
On Anonymizing Query Logs via Token-based Hashing

Ravi Kumar Jasmine Novak Bo Pang Andrew Tomkins
Yahoo! Research

701 First Ave
Sunnyvale, CA 94089.

{ravikumar,jnovak,bopang,atomkins}@yahoo-inc.com

ABSTRACT
In this paper we study the privacy preservation properties
of a specific technique for query log anonymization: token-
based hashing. In this approach, each query is tokenized,
and then a secure hash function is applied to each token.
We show that statistical techniques may be applied to par-
tially compromise the anonymization. We then analyze the
specific risks that arise from these partial compromises, fo-
cused on revelation of identity from unambiguous names,
addresses, and so forth, and the revelation of facts associ-
ated with an identity that are deemed to be highly sensitive.
Our goal in this work is twofold: to show that token-based
hashing is unsuitable for anonymization, and to present a
concrete analysis of specific techniques that may be effec-
tive in breaching privacy, against which other anonymization
schemes should be measured.

Categories and Subject Descriptors
H.3.m [Information Storage and Retrieval]: Miscella-
neous

General Terms
Algorithms, Experimentation, Measurements

Keywords
Query logs, privacy, hash-based anonymization

1. INTRODUCTION
On July 29, 2006, AOL released over twenty million search

queries from over 600K users, representing about 1.5% of
AOL’s search data from March, April, and May of 2006.
The data contained the query, session id, anonymized user
id, and the rank and domain of the clicked result. The media
field day began almost immediately, with journalists com-
peting to identify the most scandalous and revealing sessions
in the data. Nine days after the release, AOL issued an apol-
ogy and called the release a “screw up,” removed the web
site, and terminated a number of employees responsible for
the decision, including the CTO.

There is great appetite to study query logs as a rich win-
dow into human intent, but as this vignette shows, the pri-
vacy concerns are broad and well-founded, and the pub-

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

lic is rightly sensitive to potential breaches. Academic re-
searchers are enthusiastic about receiving anonymized data
for research purposes, but to date, there is no satisfying
framework for proving privacy properties of a query log
anonymization scheme. We do not have such a framework to
propose. Instead, we present a practical analysis of a natural
anonymization scheme, and show that it may be broken to
reveal information broadly considered to be highly sensitive.

The particular scheme we study is token-based hashing, in
which each search string is tokenized, and each token is se-
curely hashed into an identifier. We show that serious leaks
are possible in token-based hashing even when the order of
the underlying tokens is hidden. Our basic technique is the
following. We assume the attacker has access to a “refer-
ence” query log that has been released in its entirety, such
as the AOL query log, or earlier logs released by Excite or
Altavista. We employ the reference query log to extract
statistical properties of words in the log-file. We then pro-
cess the anonymized log to invert the hash function based
on co-occurrences of tokens within searches; interestingly,
inverting cannot be done using just the token frequencies.

The technical matching algorithms we employ must pro-
vide good accuracy while being somewhat efficient to run on
large query logs. This turns out to be a nontrivial problem,
and much of our time is spent describing and evaluating our
approaches to address this efficiency issue.

1.1 The sensitivity of revealed data
Based on the mapping extracted between hashes in the

anonymized query log and words in the reference query log,
we perform a detailed evaluation of the potential for uncov-
ering sensitive information from a log protected by token-
based hashing. Where possible, we incorporate publicly-
available third-party information that would be available for
an attacker. We begin by focusing on person names, which
are particularly sensitive due to the large number of “vanity
queries” that occur in log-files, in which a user searches for
his or her own name. We study extraction of these names
using a hand-built name spotter seeded with a list of com-
mon first and last names, employing public data from the
US census to help in the matching.

Surprisingly, we are aided in matching obscure names by
the prevalence of queries for celebrities. By matching the
co-occurrence properties of “Tom Cruise” or “Jane Fonda,”
we learn the hash values corresponding to the first names
Tom and Jane. From there, we will miss last names that are
unique and unambiguous, but we will capture many other
last names that occur in other contexts with characteristic
co-occurrence properties.

