We construct T by initially creating a dummy root node α∗.
At any intermediate point in the construction, we take each current
leaf node α, with a path α∗ = α0, α1, . . . , α` = α leading to it,
and we find all neighbors v of f(α) in G for which the degree of
v is ∆′

`+1, and (f(αi), v) is an edge if and only if (xi, x`+1) is an
edge for each i = 1, . . . , `. For each such v, we create a new child
β of α, with f(β) = v.

(3) Finally, if there is a unique rooted length-k path in T , then
this must correspond to the nodes of H , in order. Having found H ,
we then find the targeted nodes w1, . . . , wb owing to the fact that
wj is the only node with connections to precisely the nodes in Nj .
Note that the total running time is only a small factor larger than
the size of T .

2.2 Analysis
To prove the correctness and efficiency of the attack, we show

two things: with high probability the construction produces a unique
copy of H in G, and with high probability, the search tree T in the
recovery algorithm does not grow too large. It is important to stress
that although these proofs are somewhat intricate, this complexity
is an aspect of the analysis, not of the algorithms themselves. The
construction of H and the recovery algorithm have already been
fully specified in the previous subsection, and they are quite simple
to implement. In keeping with this, we have structured this sub-
section and the next (on computational experiments) so they can be
read essentially independently of each other.

We begin with the uniqueness result.

THEOREM 2.1. Let k ≥ (2 + δ) log n for an arbitrary posi-
tive constant δ > 0, and suppose we use the following process to
construct an n-node graph G:

(i) We start with an arbitrary graph G′ on n− k nodes, and we
attach new nodes X = {x1, . . . , xk} arbitrarily to nodes in
G′.

(ii) We build a random subgraph H on X by including each edge
(xi, xi+1) for i = 1, . . . , k − 1, and including each other
edge (xi, xj) independently with probability 1/2.

Then with high probability there is no subset of nodes S 6= X in G
such that G[S] is isomorphic to H = G[X].

Proof. To begin, letF0 be the event that there is no subset of nodes
S disjoint from X such that G[S] is isomorphic to H . (Note the
difference between F0 and the statement of the theorem — in F0,
we require that S be disjoint from X , not just unequal to X .) We
first prove

(CLAIM 1.) With high probability, the event F0 holds.
We can prove Claim 1 by adapting a short argument with its roots

in lower bounds for Ramsey numbers [5, 14]. For an ordered se-
quence S = (s1, s2, . . . , sk) of k nodes in G − H , let ES denote
the event that the function f : S → X given by f(si) = xi is an
isomorphism. Since all but k − 1 of the edges in H are chosen in-
dependently with probability 1/2, and since S is disjoint from X ,

we have Pr [ES ] = 2−(k
2)+(k−1) = 2−(k−1

2 ) = 21+3k/2 · 2−k2/2.
Now F0 = ∪SES , where the union is over all sequences of k

nodes from G−H . There are fewer than nk such sequences S, so
using the Union Bound and the fact that n ≤ 2k/(2+δ),

Pr [E ] < nk · 2−(k−1
2 ) ≤ 2k2/(2+δ) · 21+3k/2 · 2−k2/2

= 2[−δk2/2(2+δ)]+3k/2+1,

which goes to 0 exponentially quickly in k. This completes the
proof of Claim 1.
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This short argument for why F0 holds provides the technical in-
tuition behind the more general statement of the theorem. All the
remaining complexity in the proof comes from sets S that may par-
tially overlap X — and indeed this is the trickier kind of S to deal
with, since one can try to construct an isomorphism with H by
combining large parts of H with a few extra nodes elsewhere in the
graph.

Due to this complexity, we need two facts asserting that H does
not have much internal symmetry. For the second, we use the fol-
lowing definition: a node v is a fixed point of an isomorphism
f : S → S′ if v ∈ S ∩ S′ and f(s) = s.

(CLAIM 2.) For any constant c1 > 4, let F1 denote the event
that there are no disjoint sets of nodes Y and Z in H , each of
size c1 log k, such that H[Y ] and H[Z] are isomorphic. With high
probability, the event F1 holds.

(CLAIM 3.) Suppose event F1 holds; then for any constant
c2 ≥ 3c1 the following holds. Let A, B, and Y be disjoint sets of
nodes in G, with B, Y ⊆ X , and let f : A ∪ Y → B ∪ Y be an
isomorphism. Then the set f(A) contains at most c1 log k nodes
not in B, and the set Y contains at most c2 log k nodes that are not
fixed points of f .

The proof of Claim 2 closely parallels that of Claim 1, and we
omit this proof here.

