
Using Google Distance to Weight
Approximate Ontology Matches

Risto Gligorov
Zharko Aleksovski
Warner ten Kate

Philips Research, Eindhoven

zharko@few.vu.nl
warner.ten.kate@philips.com

Frank van Harmelen
Vrije Universiteit, Amsterdam

Frank.van.Harmelen@cs.vu.nl

ABSTRACT
Discovering mappings between concept hierarchies is widely re-
garded as one of the hardest and most urgent problems facing the
Semantic Web. The problem is even harder in domains where con-
cepts are inherently vague and ill-defined, and cannot be given a
crisp definition. A notion of approximate concept mapping is re-
quired in such domains, but until now, no such notion is available.

The first contribution of this paper is a definition forapproxi-
mate mappings between concepts. Roughly, a mapping between
two concepts is decomposed into a number of submappings, and a
sloppiness valuedetermines the fraction of these submappings that
can be ignored when establishing the mapping.

A potential problem of such a definition is that with an increasing
sloppiness value, it will gradually allow mappings between any two
arbitrary concepts. To improve on this trivial behaviour, we need
to design a heuristic weighting which minimises the sloppiness re-
quired to conclude desirable matches, but at the same time max-
imises the sloppiness required to conclude undesirable matches.
The second contribution of this paper is to show that aGoogle-
based similarity measurehas exactly these desirable properties.

We establish these results byexperimental validation in the do-
main of musical genres. We show that this domain does suffer from
ill-defined concepts. We take two real-life genre hierarchies from
the Web, we compute approximate mappings between them at vary-
ing levels of sloppiness, and we validate our results against a hand-
crafted Gold Standard.

Our method makes use of the huge amount of knowledge that is
implicit in the current Web, and exploits this knowledge as a heuris-
tic for establishing approximate mappings between ill-defined con-
cepts.
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1. INTRODUCTION & MOTIVATION

1.1 Introduction
The progress of information technology has made it possible to

store and access large amounts of data. However, since people think
in different ways and use different terminologies to store informa-
tion, it becomes hard to search each other’s data stores. With the
advent of the Internet, which has enabled the integrated access of an
ever-increasing number of such data stores, the problem becomes
even more serious.

The Semantic Web aims to use semantics in the retrieval process,
where the semantics is captured in ontologies or at the very least
in concept hierarchies. The task then is to find pairs of concepts
from different meta-data schemas that have an equivalent meaning,
a problem known as ontology matching. This problem has been
extensively studied in the Semantic Web and elsewhere, see [1, 2,
3, 4, 5] for recent survey papers.

However, in many realistic domains, it is impossible to give pre-
cise concept definitions, and consequently no crisp notion of con-
cept equivalence exists. Below we will illustrate this in the music-
domain (an important commercial domain on the Web), where mu-
sical genres are inherently imprecise. Such imprecision is a funda-
mental aspect of many other domains as well. Ontology matching
must then be redefined to finding a concept with the closest mean-
ing in the other schema when an equivalent one does not exist. We
then require mechanisms that are able to find approximate corre-
spondences rather than exact ones.

The first contribution of this paper is to define a notion ofap-
proximate ontology matchingbetween inherently imprecise domain
concepts (section 2). In section 3 we refine this definition with a
weighting function to ensure that the approximation method does
not simply allow any mappings, but that correct approximations
are favoured over incorrect ones. As the second main contribution
of this paper, in section 3.3, we instantiate this weighting func-
tion with a Google-based scheme, and show in section 4 through
experiments in the music domain that this weighting scheme has
indeed the desired behaviour of increasing recall without loosing
precision.

Before moving to the technical part of the paper, we first briefly
introduce the domain of musical genres, and will argue why this is
an appropriate domain for investigating techniques for approximate
ontology mapping.

1.2 Internet Music Schemas
The variety and size of music content on the Internet (even when

restricted to legal distributions) make it difficult to find music of
interest. It is often cumbersome to retrieve even a known piece of
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Figure 1: Low semantic agreement between ADN and MM.

music, given the large number of music providers, each with their
own music schema. Finding the right music that fits a user’s pref-
erences is dependent on semantic integration over different music
provider’s schemas.

Music content providers usually classify the music they offer into
classes for easy access. These classes are organised in a hierarchy.
We refer to the classified entities as instances. Usually these are
artists, albums, compilations, other kinds of releases, songs, etc.
The majority of the terms used to identify a class of music entities
are music genres and styles, for exampleBlues, Jazz,...with further
distinctions such asAmerican Blues, Electronic Jazz,....