WWW 2007 / Track: Security, Privacy, Reliability, and Ethics Session: Defending Against Emerging Threats

629

We also study the extraction of locations (particularly
city/state pairs), company names, adult searches, and re-
vealing terms that would be highly sensitive if published.
Revealing terms include pornographic queries, as well as
queries around such topics as murder, suicide, searches for
employment, and the like.

We study the number of sessions containing a properly ex-
tracted relatively non-famous name and one of these other
categories of terms. We unearthed numerous sessions con-
taining de-anonymized names of non-famous individuals along
with queries for adult and revealing terms.

In the context of query logs released without session infor-
mation, there are two primary risks. First, there are many
techniques to try to re-establish session links by analyzing
query term and topic similarity. Second, we also unearthed
various de-anonymized queries containing both a reference
to a non-famous person and a location.

1.2 Comments on our approach
There have been numerous approaches to defining a frame-

work capturing what is meant by “privacy.” In this work,
we argue that attackers will naturally make use of significant
amounts of domain knowledge, large external corpora, and
highly tailored approaches. In addition to work on frame-
works and provable guarantees, usefully anonymized query
logs will need to be scrutinized from the perspective of a so-
phisticated attacker before they can be released; at the very
least, they should be proof against the attacks we describe.

That said, we should also note that our approach contains
a key weakness. Specifically, it allows us to find only terms
that exist in the reference query log, and that occur in the
anonymized query log with sufficiently rich co-occurrences.
Sequences of digits, such as street numbers, are very unlikely
to be matched unless they occur in another context (such as
a very famous address, the name of a song, common model
number, or the like).

2. RELATED WORK
There is a large and thriving body of work on search log

analysis, which has resulted in highly valuable insights in
many different areas, including broad query characteriza-
tion [17, 3, 14, 4], broad behavioral analysis of searches [4,
5, 19], deeper analysis of particular query formats [20, 21],
query clustering [15], term caching [9], and query reformu-
lation [6]. In every one of these cases, anonymization at the
level of the query as provided by a hash of the entire search
string would have made the analysis impossible. In all cases
but the query format analysis, token-based hashing would
have allowed some interesting work, and in most cases, the
entire research agenda would have been admissible. Thus,
there are many arguments in favor of token-based hashing
as an approach to anonymization. We present the flip side
of the coin, with an analysis of the dangers, and we conclude
that significant privacy breaches would occur.

The best-studied framework for privacy preservation is k-
anonymity, introduced by Samarati and Sweeney [16], and
studied in a wide range of follow-on work (see for instance [2,
10, 22] and related work). The model is stated in terms
of structured records. A relation is mapped row-by-row to
a new privacy-preserving relation, which is said to be k-
anonymous if each set of potentially revealing values (for
instance, the zip code, age, and gender of an individual) oc-
curs at least k times. The motivation behind the definition

is as follows: even if there are external sources that might
allow mapping of such indirect data as zip code, age, and
gender back to a particular individual, nonetheless, the new
anonymized database will map back to at least k different in-
dividuals, providing some measure of privacy for sufficiently
large k. There are two concerns with this scheme in our
world. First, our setting is not naturally structured, so it is
unclear how to extend k-anonymity; it is clearly not prac-
tical to make the entire session history of a user identical
to that of k − 1 other users. In fact, it is not clear which
parts of a query session should even be treated as values in
a relation. And second, revealing that somebody in a set of
one hundred users is querying about techniques for suicide
is already revealing too much information.

The related problems of text-based pseudonym discovery
and stylometrics have been heavily studied; in these prob-
lems a body of text is available from a number of authors,
and the goal is to determine which of these authors are iden-
tical. See [11] and the references therein. The problem of
aligning hashes in one log file with tokens in another also
resembles previous work in statistical machine translation
that automatically construct bilingual lexicon (dictionary)
from parallel corpora (text in one language together with its
translation in the other language). If we look more closely,
they are very different beyond the resemblance at the sur-
face level. Most notably, while work in bilingual lexicon
construction in machine translation assumes sentence-level
alignment in the parallel corpora, we do not have query-
level alignment between the two log files; furthermore, the
two log files are very far from being semantically equivalent.

