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ABSTRACT
This paper proposes a random Web crawl model. A Web
crawl is a (biased and partial) image of the Web. This pa-
per deals with the hyperlink structure, i.e. a Web crawl is a
graph, whose vertices are the pages and whose edges are the
hypertextual links. Of course a Web crawl has a very special
structure; we recall some known results about it. We then
propose a model generating similar structures. Our model
simply simulates a crawling, i.e. builds and crawls the graph
at the same time. The graphs generated have lot of known
properties of Web crawls. Our model is simpler than most
random Web graph models, but captures the sames proper-
ties. Notice that it models the crawling process instead of
the page writing process of Web graph models.

Categories and Subject Descriptors
I.6.m [Simulation and Modeling]: Miscellaneous

General Terms
Theory

Keywords
web graph, crawling, crawl order, model, hyperlink structure

1. INTRODUCTION
The Web is a fascinating object, very extensively stud-

ied since a few years. Among the many research problems
it opens, an interesting one is the topological issues, i.e.
describing the shape of the Web [11]. Understanding the
hyperlink structure allowed the design of the most power-
ful search engines like Google, famous because it uses the
PageRank algorithm from Brin and Page [21], and the de-
sign of other ranking methods like HITS from Kleinberg [15],
and cyber-communities detection [19, 14], and many other
applications. However, we only know parts of the Web. The
crawlers are software that automatically browse the Web
and cache the “most relevant” information, especially the
documents URL and their hyperlinks. This is recursively
performed, the analysis of crawled pages allowing to get
new valid URLs. But bandwidth limitations, HTML er-
rors, unreferenced pages, removed or modified pages, and
the existence of dynamic pages (generated from requests in
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URL or from a session mechanism) make very hard, if not
impossible, to output “the” Web: crawlers instead produce
partial and biased images. This is not even a snapshot of the
Web, since the crawling takes a long time while the pages
are changing rapidly. From theses observations of the Web,
one can try to infer the properties of the “real” Web, the
underlying object, but it is hard since the biases are not
well known. So we can not say that the properties of The
Web graph are known, but only that some properties of Web
crawls are known. The object we deal with in this paper are
therefore the Web crawls, and not the Web itself.

In Section 2 we recall some of the most commonly admit-
ted properties of Web crawls. In order to explain why the
graphs have these properties, many hypotheses from sociol-
ogy or computer sciences fields have been proposed. Many
models describe random graphs and some of them (see Sec-
tion 3) are specifically designed to model Web Graphs, i.e.
the hyperlink structure of the Web. The authors usually
compare measurements on their random graphs with exist-
ing crawls of the Web and conclude how accurate their model
is [4, 6, 17, 18, 7, 2, 9, 10, 17, 18].

We also propose a model generating random Web crawls,
and show that our random crawls share a lot of properties
with real crawls. But our approach here is quite different
from the random Web graph models. Indeed we do not try to
model the page writing process, using sociological assump-
tions about how the people link their own pages to the ex-
isting ones. We try to model the pages crawling process
itself instead. So we do not suppose that pages are linked
preferentially to well-known pages, nor that the links of a
page are likely a copy of the links of another pages, or such
kind of things. We instead postulates only two things about
a crawl:

• The in- and out-degree of the pages follow Zipf laws
(aka power laws), and

• the graph is output by a crawler

We present our model in details in Section 4. In Section 5
we show that our random crawls have most of the main crawl
properties presented in Section 2.

2. WEB CRAWL PROPERTIES
Web crawls can be quite large objects (for instance Google

currently claims more than 8 billion pages in database) but
are very sparse graphs, since the average degree is around
7 links per page [8]. Here crawls are directed graphs. They
are not necessarily connected, since a connecting page may
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be removed from the Web and then deleted from the crawl.
They have very few sources (pages with no incoming links,
either submitted by peoples or unlinked after a while) and
a lot of sinks (pages not crawled yet or with no external
hyperlink).

2.1 Connectivity and Clustering
Small-World graphs, defined by Watts and Strogatz [24]

and studied by many authors since, are graphs that fulfill
the following two properties:

1. the characteristic path length (average distance be-
tween two vertices) is small: O(log n) or O(log log n)

2. the clustering coefficient (probability that two vertices
sharing a common neighbor are linked) is high: O(1).