Imprecision in Music Schemas.Music genres and styles are
intrinsically ill-defined, see [6, 7]. There is no single authority that
can decide for a music entity which genre or style it belongs to.
For example, it’s becoming increasingly difficult to categorise the
newly emerging musical styles that incorporate features from mul-
tiple genres. Also, the attempts to classify particular musicians in a
single genre are sometimes ill-founded as they may produce music
in a variety of genres over time or even within a single piece.

There are no objective criteria that sharply define music classes.
Genre is not precisely defined. When asked, people will classify the
same music entity in different genres, with an agreement of only
in the 30-40% region. As a result, different providers often clas-
sify the same music entities (artists, albums, songs...) differently.
Widely used terms like Pop and Rock do not denote the same sets
of artists at different portals, [6]. That is also the case for even more
specific styles of music like Speed Metal.

In our experiments when testing with instance data, we restricted
to the artists shared by MusicMoz and Artist Direct Network, i.e.
artists that are present and classified in both portals. In the sequel
we refer to them as MM and ADN, respectively. As an example,
from the class namedRock(including its subclasses) in MM there
are 471 shared classified artists, in ADN there are 245, and 196
shared artists are classified underRock in both of them. Hence,
from all the artists classified underRockin at least one of the two
portals, only about 38% (196 out of 520) is classified underRock
in both portals, see figure 1.

This example shows that there is a high degree of imprecision in
the music domain. Therefore we expect that reasoning methods that
look for exact matches are not useful, and approximate methods are
more appropriate.

Representation of hierarchical Music Schema.As with
any semantic concept, musical genres can in principle be defined
either intensionally (as a set of rules that define when an entity be-
longs to the genre or not), or extensionally (as the set of all music
entities that belong to the genre). With rare exceptions such as
Music Genome1 and Wikipedia2, who aim to provide intensional

1
http://www.pandora.com/mgp.shtml

2
http://en.wikipedia.org/wiki/Music genre

Figure 2: Two music genres: Although the labels are equiva-
lent, Experimental, they represent different classes.

definitions of musical genres, the extensional approach is the most
widely used in practice. Hence, for our purpose, we assume an
extensional treatment for the genres and styles as sets of music en-
tities. Consequently, a music classification is a collection of music
concepts described with English language terms, where instances
are being classified. It can be modelled as a concept hierarchy.

However, it is not sufficient to use only the concept labels to
identify the concepts, since, their position in the schemas influences
their meaning as well. Figure 2 illustrates this with an example
from existing music schemas. Although the labels are equivalent
(namelyExperimental), they represent different classes. We adopt
the approach proposed in [8] to make the meanings explicit by con-
joining the concepts with their superconcepts in the hierarchy. This
then makes the meaning of the two concepts in the example explicit
as

Electronic∩ Experimental
Jazz∩ Big Band∩ Experimental

Data Selection.Music metadata schemas on the Internet mostly
exist in the form of a navigation path through the music offered.
A meta-data schema isn’t always offered next to the music, but a
visitor can interactively navigate through different pages that list
the music. We consider this structure of navigation paths together
with the labelling on the links and pages as the meta-data schema of
that provider. After considering several music provision sites, we
selected seven of them and extracted the schema (navigation path),
as shown in figure 3. Also, we have extracted the music schema
present in the free online encyclopaedia Wikipedia.

2. AN APPROXIMATION METHOD
FOR ONTOLOGY MATCHING

Ontology matching is often phrased as finding equivalencesA ≡
B between conceptsA andB from separate hierarchies. We take
a slightly more general view, namely that of finding subsumption
relationsA ⊆ B between concepts from separate hierarchies (with
finding equivalences as an obvious special case of mutual subsump-
tions).

The representation of concepts as a conjunction of propositional
symbols described in the previous section implies that concepts
have the formB = B1 ∩ . . . ∩ Bk

3. This means that the sub-
sumption check

A ⊆ B (1)
3Remember that we use the interpretation of the concepts as sets
and consequently we replace conjunction by intersection relation,
and implication by a subset relation.
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Schema # concepts max. depth
CDNOW 2410 5
http://www.cdnow.com/

MusicMoz 1073 7
http://musicmoz.org/

Artist Direct Network 465 2
http://artistdirect.com/

All Music Guide 403 3
http://www.allmusic.com/

Artist Gigs 382 4
http://www.artistgigs.com/

CD Baby 222 2
http://www.cdbaby.com/

Yahoo LaunchCast 96 2
http://launch.yahoo.com/

Figure 3: The extracted music schemas.

can be split into a set ofsubproblems:
^

i

(A ⊆ Bi) (2)

with each subproblem checking ifA is a subclass of one of the
conjunctsBi. The original subsumption problem (1) is satisfied if
and only if all the subproblems from (2) are satisfied.