There is a large body of work on log anonymization; see
for instance [12, 18]. This problem is superficially related to
ours, but the techniques used are very different. The goal
is to provide anonymity, but classical approaches focus on
hiding the IP address, while later approaches propose devel-
oping application-dependent multiple levels of privacy for
a much wider set of attributes. Nonetheless, the problems
that arise in our domain of mapping large numbers of words
based on an enormous co-occurrence matrix do not arise in
anonymization of network logs.

Our formulation of the problem is also somewhat related
to the well-known problem of graph matching and graph
isomorphism. The difference, however, is that our graphs
are richer in terms of what they represent and so are more
amenable to statistical techniques.

3. MAPPING ALGORITHMS
We begin with some notation, and a formal definition of

our problem. We then give an overview of the dataset we
will study. With data in hand, we describe our family of al-
gorithms and give performance results comparing them. In
the following section, we will turn to a discussion of the re-
sults themselves, and cover the privacy implications in more
detail.

3.1 Preliminaries
We begin with some notation. Recall that we will employ

an unhashed query log in order to generate statistics for
our attack on the hashed query log. Let QR be the raw
(unhashed) query log and QA be the anonymized (hashed)
query log.

For a query log Q (raw or anonymized), let term(Q) de-
note the set of all terms that occur in Q; in the case when Q

WWW 2007 / Track: Security, Privacy, Reliability, and Ethics Session: Defending Against Emerging Threats

630

is a raw query log, this will be the set of tokens and when Q is
an anonymized query log, this will be the set of hashes. Let
freq(s, Q) denote the number of times the term s occurs in Q;
let freqN (s, Q) = freq(s, Q)/

P
t freq(t, Q) be its normalized

version corresponding to the probability of s in log Q. Let
cooc(s, t, Q) denote the number of times s co-occurs with t
in Q; let coocN (s, t, Q) = cooc(s, t, Q)/

P
t′ cooc(s, t′, Q) be

its normalized version, representing the probability that a
particular term co-occurring with s is in fact t. We drop Q
whenever the query log is clear from the context.

Recall that our goal is to map the hashes of QA to the
tokens of QR. We will employ a bipartite graph to reflect
the candidate mappings between hashes and tokens, as fol-
lows. Define a weighted bipartite graph G = (L, R, E) as a
set of left nodes L, right nodes R, and edges e = (`, r) ∈
E ⊆ L × R. By convention, we will always take L to be a
set of hashes, and R to be a set of tokens. Let w : E → R
be a real-valued weight function on edges; w(e) will repre-
sent the quality of the map between the hash and the token
connected by edge e.

Fix a vocabulary size n, and let Gn = (Ln, Rn, En) be
a bipartite graph representing mappings between the most
frequent n hashes in QA and the most frequent n tokens in
QR. Our goal is to map the hashes in Ln to tokens in Rn,
taking into account freq(·) and cooc(·) information; in other
words, we seek a bijective mapping µ : Ln → Rn.

Accuracy and matchable sets.
We define the following performance metric of a mapping

µ for a vocabulary size n. Given L and R, let µ∗ : L →
R ∪ {⊥} be the correct mapping of hashes to tokens, where
the function takes ⊥ if the hash has no corresponding token
on the right hand side. Given a mapping µ : L → R, the
accuracy is defined to be

|{` | µ(`) = µ∗(`)}
|{` | µ∗(`) 6= ⊥}| .

The denominator of this expression is the size of the match-
able set, which is the set of hashes that can possibly be
mapped to tokens. This set imposes an upper bound on the
performance of any mapping and therefore, accuracy mea-
sures the fraction of the matchable set obtained by µ. In our
results, we specify the accuracy and wherever applicable, the
size of matchable set.

High-level approach.
We use the following general framework to compute the

mapping. Our framework can be expressed in terms of how
two generic functions, namely, InitialMapping and Up-
dateMapping, are realized.