To prove Claim 3, we build the following directed graph K on
A∪B∪Y : if f(v) = w, then we include a directed edge from v to
w. Note that in K, nodes in A have out-degree 1 and in-degree 0,
nodes in B have out-degree 0 and in-degree 1, and nodes in Y have
out-degree 1 and in-degree 1. Thus K consists of node-disjoint
paths, cycles, and self-loops, with the cycles and self-loops fully
in Y , and each path beginning at a node in A, possibly passing
through nodes in Y , and ending at a node in B. We say a path
component of K is non-trivial if it includes at least one node of Y .

First, note that there can be at most c1 log k non-trivial path com-
ponents in K; otherwise, if we let Y ′ ⊆ Y consist of all the penul-
timate nodes on these paths, and f(Y ′) = B′ ⊆ B, then Y ′ and B′

are disjoint subsets of X , of size more than c1 log k each, for which
H[Y ′] and H[B′] are isomorphic. This contradicts the assumption
that F1 holds. It follows that f(A) contains at most c1 log k nodes
not in B.

Next, let Z be the set of nodes in Y that are not fixed points of
f . Nodes in Z correspond to the nodes on the cycle components
in K, and the interior nodes on the path components. Suppose we
choose every other edge on each cycle and each path (starting with
the second edge on each path): we obtain at least |Z|/3 edges, since
the worst case is a length-3 cycle, where we get only one edge. Let
Z1 ⊆ Z be the tails of all these edges, and let Z2 ⊆ Z ∪B be their
heads. Then f(Z1) = Z2, and so G[Z1] and G[Z2] are isomorphic.
But Z1 and Z2 are disjoint subsets of X , so sinceF1 holds, we have
|Z1| = |Z2| ≤ c1 log k, and hence |Z| ≤ 3c1 log k ≤ c2 log k.
This completes the proof of Claim 3.

Finally, we set up the calculation that will conclude the proof of
the theorem. Suppose events F0 and F1 hold, and that there is a
non-empty set A ⊆ V −X such that, for some non-empty Y ⊆ X ,
the subgraph G[A∪Y ] is isomorphic to H . Let f : A∪Y → X be
the isomorphism, and B = X − Y . Let C = f(A), and D be the
set consisting of all nodes of Y that are not fixed points of f . By
Claim 3, we have |C −B| ≤ c1 log k and |D| ≤ c2 log k. Thus, if
j = |A| = |B| = |C|, then the set of fixed points Y ′ = Y −D−C
has size at least k− (c1 + c2) log k− j. We write k′ = k− (c1 +
c2) log k; since k = (2 + δ) log n, we have k′ ≥ (2 + 2δ1) log n
for a smaller constant δ1 > 0 and n sufficiently large.

To show that there is unlikely to be a second copy of H in G,
we search over all possible choices for A, B, C, and D within

the appropriate size bounds. (We keep track of the order of the
elements in A and C, which encodes the bijection between them.)
Thus, let EABCD be the event that G[A ∪ Y ] is isomorphic to H
(where Y = X − B), via an isomorphism f in which C = f(A)
and all elements in Y ′ = Y −D−C are fixed points of f . At most
j − 1 edges inside C belong to the path x1, x2, . . . , xk for which
edges were explicitly included; thus, at least

`
j
2

´
− (j − 1) edges

inside C are randomly generated. In order for EABCD to hold, all
of these must match the corresponding edges inside A (recall that
we are keeping track of the ordering of A and C). Similarly, the
≥ (k′ − j)j − 2j random edges created between C and Y ′ match
those between A and Y ′.

Since (k′ − j)j +
`

j
2

´
− 3j ≥ 1

2
k′j − 7

2
j, we have

Pr [EABCD] ≤ 2−
1
2 k′j+ 7

2 j ≤ 2−j(1+δ1) log n2
7
2 j = n−(1+δ1)j2

7
2 j .

Finally,

Pr [E ] ≤
X

A,B,C,D

Pr [EABCD] ≤
X
j≥1

njk2jkc2 log kn−(1+δ1)j2
7
2 j

=
X
j≥1

kc2 log k

 
2

7
2 k2

nδ1

!j

,

and this last expression goes to 0 as n increases.

Since the running time of the recovery algorithm is only a small
factor larger than the total number of nodes in the search tree T ,
we can bound the running time by bounding the size of this tree.

THEOREM 2.2. For every ε > 0, with high probability the size
of T is O(n1+ε).