This approach is independent from the choice of solver to use for
solving the individual subproblemsA ⊆ Bi. This might be an in-
tensional reasoner (using axioms forA andBi)), or an extensional
checker (checking the instance sets ofA andBi), or a simple lexi-
cal approach (using the textual descriptive labels ofA andBi). In
our experiments later in this paper, we will in fact use the lexical
approach, but our approach to approximate ontology matching is
independent of this choice.

Now we introduce the idea of approximation. In our approxi-
mation, we allow a few of the subproblems from (2) to be unsat-
isfiable, while still declaring the original problem (1) satisfiable.
The (relative) number of satisfiable subproblems is a measure of
how strongly the subclass relation between the two given formulas
hold. If for only a few of the subproblems the relation (2) doesn’t
hold, we may say that the relation (1)almost holds. We can express
the strength at which the relation (1) holds as the ratio between the
number of false subproblems (subproblems for which the subclass
relation doesn’t hold) and the total number of subproblems. We call
this ratio thesloppinessand we use the letters to denote its value:

s(A ⊆ B) =
|{i : A 6⊆ Bi}|

k
4 (3)

Here |{i : A 6⊆ Bi}| denotes the number of unsatisfied subprob-
lems that are ignored, andk is the total number of subproblems. We
will later refer to this sloppiness value as theuniform weighting.

In the example of figure 4, the subsumptionA ⊆ B1∩B2∩B3 is
not classically valid, becauseA 6⊆ B3, but it is valid at a sloppiness
level of 1/3.

Some properties that can be easily seen are:

PROPERTY 1. Only classically valid subsumptions hold ats =
0.

PROPERTY 2. Any subsumption holds ats = 1.

4We will often omit the argument tos if this is clear from the con-
text, and simply speak of the sloppiness values.

Figure 4: Example of an approximate subsumption relation-
ship: A ⊆ B with B = B1 ∩B2 ∩B3.

From these two properties it follows that our approximation only
makes sense for conjunctive formulaeB1 . . . Bk with k > 1. A
trivial conjunctive formula with only one conjunct is not approx-
imable: the only sloppiness values for such a formula are either 0
or 1, limiting us to either classical subsumption or trivial accep-
tance of the subsumption. But such a formula would correspond to
a hierarchy of depth 1, which is a case not very interesting for our
problem anyway.

PROPERTY 3. The set of subsumptions that hold at a given slop-
piness value grows monotonically with increasing sloppiness value.

Properties 1-3 together tell us that at smalls-values, the approx-
imation will be too strict, and no (actually: only classically valid)
mappings will be found; while at larges-values, the approximation
will be too loose, and many invalid mappings (actually: all combi-
nations) will be found.

In the next subsection, we will discuss how we can influence
the approximation level (thes-values) at which valid and invalid
mappings are found.

3. HEURISTIC WEIGHTING

3.1 Defining weights
We can influence the sloppiness level at which a mapping is

discovered with a heuristicweighting function: each subproblem
A ⊆ Bi is given a weightwi, and theheuristic sloppinessvalue
s̃(A ⊆ B) is then the summed weight of all the subproblems that
needed to be ignored for the subsumption to be accepted:

s̃(A ⊆ B) =
X

{i:A 6⊆Bi}

wi.

Notice that the non-heuristics-value (the uniform weighting) is a
special case of the heuristic̃s-value, namely with equal values for
all wi.

3.2 Choosing Weights
How should we make a heuristic weighting function, and how

should we judge if one weighting heuristic is better than another?
As before, letA ⊆ B with B = B1 ∩ B2 ∩ B3 be a potential
ontology match (= cross-hierarchy subsumption relation) that does
not hold classically. To judge the quality of a weighting heuristic,
we must distinguish two cases:

desirable matches:althoughA ⊆ B does not hold classically,
it might nevertheless be a useful mapping. (This might be
known from intended (informal) meaning ofA and B, or
because we have a gold standard that contains this match).
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In this case, we would wantA ⊆ B to be derived at alow
level of sloppiness (i.e. by ignoring only a small number of
well-chosen subproblems)

undesirable matches:conversely, we might know from the in-
tended meaning ofA andB that indeedA ⊆ B should not
be derived. In this case, we would wantA ⊆ B to be de-
rived only at a very high level of sloppiness (i.e. only after
ignoring many subproblems).