This definition can be applied to directed graphs when
omitting arc direction. The Web (in fact the crawls) char-
acteristic path length seems small (about 16 clicks [8] or 19
[3]), consistant with the O(log n) axiom. Its clustering co-
efficient is high. Existing computations of its exact value
differ, but it is admitted that it is greater than 0.1, while
random graphs (Erdös-Rényi, see Section 3.1) with the same
average degree have clustering coefficient p ≃ 0.

Crawls diameter (maximum distance between two pages)
is potentially infinite because a dynamic page labeled by n
in URL may refer to a dynamic page labeled by n + 1, but
since Web crawlers usually perform BFS (see Section 4.1)
the diameter of crawls may be actually small.

2.2 Degree distribution
Zipf laws (a.k.a power laws) are probability laws such that

log(Prob(X = d)) = α − λ log(d)

If the in-degree (respectively out-degree) distribution of a
graph follows a Zipf law, Prob(X = d) is the probability
for a vertex to have in- (resp. out-) degree d. In other
words, the number of vertices with degree d is k.d−λ (k de-
pends on the number of vertices n). A graph class such that
the degree of almost all graphs follow a Zipf law is called
scale-free because some parameters like λ are scale invari-
ant. Scale-free graphs have been extensively studied [4, 6,
17, 18]. Many graphs modeling social networks, interaction
between objects (proteins, peoples, neurons...) or other net-
work properties seem to have the scale-free property.

For Web crawls, a measure from Broder & al. [8] on a
200 000 000 pages crawl show that the in and out-degrees
follow Zipf law. The exponents are λin = 2.1 for in-degree
and λout = 2.72 for out-degree.

2.3 Strongly connected components and the
Bow Tie structure

According to Broder, Kumar et al [8] the Web has a Bow
Tie structure: a quarter of the page are in a Giant Strongly
Connected Component (GSCC), a quarter are the “in” page,
leading to the GSCC but not linked from there, another
quarter are the “out” pages reachable from the GSCC but
not linking to it, and the last quarter is not related to the
GSCC. This famous assertion was reported even by Nature
[23] but, since four years, an increasing number of people
suspects it is a crawling artifact. According to the same
survey, the distribution of the size of strongly connected
components follows a Zipf law with exponent roughly 2.5.

2.4 Cores
Another well-known property of crawls is the existence of

cores. A core is a dense directed bipartite subgraph, consist-
ing in many hubs pages (or fans) pointing many authorities.
It is supposed [19, 16] that such cores are the central struc-
ture of cybercommunities, set of pages about the same topics.
The authorities are the most relevant pages, but they do not
necessarily point one each other (because competition, for
instance) but the hubs list most of them. Starting from this
assumption, HITS algorithm [15] ranks the pages containing
a given keyword according to a hub factor and an authority
factor. Kumar et al. [19, 18] enumerate over 200,000 bipar-
tite cores from a 200,000,000 pages crawl of the Web. Cores
sizes (counting hubs, authorities, or both) follow Zipf laws
of exponent between 1.09 and 1.4.

2.5 Spectral properties and PageRank factor
Another ranking method, the most popular since it does

not depends on given keywords, is Google’s PageRank factor
[21]. It is an accessibility measure of the page. Briefly, the
PageRank of a page is the probability for a random surfer
to be present on this page after a very long surf. It can
be computed by basic linear algebra algorithms. PageRank
distribution also follows a Zipf law with the same exponent
as the in-degree distribution [22]. Pages with high PageRank
are very visible, since they are effectively popular on the Web
and are linked from other pages with high PageRank. A
crawler therefore easily finds them [5, 20] while it may miss
low-ranked pages. This is indeed a useful bias for search
engine crawlers!

3. RANDOM GRAPHS MODELS

3.1 Basic models: Erd̈os-Rényi
For a long time the most used random graph model was

Erdös-Rényi model [13]. The random graph depends on two
parameters, the number of vertices n and the probability p
for two vertices to be linked. The existence of each edge is a
random variable independent from others. For suitable val-
ues (p = d/n), E.-R. graphs indeed have characteristic path
length of O(log n) but very small clustering (p = o(1)) and
degree distribution following a Poisson law and not a Zipf
law. Therefore they do not accurately describe the crawls.
Other models have then be proposed where attachment is
not independent.

3.2 Incremental generation models
Most random Web graph models [4, 6, 17, 18, 7] propose

an incremental construction of the graph. When the exis-
tence of a link is probed, it depends on the existing links.
That process models the creation of the Web across time.
In some models all the link going from a page are inserted
at once, and in other ones it is incremental.