Algorithm ComputeMapping (QA, QR, n)

µ← InitialMapping (QA, QR)
While not done
µ← UpdateMapping (QA, QR, µ)

The function InitialMapping takes L, R along with the
query logs and computes an initial candidate mapping µ :
L → R. The function UpdateMapping takes L, R, the
query logs, and the current mapping, and outputs a new
mapping. Based on different realizations of these functions,
we obtain different methods for computing the mapping.

Data.
We use log files from Yahoo! web search in our experi-

ments. For privacy reasons, these files are carefully con-
trolled and cannot be released for general study (especially
under token-based hashing). In general, we extract one set
of queries to act as the raw log QR, and a distinct set of
queries to act as the anonymized log QA. We process the
anonymized log file by performing white-space tokenization,
and applying a secure hash function to each token, produc-
ing hashes that we must now try to invert. For all the exper-
iments in this section, the query log files consist of random
samples of six-hour query logs from a week apart in May,
2006. Each log contains about 3 million queries in total. In
Section 4 we will consider other log-file pairs.

3.2 Choosing an initial mapping
We study three approaches to selecting an initial mapping,

as follows:

Random. Randomly assign each node in L to a unique node
in R in a one-to-one fashion.

Frequency-based. Order the hashes in L by freq(·, QA)
and the tokens in R by freq(·, QR). Then the i-th most
frequent hash in L is mapped to the i-th most frequent token
in R.

NodeStart. This is a more complex technique that builds
a simple five-element vector combining different types of in-
formation about a token or a hash. All five elements of this
vector can be computed on a completely hashed query log,
and thus represent a fingerprint of the style in which the
token or hash appears in the log. If a hash and a token have
very different fingerprints, then the hash is unlikely to have
been computed from that token. The five dimensions of the
feature vector g(s) are:

1. The normalized frequency, freqN (s, Q).

2. The number of times s appeared as a singleton query
in Q, divided by freq(s, Q).

3. The co-occurrence count,
P

t cooc(s, t, Q).

4. The neighbor count, |{t | cooc(s, t, Q) > 0}|.

5. The average normalized frequency given by,

(
P

t freqN (t, Q) · cooc(s, t, Q))/(
P

t cooc(s, t, Q)).

We compute this feature vector for each node in L and
then normalize the values of each dimension to have mean
0 and standard deviation 1. Similarly, we compute a nor-
malized feature vector for each node in R, where the nor-
malizations are dependent on the other values of R. The
distance between two nodes ` ∈ L and r ∈ R is simply the
L1 distance between their vectors: |g(`)− g(r)|.

The initial mapping is then computed by the score-based
greedy, described in Section 3.3.1; for now, it suffices to as-
sume that this method computes a mapping of hashes to
tokens using the L1 distance we computed. We evalu-
ate all of these initial mappings in the context of a greedy
UpdateMapping function described below in Section 3.3.
Figure 1 shows the results for each of the three InitialMap-
ping functions just described, for various different iterations
of the UpdateMapping function. The figure clearly shows

WWW 2007 / Track: Security, Privacy, Reliability, and Ethics Session: Defending Against Emerging Threats

631

Figure 1: Accuracy for vocabulary size n = 1000
(|matchable set| = 918) using different initial map-
pings.

that the accuracy is almost independent of the choice of
initial mappings. However, the sophisticated NodeStart
mapping reaches the maximum accuracy quite quickly. More-
over, the accuracy of the frequency-based mapping at iter-
ation 0 hints that it is hopeless to just use the frequencies
of the hashes and the tokens towards obtaining a mapping.
It is also interesting to observe the ‘S’-shaped curve corre-
sponding to the random initial mapping; this suggests the
presence of a threshold at which point the randomness in the
initial mapping is slowly replaced by structure. Note that
the plateau at the end of the NodeStart curve does not
reflect a stable mapping. Although the accuracy stays the
same starting from iteration two, portions of the mapping
are still changing at each iteration. All further experiments
employ the NodeStart function.

3.3 Updating the mapping
This section describes various different approaches to up-

dating the mapping. However, to begin, we discuss the
general problem of comparing various candidate tokens as
mappings for a particular hash, based on information in the
current mapping.