Put in other words, a heuristic weighting function should min-
imise the sloppiness required to derive desirable matches, and max-
imise the sloppiness required to derive undesirable matches. This
would ensure that when gradually increasing the allowed sloppi-
ness level, we begin to discover desirable matches quickly, while
only including undesirable matches very late in the process. This
would have the effect thatwhen increasing thes-value, we have an
early increase of recall, but a late decrease of precision.

It is easily seen that the uniform weighting scheme from for-
mula (3) amounts to choosing equal values for allwi (namely1/k),
and hence to making a random choice for subproblems to ignore.
In general, however, the subtermsBi have different significance
in capturing the meaning ofB. We would expect any reasonable
heuristic to improve over a random choice, and ignoring more sig-
nificant subterms should go with a penalty, i.e. should require a
higherwi for such significant subterms. A requirement on an in-
formed heuristic form choosing the weightswi is therefore:

REQUIREMENT 1. The heuristic weightswi should be chosen
in such a way that:

• if A ⊆ B is a desirable match,
thens̃(A ⊆ B) < s(A ⊆ B)

• if A ⊆ B is an undesirable match,
thens̃(A ⊆ B) > s(A ⊆ B).

Consider again the example of figure 4, and letA ⊆ B be a de-
sirable match. Suppose that we heuristically choose the following
weights:w1 = 0.7, w2 = 0.2, w3 = 0.1. Then this heuristic ac-
ceptsA ⊆ B already at sloppiness level 0.1, i.e.s̃(A ⊆ B) = 0.1,
since onlyA ⊆ B3 with weight 0.1 needs to be non-classically
assumed to hold (even though classically it doesn’t).

The uniform weighting scheme would result ins(A ⊆ B) =
1/3. If, as assumed,A ⊆ B is a desirable match, then the uni-
form weighting performs less well than the example heuristic val-
ues, since the required increase in recall (i.e. acceptingA ⊆ B)
is only achieved at a higher sloppiness value (1/3 instead of 0.1).
If on the other handA ⊆ B would be an undesirable match, the
uniform weighting would be preferred.

Clearly, the recall and precision of the the above approximations
mapping approach relies on choosing the right weightswi.

The main intuition behind the choice for a good weighting func-
tion is that the weight assigned to the subproblemA ⊆ Bi should
reflect how much information the conceptBi provides about the
conceptB. The level ofinformativenesscan be observed as a “se-
mantic closeness” between the conceptsBi andB. Intuitively, a
conceptBi that is semantically close toB should be more relevant,
and have a higher weight, than a concept that is semantically more
distant. In the next section, we will consider a weighting heuristic
based on such a notion of semantic distance.

3.3 Normalised Google Distance
The weighting scheme we consider in this section takes advan-

tage of the vast knowledge available on the web by using a Google-
based dissimilarity measure.

We utilise a dissimilarity measure, called Normalised Google
Distance (NGD), introduced in [9]. NGD takes advantage of the
number of hits returned by Google to compute the semantic dis-
tance between concepts. The concepts are represented with their
labels which are fed to the Google search engine as search terms.
Given two search termsx andy, the the normalised Google dis-
tancebetweenx andy, NGD(x, y), can be obtained as follows

NGD(x, y) =
max{log f(x), log f(y)} − log f(x, y)

log M −min{log f(x), log f(y)} (4)

where

f(x) is the number of Google hits for the search termx,
f(y) is the number of Google hits for the search termy,
f(x, y) is the number of Google hits for the tuple of search terms

x yand
M is the number of web pages indexed by Google5.

Intuitively, NGD(x, y) is a measure for the symmetric condi-
tional probability of co-occurrence of the termsx andy: given a
web-page containing one of the termsx or y, NGD(x, y) measures
the probability of that web-page also containing the other term6.

Example: We will determine the normalised Google distance
between the search terms “jazz” and “rock” that correspond to con-
ceptsBjazz andBrock, respectively. The number of hits for the
search term “jazz” is given byf(jazz) = 196 000 000 and for
the search term “rock” byf(rock) = 723 000 000. Furthermore,
Google returnsf(jazz, rock) = 119 000 000 web pages in which
both “jazz” and “rock” occur. Therefore, NGD(jazz, rock) =
0.458846.7

3.4 Google-based weighting
For a subsumption checkA ⊆ B with B = B1 ∩ . . . ∩ Bk, the

Google-based weighting scheme is defined as follows:
First, we compute thenormalised Google distances.

di = NGD(Bi, B)

We normalise these values to the[0, 1] interval

d′i =
diPk

j=1 dj

(5)