Proof. Recall that k denotes the size of H , and let d be the max-
imum degree (in G) of a node in H . Both of these quantities are
O(log n). Let Γ′ be a random variable equal to the number of paths
of G−H corresponding to some node of T , and let Γ′′ be the num-
ber of paths in G that meet H and correspond to some node in T .
Then Γ = Γ′ + Γ′′ is the number of nodes in T , the quantity we
are seeking to bound. We will show how to bound E [Γ], assuming
that the events F0 and F1 from the proof of Theorem 2.1 hold.

We first bound E [Γ′], as follows. For a path P in G − H ,
let Γ′P = 1 if P corresponds to a node in T , and Γ′P = 0 oth-
erwise. Call P feasible if the degree of every node on P is at
most d. If P is not feasible, then Γ′P = 0 with probability 1.
Now consider a feasible P of length j ≤ k; for P to be repre-
sented in T , we need the edges among nodes on P to match the
edges among {x1, x2, . . . , xj}. We can imagine the edges among
{x1, x2, . . . , xj} (other than those on the known path x1, x2, . . . , xj)
as being generated after P is chosen, so E [Γ′P ] = Pr [Γ′P = 1] =

2−(j−1
2 ). The total number of feasible P of length j is at most

ndj−1. Thus,

E
ˆ
Γ′
˜
≤ n

kX
j=1

dj−12−(j−1
2 ) = n

kX
j=1

(d/2(j−2)/2)j−1.

Once j is Θ(log log n), each term inside the sum is O(1), so

E
ˆ
Γ′
˜
≤ nkdO(log log n) = O(n2O((log log n)2)).

Now we bound Γ′′, by decomposing it into a separate random
variable for each possible pattern in which a path could snake in
and out of H . Thus, we say that a template τ is a sequence of
` ≤ k symbols (τ1, . . . , τ`), where symbol τi is either a distinct
node of H or a special symbol ∗. We call the set of all nodes of H
that appear in τ the support of τ , and denote it s(τ). We will say
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that a path P in G is associated with τ if the ith node on P lies
in G − H for τi = ∗, and otherwise is equal to τi ∈ X . Finally,
we say that the reduction of τ , denoted τ , is the template for which
τ i = ∗ whenever τi = ∗, and for which τ i = xi otherwise. (We
will call such a τ a reduced template.)

Let Γ′′τ be a random variable equal to the number of paths P
associated with τ that are represented in the search tree T . If at
least one such path exists, then there is an isomorphism f : s(τ) →
s(τ) given by f(xr) = xi when τi = xr . Since we are assuming
that F1 holds, Claims 2 and 3 from the proof of Theorem 2.1 imply
that at all but at most O(log k) nodes are fixed points of f , and
hence that τ agrees with τ on all but O(log k) positions. Hence,
the only templates τ for which Γ′′τ can be non-zero are those that
differ in at most O(log k) positions from a reduced template.

We further decompose Γ′′τ into a sum over random variables
Γ′′τP , for feasible paths P associated with τ , where Γ′′τP = 1 if
P is represented in T , and 0 otherwise. Now, there are at most
kj reduced templates with j ∗’s, and hence at most kO(log k) · kj

arbitrary templates with j ∗’s for which Γ′′τ can be non-zero. For
each such τ , there are at most dj feasible paths P associated with
τ . Each such P has a probability of at most 2−(j−1

2 ) of being rep-
resented in T . Summing over all j gives

E
ˆ
Γ′′
˜

≤
X
τ,P

E
ˆ
Γ′′τP

˜
≤

kX
j=1

kjdjkO(log k)2−(j−1
2 )

≤ kO(log k)
kX

j=1

kd

„
kd

2(j−2)/2

«j−1

Once j is Θ(log kd) = Θ(log log n), each term is O(1), so

E
ˆ
Γ′′
˜

≤ kO(log k)O(log log n)(kd)O(log log n)

= O(2O((log log n)2)).

We conclude with some comments on the tests used in the re-
covery algorithm. Recall that as we build T , we eliminate paths
based on an internal structure check (do the edges among path
nodes match those in H?) and a degree check (do the nodes on
the path have the same degree sequence as H?). Although the
proofs of Therems 2.1 and 2.2 use just the internal structure check
to prove uniqueness and to bound the size of T respectively, it is
very important in practice that the algorithm use both checks: as the
experiments in the next subsection will show, one can get unique
subgraphs at smaller vales of k, and with much smaller search trees
T , by including the degree tests. But it is interesting to note that
since these theorems can be proved using only internal structure
tests, the attack is robust at a theoretical level provided only that
the attacker has control over the internal structure of X , even in
scenarios where nodes elsewhere in the graph may link to nodes
in X without the knowledge of the attacker. (In this case, we still
require that the targeted nodes wj ∈ W are uniquely identifiable
via the sets Nj , and that all degrees in X remain logarithmic.)