3.3 Preferential Attachment models
The first evolving graph model (BA) was given by Barabasi

and Albert [4]. The main idea is that new nodes are more
likely to join to existing nodes with high degrees. This model
is now referred to as an example of a preferential attachment
model. They concluded that the model generates graphs
whose in-degree distribution follows a Zipf law with expo-
nent λ = 3.
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Another preferential attachment model, called the Lin-
earized Chord Diagram (LCD), was given in [6]. In this
model a new vertex is created at each step, and connects to
existing vertices with a constant number of edges. A vertex
is selected as the end-point of the an edge with probability
proportional to its in-degree, with an appropriate normal-
ization factor. In-degrees follow a Zipf law with exponent
roughly 2 when out-degrees are 7 (constant).

In the ACL [2] model, each vertex is associated a in-
weight (respectively out-weight) dependent of in-degree (re-
spectively out-degree). A vertex is selected as the end-point
of the an edge with probability proportional to its weight.
In these models edges are added but never deleted. The
CL-del model [9] and CFV model [10] incorporate in their
design both the addition and deletion of nodes and edges.

3.4 Copy models
A model was proposed by [17] to explain other relevant

properties of the Web, especially the great number of cores,
since the ACL model generates graphs which on average
contain few cores.

The linear growth coping model from Kumar& al. [18]
postulates that a Web page author shall copy an existing
page when writing its own, including the hyperlinks. In
this model, each new page has a master page from which it
copies a given amount of links. The master page is chosen
proportionally to in-degree. Other links from the new page
are then added following uniform or preferential attachment.
The result is a graph with all properties of previous models,
plus the existence of many cores.

These models often use many parameters needing fine
tune, and sociological assumptions on how the Web pages
are written. We propose a model based on a computer sci-
ence assumption: the Web graphs we know are produced by
crawlers. This allow us to design a simpler (it depends only
on two parameters get from experiments) and very accurate
model of Web crawl.

4. A WEB CRAWL MODEL
In this section, we present the crawling strategies and de-

rive our Web crawl model from them. It aims to mimic the
crawling process itself, rather than the page writing process
as web graph models do.

4.1 Web crawls strategies
Let us consider a theoretical crawler. We suppose the

crawler visits each page only once. The benefit is to avoid
modeling the disappearance of pages or links across time,
because the law it follows is still debatable (is the pages
lifetime related to their popularity, or to their degree prop-
erties?) When scanning a page, the crawler gets at once
the set of its outgoing links. At any time the (potentially
infinite) set of valid URL is divided into

1. Crawled : the corresponding pages were visited and
their outgoing links are known

2. Unvisited : a link to this URL has been found but not
probed yet

3. Erroneous: the URL was probed but points a non-
existing or non-HTML file (some search engines index
them, but they do not contain URL and are not inter-
esting for our purposes)

4. Unknown: the URL was never encountered

The crawling algorithm basically choose and remove from
its Unvisited set an URL to crawl, and then adds the out-
going unprobed links of the page, if any, to the Unvisited
set. The crawling strategy is the way the Unvisited set is
managed. It may be:

• DFS (depth-first search) The strategy is FIFO and the
data structure is a stack

• BFS (breadth-first search) The strategy is LIFO and
the data structure is a queue

• DEG (higher degree) The most pointed URL is chosen.
The data structure is a priority queue (an heap)

• RND (random) An uniform random URL is chosen

We suppose the crawled pages are ordered by their discov-
ery date. For discussing structural properties, the crawled
pages only are to be considered. Notice that the first three
strategies can only be correctly implemented with a single
computed. The most powerful crawlers are distributed on
many computers and their strategy is hard to define. It is
usually something between BFS and Random.

4.2 Model description
Our model shall mimic a crawler strategy. It works in

two steps: first constructing the set of pages, then adding
the hyperlinks.

Constructing the set of pages. Each page p has two fields:
its in-degree din(p) and its out-degree dout(p). In the first
step of the crawl constructing process, we set a value to each
of them. The in-degree and out-degree are set according to
two independent Zipf laws. The exponent of each law is
a parameter of the model, therefore our model depends on
two parameters λin (for in-degree) and λout (for out-degree).
These values are well known for real crawls: following [8],
we have λin = 2.1 and λout = 2.72.