Subsequently, the normalised distance values are converted into
similarities

si = 1− d′i

Finally, from the similarity values the weights for the subproblems
are derived.

wi =
siPm

j=1 sj

5Currently, the Google search engine indexes approximately ten
billion pages (M ≈ 1010).
6The NGD measure assumes monotonicity of Google. In reality
Google is known to show non-monotonic behaviour, i.e. adding
more words in the search query may increase the number of hits
instead of decrease it. Yet, such cases are exceptions and did not
affect the results of our experiments
7The values for these queries were obtained by conjoining the
search terms (“jazz” and “rock”) with the general scope-term “mu-
sic”, in order to avoid homonym problems such as “rock” in its
geological sense.
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3.5 Modified Google Distance
The general NGD formula (4) (taken from [9]) can be slightly

simplified because of the special form of our queries. As said, we
compute the NGD values using (4)

di = NGD(Bi, B)

=
max{log f(Bi), log f(B)} − log f(Bi, B)

log M −min{log f(Bi), log f(B)} (6)

wheref(Bi), f(B) andf(Bi, B) give the number of hits forBi,
B and(Bi, B), respectively.

The Google query forBi is comprised of search terms that are
also present in the Google query forB. Therefore,f(Bi) ≥ f(B).
This inequality implies that

max{log f(Bi), log f(B)} = log f(Bi) and

min{log f(Bi), log f(B)} = log f(B).

For the same reason (namely that all terms fromBi also occur in
B), the Google query forB coincides with the Google query for
the tuple(Bi, B) which meansf(Bi, B) = f(B).

If we consider the last few deductions we can rewrite (6) in the
following manner

di = NGD(Bi, B) =
log f(Bi)− log f(B)

log M − log f(B)

or

di = NGD(Bi, B) =
Ni

N
(7)

whereN = log M − log f(B) andNi = log f(Bi)− log f(B)
If we consider (7) we can rewrite the expressions given with (5)

as follows:

d′i =
Ni
NPm

j=1

Nj

N

=
NiPm

j=1 Nj

As we can see the value ofd′i does not depend onN . Therefore,
we can use the following expression to compute the Normalised
Google Distance

di = mNGD(Bi, B) = log f(Bi)− log f(B) = log
f(Bi)

f(B)

wheremNGD stands for modified Normalised Google Distance.
The advantage of NGD over the NGD is thatmNGD no longer
depends onM , the size of the Google index, for which we would
have to guestimate a value.

3.6 Examples
In this section we illustrate the process of approximate ontol-

ogy matching with weighting. In our examples we consider the
subsumption relations between two pairs of styles from MusicMoz
and ArtistDirectNetwork portals, as shown in Figures 5 and 6.

Example 1: Country and Bluegrass gospel.The first step
is to transform the concepts into formulas. The individual concepts
are represented with their labels, and conjoined with the representa-
tion of their parents, as discussed in section 1.2. This yields the fol-
lowing formulas representing the meaning ofCountry from ADN
andBluegrass Gospelfrom MM:

CountryADN = Country

Bluegrass GospelMM = Country ∩Bluegrass ∩
Bluegrass Gospel

We use these formulas to test for the subsumption relation

CountryADN ⊆ Bluegrass GospelMM .8 (8)

As described in section 2, we have to solve the following subprob-
lems:

Country ⊆ Country

Country ⊆ Bluegrass

Country ⊆ Bluegrass Gospel

In order to solve the individual subproblems, we apply the fol-
lowing method:

• Concepts with the same label have the same meaning
• If one label is derived from another by adding extra words,

we assume that the first is a more specific concept than the
second, hence the second concept subsumes the first. This
is a reasonable assumption because additional words usually
restrict an expression’s meaning.

Given this, we obtain the following results for the subproblems

Country ⊆ Country : true (Countryon both sides)
Country ⊆ Bluegrass : false

Country ⊆ Bluegrass Gospel : false

Using the uniform weighting scheme, subsumption (8) is accept-
able at a sloppiness-level of 0.66, since 2 out of 3 subproblems are
found not to hold, and must be ignored in order for the subsumption
to go through

Next, we apply the Google-based weighting scheme on the same
set of subproblems. We compute the NGD values as described in
section 3.4:

d1 = NGD(Country,
Country ∩Bluegrass ∩Bluegrass Gospel)

d2 = NGD(Bluegrass,
Country ∩Bluegrass ∩Bluegrass Gospel)

d3 = NGD(Bluegrass Gospel,
Country ∩Bluegrass ∩Bluegrass Gospel)

After providing each of the terms with the scope-term “music”, the
Google queries“Country” music, “Bluegrass” music, “Bluegrass
Gospel” musicand “Country” “Bluegrass” “Bluegrass Gospel”
musicreturn 467 000 000, 24 000 000, 338 000 and 261 000 hits, re-
spectively. Consequently, we find the followingmNGD distances:

d1 = 7.44147

d2 = 4.39942

d3 = 0.164622.