2.3 Computational Experiments

Social Network Data. We now describe computational experi-
ments with the algorithm on real social network data drawn from an
on-line setting. We find that the algorithm scales easily to several
million nodes, and produces efficiently findable unique subgraphs
for values of k significantly smaller than the upper bounds in the
previous subsections.
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Figure 1: For two different choices of d0 and d1, the value k = 7
gives the attack on the LiveJournal graph a high probability of
success. Both of these choices for d0 and d1 fall well within the
degrees typically found in G.

As data, we use the network of friendship links on the blogging
site LiveJournal, constructed from a crawl of this site performed in
Februrary 2006. Each node in LiveJournal corresponds to a user
who has made his or her blog public through the site; each user can
also declare friendship links to other users. These links provide the
edges of the social network we construct; they are directed, but we
follow the principle of the previous subsections and convert them
to undirected edges for purposes of the experiments. LiveJournal
thus works well as a testbed; it has 4.4 million nodes and 77 million
edges in the giant component of its undirected social network, and
it exhibits many of the global structural features of other large on-
line social networks. Finally, we emphasize that while LiveJournal
has the right structure for performing our tests, it is not in reality
an anonymous network — all of the nodes in the network represent
users who have chosen to publish their information on the Web.

We simulate anonymization by removing all the user names from
the nodes; we then run our attack and investigate the ranges of pa-
rameters in which it successfully identifies targeted nodes. As a
first question, we examine how often H can be found uniquely for
specific choices of d0, d1, and k. In our construction, we gen-
erate a random external degree ∆i for each node xi uniformly
from [d0, d1]. We then create links to targeted nodes sequentially.
Specifically, in iteration i we choose a new user wi in G − H to
target; we then pick a minimal subset X ′ ⊆ X that has not been
used for any wj for j < i, and where the degrees of nodes in X ′ are
less than their randomly selected target degrees. We add an edge
between wi and each user in X ′. We repeat this process until no
such X ′ can be found. If, at the end of the process, some nodes in
X have not yet reached their target degrees, we add edges to ran-
dom nodes in G (and remove nodes from W so that no two nodes
are connected to the same subset of X).

Uniqueness. We say the construction succeeds if H can be re-
covered uniquely. Figure 1 shows the success frequency for two
different choices of d0 and d1 (the intervals [10, 20] and [20, 60]),
and varying values of k. We see that the success frequency is not
significantly different for our two choices. In both cases the num-
ber of nodes we need to add to achieve a high success rate is very
small – only 7. With 7 nodes, we can attack an average of 34 and
70 nodes for the smaller and larger degree choices, respectively.
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We also note that the degree tests are essential for producing
unique identifiability of H at such a small value of k. In fact, each
of the 734 possible Hamiltonian graphs on 7 nodes actually occurs
in the LiveJournal social network, so it is only because of its degree
sequence in G that our constructed subgraph H is unique. (Theo-
rem 2.1 does guarantee that a large enough H will be unique purely
based on its internal structure; this is compatible with our findings
since the analyzed bound of (2 + δ) log n is larger than the value
k = 7 with which we are succeeding in the experiments.)

Efficient Recovery. In addition to being able to find H reliably,
we must be able to find H quickly. We argued above that the size of
T would remain sufficiently small that our search algorithm would
be near-linear. In our experiments on the LiveJournal friendship
graph we find that, in practice, the size of T is not much larger than
the number of nodes u such that d(u) = d(x1). For instance, when
d0 = 10 and d1 = 20, there are an average of 70,000 nodes which
have d(u) = d(x1), while the size of T is typically about 90,000.

Detectability. Finally, we consider the detectability of the attack.
Specifically, from the point of view of the attacker, it is important
that the curator of the data, who is releasing the anonymized ver-
sion, not be able to discover and remove H . As the curator does
not have access to the secret degree sequence or the edges within
H , they cannot employ the same algorithm the attacker uses to dis-
cover H . However, if H were to stand out significantly in some
other way, there might be an alternate means for finding it.