We shall have to chose the pages at random according
to their in-degree. For solving the problem, n pages (the
maximal size of the crawl) are generated and their in- and
out-degrees are set. Then, a set L is created, where each
page p is duplicated din(p) times. The size of this set is
the maximal number of hyperlinks. Each time we need to
choose a page at random according to the in-degree law, we
just have to remove one element from L.

Constructing the hyperlinks. Now the pages degrees are
pre-set, but the graph topology is not yet defined. An algo-
rithm, simulating a crawling, shall add the links. There are
indeed four algorithms, depending on which crawling strat-
egy shall be simulated. The generic algorithm is simply:

1. Remove a page p from the Unvisited Set and mark p
as crawled

2. Remove the first dout(p) pages from L

3. Set these pages as the pages pointed by p

4. Add the unvisited ones to the Unvisited Set

5. Go to 1
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Figure 1: Out-degree distribution at three steps of
a BFS

The Unvisited Set is seeded with one or more pages. The
way it is managed depends on which crawling strategy is
simulated, i.e. which algorithm is chosen:

• For DFS algorithm, the Unvisited Set is a stack (FIFO)

• For BFS algorithm, it is a queue (LIFO)

• For DEG algorithm, it is a priority queue (heap)

• For RND algorithm, a random page is extracted from
the Unvisited Set

Because the average out-degree of a page is large enough,
the crawling process will not stop unless almost all pages
have been crawled. The progress of the crawl (expressed
in percent) is the fraction of crawled pages over n. As it
approaches n, some weird things will occur as no more un-
known pages are allowed. In our experiments (see the next
section) we sometimes go up to 100% progress but results
are more realistic before 30%; when the crawl can expand
toward unkown pages.

Our model differs radically from preferential attachment
or copy models because the neighborhood of a page is not set
at writing time but at crawling time. So a page is allowed
to point known or unknown pages as well.

5. RESULTS
We present here simulation results using the different strate-

gies and showing how the measurements evolve across time.
Thanks to the scale-free effect, the actual number of pages
does not matter, since it is big enough. We have used
several graphs of different sizes but with the same expo-
nents λin = 2.1 and λout = 2.72 (experimental values from
[8]). And unless otherwise specified, we present results from
BFS, the most used crawling strategy, and simulations up
to 20,000,000 crawled pages.

5.1 Degree distribution
At any step of the crawl, the actual degree distribution

follows a Zipf law of the given parameters (2.1 and 2.72)
with very small deviation (see Figures 1 and 2). This re-
sult is independent from the crawl strategy (BFS, etc.) It
demonstrates that our generated crawls really are scale-free
graphs.
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Figure 2: In-degree distribution at three steps of a
BFS

5.2 Small-World properties
The distribution of path length (Figure 3) clearly follows a

Gaussian law for BFS, DEG and RAND strategies. This dis-
tribution is plotted at progress 30% but it does not change
a lot accros time, as shown in Figure 5. DFS produces far
greater distances between vertices, and the distribution fol-
lows an unknown law (Figure 4). DFS crawls diameter is
about 10% of the number of vertices! This is because DFS
crawls are like long tight trees. It is why DFS is not used
by real crawlers, and this paper focuses on the three other
crawls strategies.

The clustering (Figure 6), computed on 500,000 pages
simulation) is high and do not decrease too much as the
crawl goes bigger. Our crawls definitely are small-world
graphs.

5.3 Bow-tie structure?
The relative size of the four bow-tie components (SCC,

IN, OUT and OTHER) are roughly the same for BFS, DEG
and even RAND (but not DFS) strategies (Figure 7). When
using only one seed, the size of the largest SCC converges
toward two thirds of the size of the graph. These proportions
thus differ from [8] crawl observations since the “in” and
“others” parts are smaller. But with many seeds (it may
be seen as many pages submitted to the crawler portal) the
size of the “in” component is larger and can be up to one
quarter of the pages. Our model replicates indeed very well
genuine crawls bow-tie topology.

5.4 Cores
We used Agrawal practical algorithm [1] for cores enu-

meration (notice that the maximal core problem is NP-
complete). Figure 10 gives the number of core of a given
minimal size for a crawl up to 25 000 vertices. As shown,
the number of cores is very dependent from exponents of Zipf
laws, since high exponents mean sparser graphs. It means
that our simulated crawls contain many core, as real crawls
do.