Using these values we derive the weights for the subproblems, as
described in section 3.4:

w1 = 0.190081

w2 = 0.336629

w3 = 0.493144

Since the last two of the three subproblems must be ignored for
the match to go through, the heuristics̃-value is 0.81. Hence, in
this example,̃s-value> s-value, which, since the match is actually
undesirable, is an improvement (of 15 %-points) over the uniform
weighting, in line with the requirement stated in section 3.1.

8As any music-lover will know, this subsumption is actually false,
and hence constitutes an undesirable mapping.
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Figure 5: Matching conceptsCountryand Bluegrass gospel

Figure 6: Matching conceptsBlack metaland Heavy metal

Example 2: Black metal and Heavy metal.The previous
example showed the behaviour of the weighting on an undesired
match. In this example we examine the weighting behaviour on a
desired match. Figure 6 shows the following matching problem:

Black metalADN ⊆ Heavy metalMM .9 (9)

The separate subproblems in this case are:

Rock ∩Heavy metal ∩Black metal ⊆ Rock

Rock ∩Heavy metal ∩Black metal ⊆ Hard

Rock ∩Heavy metal ∩Black metal ⊆ Black metal

The first and the third subsumptions are correct established lexi-
cally, but the second is found false. As a consequence the uniform
weighting scheme would need a sloppiness-level ofs = 0.33 to
establish (9). Using NGD we obtain the following weight values
for each of the subproblems:

w1 = 0.25462

w2 = 0.25588

w3 = 0.48950.

This allows (9) to be established at a heuristic sloppiness-level of
s̃ = 0.25588. This is 8 %-points lower than the requireds-value,
and hence an improvement, since (9) is a desired mapping.

4. EXPERIMENTS
To validate our approach of improving approximation by weight-

ing, we conducted experiments using data from the music domain.
In this section, we describe the experiments and summarise and
discuss the results.

9Black metalis widely accepted as being a substyle ofHeavy metal

4.1 Experimental setup
Goal of the experiment: In our experiment, we want to mea-

sure both if approximation improves over simple classical matching
(first goal), and if approximation with heuristic weighting improves
over uniform weighting (second goal).

Data acquisition: We used genre hierarchies that we extracted
from the meta-data schemas underlying the classifications of the
Artist Direct Network (ADN), MusicMoz (MM) and Wikipedia
music portals, as discussed in section 1.2.10 One of the concept
was always from MM, and the other concept in 30% of the cases
from ADN and 70% of the cases from Wikipedia

Construction of a Gold Standard: We randomly selected 50
pairs of concepts, and manually assessed whether a mapping (= a
cross-hierarchy subsumption relation) between the concepts within
each selected pair holds or not. In other words, we classified each
of the 50 pairs as either adesirableor anundesirablematching re-
lation, as defined in section 3.2. This yielded 9 desirable mappings
and 41 undesirable mappings.11

Evaluation criteria: For measuring the first goal (improvement
of approximate matching over classical matching), we use stan-
dard recall and precision measures: heuristic matching is better
than classical matching if recall improves (more desirable matches
are found), while precision does not decrease much (not many un-
desirable matches are found). For measuring the second goal (im-
provement of heuristic weighting over uniform weighting), we use
Requirement 1 from section 3.2. Heuristic weighting is better than
uniform weighting if desirable matches are found with a lower
heuristics̃-value then the uniforms-value, and conversely for un-
desirable matches.

Choice of subproblem solver: Remember that we regard on-
tology matches as cross-hierarchy subsumptions, and that our ap-
proximation method reduces subsumption-queriesA ⊆ B to a set
of subproblemsA ⊆ Bi. Of course, each of these atomic subprob-
lems still needs to be solved. As in section 3.6, we apply a simple
lexical method that establishes whetherA is (strictly) subsumed by
Bi by checking whether the set of words in label ofA is (properly)
contained in the set of words of the label ofBi (since additional
words usually restrict an expression’s meaning).

4.2 Comparing approximate and
exact matching

When comparing approximate matching with exact matching,
we cannot simply compare two scores. After all, the behaviour
of approximate matching is a function of the sloppiness-levels.