This is a difficult issue to capture formally, but we provide the
following indications that the subgraph H may be hard to discover.
First is the simple fact that H has only 7 nodes, so it is difficult
for any of its graph-theoretic properties to stand out with much sta-
tistical significance. Second, we describe some particular ways in
which H does not stand out. To begin with, the internal structure of
H is consistent with what is present in the network. For example,
we have already mentioned that every 7-node Hamiltonian graph
already occurs in LiveJournal, so this means that there are already
subgraphs that exactly match the internal structure of H (even if
not its pattern of attachment to G, which is also used to identify
it). More generally, almost all nodes in LiveJournal are part of a
very dense 7-node subgraph: If we look at all the nodes with de-
gree at least 7, and consider the subgraph formed by those nodes
and their 6 highest-degree neighbors, over 90% of such subgraphs
have at least 11 > 1

2

`
7
2

´
edges. These subgraphs are also almost all

comparably well-connected to the rest of G.

3. THE CUT-BASED ATTACK
In the walk-based attack just presented, one needs to construct a

logarithmic number of nodes in order to begin compromising pri-
vacy. On the other hand, we can show that at least Ω(

√
log n)

nodes are needed in any active attack that requires a subgraph H to
be uniquely identifiable with high probability, independent of both
the structure of G−H and the choice of which users to target.

It is therefore natural to try closing this gap between the O(log n)
number of nodes used by the first attack, and the Ω(

√
log n) lower

bound required in any attack. With this in mind, we now describe
our second active attack, the cut-based attack; it matches the lower
bound by compromising privacy using a subgraph H constructed
on only O(

√
log n) nodes. While the bound for the cut-based at-

tack is appealing from a theoretical perspective, there are several
important respects in which the walk-based attack that we saw ear-
lier is likely to be more effective in practice. First, the walk-based
attack comes with a much more efficient recovery algorithm; and

second, the walk-based attack appears to be harder for the curator
of the data to detect (as the cut-based attack produces a densely con-
nected component attached weakly to the rest of the graph, which
is uncommon in many settings).

The Construction of H. We begin the description of the cut-based
attack with the construction of the subgraph H .

(1) Let b, the number of users we wish to target, be Θ(
√

log n),
and let w1, w2, . . . , wb be these users. First, for k = 3b + 3, we
construct a set X of k new user accounts, creating an (undirected)
edge between each pair with probability 1/2. This defines a sub-
graph H that will be in G.

(2) Let δ(H) denote the minimum degree in H , and let γ(H)
denote the value of the minimum cut in H (i.e. the minimum num-
ber of edges whose deletion disconnects H). It is known that for a
random graph H such as we have constructed, the following prop-
erties hold with probability going to 1 exponentially quickly in k
[9]: first, that γ(H) = δ(H); second, that δ(H) ≥ (1/2− ε)k for
any constant ε > 0; and third, that H has no non-trivial automor-
phisms. In what follows, we will assume that all these properties
hold: γ(H) = δ(H) ≥ k/3 > b, and H has no non-trivial auto-
morphisms.

(3) We choose b nodes x1, . . . , xb in H arbitrarily. We create
a link from xi to wi, so that the edge (xi, wi) will appear in the
anonymized graph G.

Efficiently recovering H given G. Now, when G is released, we
identify the subgraph H and the targeted users w1, . . . , wb using
the following recovery algorithm.

(1) We first compute the Gomory-Hu tree of G [16, 18] — this
is an edge-weighted tree T on the node set V of G, such that for
any v, w ∈ V , the value of the minimum v-w cut in G is equal to
the minimum edge weight on the v-w path in T . Computing T is
the most expensive step of the recovery algorithm, computationally.
While the Gomory-Hu tree is constructable in polynomial time, it is
significantly less efficient than the method employed by the walk-
based attack. On the other hand, recent experiments in Web graph
analysis indicate that Gomory-Hu tree computations can in fact be
made to scale to very large graphs [16].

(2) We delete all edges of weight at most b from T , producing
a forest T ′. To find the set of nodes X we constructed, we iterate
through all components of T ′ of size exactly k — let them consist
of node sets S1, S2, . . . , Sr — and for each such Si we test whether
G[Si] is isomorphic to H . These isomorphism tests can be done
efficiently, even by brute force, since k! = o(n). Below, we prove
that with high probability, there will be a single i such that G[Si] is
isomorphic to H , and that Si is equal to our set X of new nodes.

(3) Since H has no non-trivial automorphisms, from knowledge
of Si we can identify the nodes x1, . . . , xb that we linked to the
targeted users w1, . . . , wb respectively. Hence we can identify the
targeted users as well, which was the goal.

If we wish to target a much larger number b of users, we choose
a number b′ = Θ(

√
log n), and we partition the targeted users into

sets U1, U2, . . . , Us, where s = db/b′e, and each Ui except pos-
sibly the last has size b′. We then apply the above construction to
each Ui, using a subgraph Hi chosen independently for the attack
on Ui (and note that we still compromise edges between all pairs
in W = ∪s

i=1Ui).