Figure 9 shows that the number of (4, 4)-cores (at least
four hubs and four authorities) is proportional to n and after
a while stays between n/100 and n/50.
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5.5 Pagerank distribution and “quality pages”
crawling speed

Figure 10 shows the PageRank distribution (PageRank is
normalized to 1 and logarithms are therefore negative). We
have found result similar to Pandurangan et al. observations
[22]: the distribution is a Zipf law with exponent 2.1. The
crawl quickly converges to this value.

Figure 11 shows the sum of the PageRank of the crawled
pages across time (the PageRank computed at the end of the
crawl, so that it must vary from 0 at beginning to 1 when
crawl stops). In a very few steps, BFS and DEG strategies
find the very small amount of pages that contains most of
the total PageRank. This property of real BFS crawlers is
known since Najork and Wiener [20]. Our results can be
compared to Boldi et al crawling strategies experiments [5].

5.6 Discovery speed and Frontier
Figure 12 shows another dynamical property: the discov-

ery rate. It is the probability for the extremity of a link
of being already crawled. It converges toward 40% for all
strategies. This is an interesting scale-free property: after a
while, the probability for a URL to point a new page is very
high, about 60%. This “expander” property is very usefull
for true crawlers. This simulation shows it does not depends
only on the dynamical nature of the web, but also from the
crawling process itself.

hubs auth cores hubs auth cores

2 2 220 3 6 5
2 3 83 3 7 2
2 4 37 4 4 40
2 5 14 4 5 14
2 6 14 4 6 5
2 7 14 4 7 2
3 3 84 5 5 12
3 4 37 5 6 3
3 5 14 6 6 3

Figure 8: Number of small cores (over 1000 pages)
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Figure 13 focuses on a well known topological property
of crawls, that our simulations also produces, the very high
number of sinks regardless of crawl size. Notice that their
existence is a problem for practical PageRank computation
[21]. In other words, the large “out” component of the bow-
tie is very broad and short... Eiron et al survey the Web
frontier ranking [12].

6. CONCLUSION
As said in Section 2, a good crawl model should output

graphs with the following properties:

1. highly clustered

2. with a short characteristic path length

3. in- and out-degree distributions follow Zipf laws

4. with many sinks

5. such that high PageRank vertices (as computed in the
final graph) are crawled early

6. with a bow tie structure
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As shown in Section 5, our model meets all these objectives.
Property 3 of course is ensured by the model, but the other
ones are results of the generating process. The basic as-
sumption of degree distribution, together with the crawling
strategy, is enough to mimic the properties observed in large
real crawls. This is conceptually simpler than other model
that also have the same properties like the Copy model [17].

The Bow Tie structure we observe differs from [8] since
the largest strongly connected component is larger. But to-
gether with the other topological properties measured, it
proves that we reproduce quite well the topology of real
crawls with our very simple model. It is nice, because we
have fewer assumption than [6] or [18]. Our approach is
different from the Web graph models, that mimic the page
writing strategy instead of the page crawling, but give sim-
ilar result. It points out that we need more numerical or
other measures on graph in order to analyze their structure.

BFS, RAND and DEG strategies are the most used in sim-
ple crawlers. We show that they produce very similar results
for topological aspects. For dynamical aspects (PageRank
capture for instance) BFS and DEG seems better, but are
harder to implement in a real crawler. DFS is definitely bad,
and for this reason is not used by crawlers. Parallel crawler
use, however, more sophisticated strategies that were not
modeled here.

So our random Web crawls model can be compared with
the existing random Web graph models [4, 6, 17, 18, 7, 2, 9,
10, 17, 18]. But unlike them, it is not based on sociological
assumptions about how the pages are written, but on an
assumption on the law followed by the pages degrees and,
for the structural properties, on only one assumption that
the graph is output by a crawler. The design is then quite
different from the design of the random Web graph models,
but the results are the same.

We can interpret this conclusion in a pessimistic way: it
is hard to tell what are the biases of the crawling. Indeed
we have not supposed that the Web graph has any other
specific property than degrees following a Zipf law, and yet
our random crawls have all properties of real crawls. This
means that one can crawl anything following a Zipf law, not
only the Web, and output crawls with the specific properties
of the Web crawls. So the comparison of the result of a Web
graph model with real crawls could be not enough to assert
that the model captures properties of the Web.
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