Figure 7 shows a recall-precision plot of uniformly weighted ap-
proximate matching. Since exact matching corresponds to approx-
imate matching ats = 0, the graph also shows the precision and
recall of exact matching: 22% recall at 100% precision. This score
is to be expected of the simple lexical matcher that we employ to
solve subproblems: lexical matching will fail to find many seman-
tically desirable matches (hence the low recall of 22%), but when
it finds a match, it is indeed a correct one (precision of 100%).

As expected of approximate matching, increasing values ofs in-
crease recall and decrease precision. (Figure 7 quantitatively shows
what was already qualitatively predicted by properties 1 and 2 from
section 2).

Concerning the comparison with exact matching, figure 7 shows
that a slight increase ins-levels is indeed useful (a jump in recall

10We selected these particular genre hierarchies because they con-
tained enough additional information for us to construct a Gold
Standard.

11It is probabilistically plausible that of set of randomly drawn
cross-hierarchy pairs, the large majority are undesirable matches.
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Figure 7: Recall/precision graph of approximate matching
with uniform weighting at increasing sloppiness-levels. Exact
matching happens at s=0.
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Figure 8: Recall/precision graph of approximate matching with
Google weighting at increasing sloppiness-levels.

from 22% to 33% at a negligible loss of precision when increase
s from 0.2 to 0.33). The graph also shows that there is no point
in increasing the uniforms -value beyond 0.5, since at that point
full recall is achieved. However, this has happened at the cost of a
significant loss in precision (down to 63% ats = 0.5).

Overall, figure 7 tells us that approximate matching at smalls-
values does indeed usefully improve over exact matching, even
when randomly choosing the subproblems to be approximated (=
the uniform weighting).

In the next section, we will evaluate to what extend an informed
weighting heuristic can improve over this.

4.3 Google-based weighting experiments
The behaviour of the Google-weighted approximate matching is

shown in the recall-precision plot of figure 8. This is near perfect
recall-precision plot, which shows that we can increase thes̃-values
(and hence increase the recall) until we have achieved perfect re-
call, all at the cost of only a negligible loss in precision of 2%, at
s̃ = 0.53. The precision only starts to drop significantly after a per-
fect recall has been achieved. This plot compares very favourably
with that of the uniform weighting scheme in figure 7, where a per-
fect recall could only be achieved at a disappointing 63%.

Interestingly enough, both the uniform and the Google weighting
achieve 100% recall around thẽs = s = 0.5 level (i.e. ignoring
about half the subproblems), but apparently the Google weighting
is very successful at maintaining exactly those subproblems which
prevent a drop in precision (while the uniform weighting simply
ignores random subproblems).

One observation which questions the stability of our results is

Total Better Equal Worse
Undesirable mappings 41 39 1 1
Desirable mappings 9 5 3 1
Total 50 44(88%) 4(8%) 2(4%)

Figure 9: NGD weighting compared to uniform weighting.
“Better” and “Worse” mean NGD weighting is better (worse)
than uniform weighting.

that after thẽs = 0.5-level, the precision starts to drop very sharply
(to 83% ats̃ = 0.75 and even to 51% at̃s = 0.79). This suggests
that on other data-sets, the near perfect score ats̃ = 0.53 may not
be repeated. Further experiments on other data-sets are required to
verify this.

An overall summary of the results of our experiments is given in
figure 9. Informed weighting yielded an improvement over unin-
formed weighting in almost all cases. The main gain is in a better
performance on undesirable matches (i.e. improving precision).

The most detailed analysis of our experimental data is shown in
figures 10 and 11. There we plot for all 41 undesirable mappings
(figure 10) and for all 9 desirable mappings (figure 11) the min-
imal s- and s̃-values at which these mappings are found. Figure
10 shows that for almost all undesirable mappings, the informed
s̃-values are higher than thes-value, meaning that the informed
weighting scheme is more resistant to accepting such undesirable
mappings (explaining its dramatically better precision scores in the
preceding recall/precision plots). Figure 11 shows that for the de-
sirable mappings, both weighting schemes behave roughly equally
well.

Taken together, we can conclude that the main gain of the in-
formed weighting scheme is that it manages to avoid a drop in pre-
cision while maintaining the high recall-levels of the uninformed
scheme.