Analysis of the cut-based attack. We focus on the version where
b = Θ(

√
log n). The crux of the analysis is the proof of the fol-

lowing claim stated earlier.
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THEOREM 3.1. Let T be the Gomory-Hu tree of G, let T ′ be
the forest obtained by deleting all edges of weight at most b, and let
S1, S2, . . . , Sr be the node sets of all components of T ′ that have
size exactly k. Then with high probability, there is a single i such
that G[Si] is isomorphic to H , and the set Si is equal to X .

Proof. We first argue that X appears in the list of sets S1, . . . , Sr ,
and to do this, it is enough to show that X forms a single component
in T ′. Indeed, if v, w ∈ X belonged to different components of T ′,
then the v-w path in T would have to contain an edge of weight at
most b, contradicting the fact that γ(H) > b. Further, if v ∈ X and
w 6∈ X belonged to the same component of T ′, then the minimum
v-w cut in G would have weight greater than b, contradicting the
fact that there is a b-edge cut separating H from G−H .

Thus Si = X for some i. We now argue that with high prob-
ability, the subgraph G[Sj ] is not isomorphic to H = G[X] for
any j 6= i. Let Sj = {sj,1, . . . , sj,k}, and let X = {x1, . . . , xk}.
For a bijection f from {1, 2, . . . , k} to itself, let Ej,f be the event
that the subgraphs G[Sj ] and H are isomorphic under the map-
ping that sends sj,i to xf(i). Since the sets Sj and X are disjoint,

Pr [Ej,f ] = 2−(k
2). As long as k ≥ 1 +

p
(2 + ε) log n for any

constant ε > 0, we have

Pr [Ej,f ] = 2−(k
2) ≤ 2−(1+ε/2) log n = n−1−ε/2.

We are interested the probability of the event E = ∪j,fEj,f .
Since there are at most n/k possible sets Sj , we have

Pr [E ] ≤
X
j,f

Pr [Ej,f ] ≤ (n/k)k! · 2−(k
2) ≤ (k − 1)! · n−ε/2,

which goes to 0 with n since k! grows more slowly than nα for any
constant α > 0 when k is O(

√
log n).

Some specific numbers for the cut-based attack. It is useful to
supplement the asymptotic results for the cut-based attack with
some specific numbers. If the network G has 100 million nodes,
then by creating 12 new user accounts we can succeed in identify-
ing 3 chosen users in the system with probability at least .99. Cre-
ating 15 new user accounts leads to a microscopically small failure
probability.

The calculation is as follows. We first generate 100 random 12-
node graphs H1, . . . , H100, and see if any of them lacks non-trivial
automorphisms and has a minimum cut of size at least 4. If any of
them does, we choose one as our 12-node subgraph H . Computa-
tional experiments show that a random 12-node graph will have no
non-trivial automorphism, and γ(H) ≥ 4 with probability roughly
0.25. Thus, with probability well over 0.999, one of the 100 graphs
Hi will have this pair of properties. Now, if we use the ith of these
random graphs in the construction, for a fixed i, then applying the
argument and notation from the proof of Theorem 3.1, there are at
most 8333333 possible components Sj of size 12 in the forest T ′,
and so Pr [E ] ≤ 8333333 · 12! · 2−66 < 6 · 10−5. Hence the prob-
ability that any Hi will lead to non-uniqueness when attached to G
is at most .006, and so in particular this holds for the Hi that we
choose as H .

4. PASSIVE ATTACKS
In a passive attack, regular users are able to discover their lo-

cations in G using their knowledge of the local structure of the
network around them. While there are a number of different types
of passive attacks that could be implemented, here we imagine that
a small coalition of passive attackers collude to discover their lo-
cation. By doing so, they compromise the privacy of some of their
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Figure 2: Probability of success for different coalition sizes, in
the LiveJournal graph. When only the degrees and internal
structure of the coalition are taken into account, a coalition of
size 5 is needed to give a high probability of success. When the
more refined version of the algorithm is used, and the edges
connecting H to G − H are considered, only 4 users need col-
lude.

neighbors: those connected to a unique subset of the coalition, and
hence unambiguously recognizable once the coalition is found.

Here, we imagine that a coalition X of size k is initiated by one
user who recruits k−1 of his or her neighbors to join the coalition.
(Other structures could lead to analogous attacks.) We assume that
the users in the coalition know the edges amongst themselves –
the internal structure of H = G[X], using the terminology from
the active attack. We also assume that they know the names of
their neighbors outside X . This latter assumption is reasonable in
many cases: for example, if G is an undirected graph built from
messages sent and received, then each user in X knows its incident
edges. Other scenarios imply different levels of information: for
example, if an undirected released network G is obtained from a
directed graph where (u, v) indicates that v is in u’s address book,
then a node u does not necessarily know all its inbound edges, and
hence doesn’t know its full neighbor set in the undirected graph G.
However, in the comparably plausible variant in which the directed
version of an address book network is released, the nodes in X will
have all the information they need for the passive attack.

This brings us to the details of the attack, which is analogous to
the walk-based attack, except that the structure of H occurs organ-
ically as a natural function of individuals using the system. A user
x1 selects k−1 neighbors to form a coalition X = {x1, x2, . . . , xk}.
The coalition knows whether the edge (xi, xj) is in G or not. The
coalition also knows the neighbors outside X of each xi. Once G
is released, the coalition runs the same search algorithm described
in the walk-based attack, with a minor modification due to the fact
that H need not have a Hamiltonian path, but instead has a single
node connected to all others.

To help the passive attack succeed, we can incorporate a fur-
ther optimization that was not explicitly discussed earlier in the
walk-based active attack experiments. For each non-empty set S ⊆
{1, 2, . . . , k}, we let g(S) denote the number of users to whom ex-
actly the coalition members {xi : i ∈ S} are connected. Using this
information, a path in T , corresponding to nodes f(α1), . . . , f(αk =
α), must satisfy an additional constraint. If we define gα(S) anal-
ogously to g(S), but for the sequence f(α1), . . . , f(αk = α) in-
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Figure 3: As the size of the coalition increases, the number of
users in the LiveJournal graph compromised under the passive
attack when the coalition successfully finds itself increases su-
perlinearly. The number of users the semi-passive attack com-
promises increases exponentially.

stead of x1, . . . , xk, then for α to correspond to a match of H , it
must have g(S) = gα(S), for all non-empty S ⊆ {1, . . . , k}.

Once the coalition X finds itself, it is able to determine the iden-
tity of some subset of its neighbors in G − X . If a user w is con-
nected to {xi : i ∈ S}, and g(S) = 1, then the identity of the
user w can be uniquely recovered in G. As the coalition has not
specifically targeted any nodes, it is possible (and indeed likely for
small coalitions) that although they can uniquely find themselves,
they cannot locate any specific users other than themselves. How-
ever, empirically, we find that once a coalition is moderately-sized,
it can compromise the privacy of at least some users.

Since the structure of H is not randomly generated, there is no
a priori reason to believe that it will be uniquely findable, or that
the above algorithm will run efficiently. Indeed, for pathological
cases of G and H the problem is NP-Hard. However, we find on
real social network data that the instances are not pathological, and
that subgraphs on small coalitions tend to be unique and efficiently
findable.

The primary disadvantage of this attack in practice, as compared
to the active attack, is that it does not allow one to compromise the
privacy of arbitrary users. However, a natural extension is a semi-
passive attack whereby a coalition of existing users colludes to at-
tack specific users. To do this, the coalition X forms as described
above with x1 recruiting k− 1 neighbors. Next, the coalition com-
pares neighbor sets to find some set S ⊆ X such that g(S) = 0.
Then, to attack a specific user w, each user in {xi : i ∈ S} adds an
edge to w. Then, assuming that the coalition can uniquely find H ,
they will certainly find w as well.

4.1 Computational Experiments
Here we consider the passive attack on the undirected version

of the LiveJournal graph. For varying k, we consider a coalition
of a user x1, and his or her k − 1 highest-degree neighbors. (We
also consider the case where x1 selects k− 1 neighbors at random;
the success rate here is similar.) We do this for a randomly chosen
sample of users x1 whose degree is at least k−1. We then imagine
that these users carry out the attack described above, searching all
of G for a match. In our experiments, we consider both the simple
version where the coalition uses only the internal structure of H and

the degree sequence, and also the version where additional structure
of the links between H and G−H is used via the function g(S).

We find that even coalitions as small as 3 or 4 users can often find
themselves uniquely, particularly when using the refined version of
the algorithm. Figure 2 summarizes the success rates for different-
sized coalitions using both recovery algorithms. Furthermore, with
minimal preprocessing, G can be searched for a particular coalition
almost immediately: On a standard desktop, it takes less than a
tenth of a second, on average, to find a coalition of size 6.