Figure 10 also shows that the lion-share of the gains by the in-
formed weighting are made at thes = 0.5 level, where the un-
informed weighting accepts an incorrect mapping. These are often
cases with labels of length 2 (such as “hard rock”⊆ “gospel rock”).
In this example, “gospel” is the most informative term, but since the
uninformed weighting randomly chooses a subproblem to ignore,
it may choose to ignore “gospel”, ending up with “hard rock”⊆
“rock” as the only subproblem, which does indeed hold. The in-
formed Google weighting would instead realise that “gospel” is the
most informative term, hence choose to ignore “rock” instead, end-
ing up with “hard rock”⊆ “gospel” as the remaining subproblem,
and correctly refusing to accept this mapping. Note that this is not
simply a matter of a preferring adjectives over nouns, consider for
example the case “Country Gospel”⊆ “Christian Gospel”, which
is an intended mapping, and can only be established by preferring
the noun “Gospel” over the adjective “Christian”. A truly semanti-
cally informed weighting scheme is required, no simple lexical fix
will do.

5. RELATED WORK
Although we claim that our approach is entirely novel (both the

idea of approximating ontology mappings by ignoring subprob-
lems, and the idea of using the Google distance as a weighting
heuristic for this problem), the different components of our ap-
proach can be found elsewhere.

Existing ontology mapping methods typically use one or a com-
bination of the following approaches:

terminological: use the labels of the entities to derive matches be-
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Figure 10: Google-based versus uniform weighting on undesir-
able matches
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Figure 11: Google-based versus uniform weighting on desirable
matches

tween the elements from different ontologies, see [10, 11, 12,
13]. The method that we employ to solve the subproblems is
a very simple version of these methods.

structural: use the structure of the ontology, i.e. the relatedness
among entities within the matching ontologies, see [14, 10,
11, 12]. Our method of splitting upA ⊆ B into A ⊆ Bi

can be seen as a simple way of using logical structure of the
ontology.

instance-based:use the overlap or relatedness between classified
instances, see [15].

background knowledge: use external resources such as thesaurus,
dictionaries or more complicated ontologies to perform the
task, see [16, 17, 18, 19].

As mentioned in section 2, any of the above approaches to ontology
matching could be deployed in solving ourA ⊆ Bi subproblems.

Our Google-based weighting method resembles recent work in
the field of Knowledge Acquisitionwhich exploits the Web as a
source for discovering new knowledge, for example to discover
relations between concepts in various ways: using the number of
hits when querying a search engine like Google, by analysing co-
occurrence of concepts within large text corpora, or by exploiting
patterns to construct queries to check for a relation (see [20, 21, 22,
9] for recent work).

Other attempts exist to deal with vaguely defined domain con-
cepts, most notably by using fuzzy-logic representations (e.g. [23]),
and more recently by using rough sets [24]. An inherent price of
these approaches is that they require significant extra modelling ef-
fort to capture the imprecision of the concepts, either in terms of
fuzzy membership functions or in terms of rough-set upper- and
lower-bounds. The advantage of our approximation approach is
that it applies directly to semantically lightweight hierarchies typi-
cally found in imprecise domains without any further need for com-
plicated and expensive domain modelling.

Finally, we point out that the “confidence-factor” which is part
of the format used by the Ontology Alignment Evaluation Initia-
tive12 only expresses the degree of confidence in the truth of acrisp
matching relation, and does represent an approximation of such a
matching relation.

6. CONCLUSION
In this study, we have addressed the problem of discovering ap-

proximate matching relations between concepts from different con-
cept hierarchies. Such approximate matching relations are required
in many domains where concepts are ill-defined, and any attempt
to find precise equivalences (or even precise subsumptions) will fail
because of the imprecise nature of the concepts. Our method is di-
rectly applicable to the lightweight hierarchies found in practice in
imprecise domains.

We have given a declarative definition for approximate ontology-
mapping with a variable degree of approximation. We have shown
how this approximation degree (for which we used the term sloppi-
ness level) can be influenced by a semantic similarity measure that
we derive from the Normalised Google Distance.

In order to validate our theoretical proposal, we harvested from
the Web realistic concept hierarchies that represented musical gen-
res, we constructed a small Gold Standard corpus of mapping can-
didates, and we performed experiments to test the precision and
recall of our approximation method. Our results show that the
Google-based semantic measure significantly outperforms an un-
informed measure.

12
http://oaei.ontologymatching.org/
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Our approach is entirely independent from the algorithm used to
establish the submappings that together build up an approximate
mapping. In the music domain, we have used simple lexical tech-
niques to establish these submappings, but this can be replaced with
more complicated mapping techniques, while the essential idea of
our sloppiness value and the weighting function can still be applied
unchanged.

In very general terms, our method makes use of the huge amount
of knowledge that is implicit in the current Web, and exploits this
knowledge as a heuristic for establishing approximate mappings
between ill-defined concepts.
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