At first glance, these results seem at odds with the results for
the active attack in Figure 1, as the passive attack is producing a
higher chance of success with fewer nodes. However, in the active
attack, we limited the degrees of the users created in an effort to
remain inconspicuous. In the passive attack, there is no such limit,
and many users’ highest-degree neighbor has degree well over the
limit of 60 that we imposed on the active attack. Since there are
fewer users with higher degrees, this has the effect of increasing
the findability of H . When we consider only those coalitions whose
members all have degrees analogous to those in the active attack,
the results are similar to the active attack.

While the above results show that a coalition can find itself eas-
ily, this does not mean that it can identify other nodes with cer-
tainty. Clearly, a coalition of size k cannot compromise more than
2k − 1 users, and in practice we see that the actual number is typ-
ically much smaller than this. Figure 3 shows the average number
of users compromised by successful coalitions of various sizes. We
see that even with a coalition of size 6, the number of compromised
users tends to be small. However, with a semi-passive attack, we
can greatly increase the number of users compromised.

Figure 3 shows the increased number of users typically compro-
mised by the semi-passive attack (and recall that these users can be
chosen arbitrarily by the coalition). Moreover, when the coalition
is compromising as many users as possible, the semi-passive attack
tends to have a higher success rate.

5. DISCUSSION
It is natural to ask what conclusions about social network data

should be drawn from this work. As noted at the outset, our work
is not directly relevant to all settings in which social network data
is used. For example, much of the research into on-line social net-
works is conducted on data collected from Web crawls, where users
have chosen to make their network links public. There are also nat-
ural scenarios in which individuals work with social network data
under safeguards that are primarily legal or contractual, rather than
computational, in nature — although even in such cases, there are
compelling reasons why researchers covered by contractual rela-
tionships with a curator of sensitive data should still only publicly
release the results of analyses that are carried out through a privacy
mechanism, to prevent the information in these analyses from im-
plicitly compromising privacy. In cases such as these, where com-
putational safeguards are not the primary focus, important ques-
tions of data utility versus privacy still arise, but the questions in
these cases are not something that our results directly address.

What our results do show is that one cannot rely on anonymiza-
tion to ensure individual privacy in social network data, in the pres-
ence of parties who may be trying to compromise this privacy. And
while one natural reaction to these results is to try inventing meth-
ods of thwarting the particular attacks we describe, we think this
misses the broader point of our work: true safeguarding of privacy
requires mathematical rigor, beginning with a clear description of
what it means to compromise privacy, what are the computational
and behavioral capabilities of the adversary, and to what informa-
tion does it have access.
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There is a growing literature to which we can turn for thinking
about the problem of ensuring privacy in settings such as these.
There has been extensive recent work on privacy-preserving data
mining, beginning with [3, 4, 27], which rekindled interest in a
field quiescent since the 1980s, and increasingly incorporating ap-
proaches from modern cryptography for describing and reasoning
about information leakage (e.g. [15, 23, 10, 8, 12] and the ref-
erences therein). The notion of ε-differential privacy gives very
strong guarantees, independent of the auxiliary information and
computational powers of the adversary [12, 11]. This notion de-
parts from previous ones by shifting away from comparing what
can be learned about an individual with versus without the database,
instead concentrating on how the database behaves with versus with-
out the data of an individual.

A general interactive mechanism for ensuring differential pri-
vacy is given in [12]. In such a mechanism, a question is posed,
the exact answer is computed by the curator, and then a noisy ver-
sion of the true answer is returned to the user. If the questions
are known in advance then a good interactive mechanism directly
yields a good non-interactive mechanism: the curator computes the
answers to the questions, adds noise as appropriate, and releases
this simulated transcript of an interactive conversation.

The advantage of interaction lies in the case in which there is no
known, fixed-in-advance, small superset of questions to be asked
– precisely the typical situation for current research on social net-
works. Intuitively, to be “useful” the curator must produce an ob-
ject that answers all, or at least very many, questions fairly accu-
rately, while simultaneously preserving privacy. The problem is
not just one of conciseness: roughly speaking, the magnitude of
the noise added to protect privacy must increase with the number
of questions to be answered. This turns out to be inherent: there
are natural cases for which any object (interactive or otherwise)
that permits “too many” questions to be answered “too accurately”
results in blatant non-privacy [10, 13].

In summary, the design of non-interactive mechanisms for ensur-
ing reasonable notions of privacy in social network data is an open
question, and potential results here are constrained by these exist-
ing impossibility results. Hence, when computational safeguards
are sought to protect social network data, the only techniques of
which we are aware at the present time for simultaneously ensur-
ing individual privacy and permitting accurate analysis, when the
questions are not known in advance, are interactive.
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