Figure 2 gives an example of the situation that may arise
when computing the distance between a hash and a word.
We wish to evaluate the quality of the map between hash h
and token w. The mapping has already mapped h1 to w2,
and h3 to w3, so the distance computation should take this
mapping into account: h and w share co-occurrences. If later
information becomes available about the other unmapped
neighbors of h, the distance between h and w will need to
be updated.

Distance measure. The distance measure we adopt is the
following. We represent each node as a vector over |L|+ |R|
dimensions whose entries give the co-occurrence probabil-
ities with the corresponding token or hash. Tokens have
non-zero weight only in dimensions corresponding to tokens.
Hashes begin with non-zero weight only in dimensions cor-
responding to hashes, but each time a hash h is mapped

Figure 2: A candidate mapping between a hash and
a token.

to a token w, all non-zero entries for h are migrated to w.
In Figure 2, for instance, hash h will have non-zero entries
only for h2, w2, and w3. Distance is then given by the L1

distance between the corresponding vectors.

Mapping-based distance. Rather than actually perform
this migration of non-zero entries, however, we simply define
the distance in terms of the initial co-occurrences among
hashes and among tokens, based on a mapping function µ,
as follows:

dµ(`, r) =
X
`′∈L

|coocN (`, `′, QA)− coocN (r, µ(`′), QR)|.

This idea falls within the general theme of identifying sim-
ilar tokens through similar contexts. For instance, based on
this intuition, past work has explored word clustering [13]
and paraphrase extraction [1] using natural language texts
from a single language. We differ from such previous work
in that a mapping between hashes and tokens is involved
in defining the distributional similarity. In addition, the
kind of contexts at our disposal (co-occurring words within
queries) can be very different from the kind of contexts avail-
able from proper, grammatical English sentences.1

We compare L1 measure against corresponding quantities
for L2 and cosine measures, using the following method.
We pick n = 10, 000 and we choose a random sample of
1000 hashes. For each hash, we order the tokens according
to either L1, L2, or cosine measures. The fraction of times
the closest token under the measure was indeed the correct
token is shown in the table below.

L1 L2 Cosine
0.93 0.75 0.8

This shows that L1 measure clearly dominates the other
measures. Note that this is in line with the result of Lee [8]
who showed that L1 measure is preferred over L2 and cosine

1Note that although this prevents us from getting fine-
grained contexts via syntactic analysis of full-length sen-
tences, we may be getting an approximation of the optimal
context by using all other words appearing in the same query
as the context for the target word. After all, users are more
likely to type in the “essential” words, which can be viewed
as a “distilled” version of what the corresponding sentence
would have been.

WWW 2007 / Track: Security, Privacy, Reliability, and Ethics Session: Defending Against Emerging Threats

632

measures for such scenarios. Hence, we adopt L1 measure
as our distance going forward.

We now turn to schemes for UpdateMapping. We present
four schemes, the first two based on a distance score, and
the last two based on post-processing of the distance score
to produce a ranked list of candidates for each hash and each
token.

3.3.1 Score-based methods
We discuss two score-based methods — greedy and a method

based on the minimum cost perfect matching.

Score-based greedy. In the score-based greedy method,
we consider all pairs ` ∈ L, r ∈ R and sort them by the dis-
tance dµ(`, r). We then maintain the L×R triples 〈`, r, dµ(`, r)〉
on a heap. At each step, we pick the triple 〈`, r, d〉 with the
minimum d value from the heap, set the updated mapping
µ′(`) = r, and delete all elements in the heap of the form
〈`, ·, ·〉 and 〈·, r, `〉. The running time of this greedy method
is O(n2 log n), where the running time is dominated by hav-
ing to compute all the pairwise distances. For the rest of the
paper, greedy will always refer to the score-based greedy.

Minimum cost perfect matching. Instead of construct-
ing the mapping in a greedy way using scores, we can appeal
to the minimum cost perfect matching formulation, applied
to the bipartite graph with w(`, r) = dµ(`, r). Recall that
in minimum cost perfect matching, the goal is to find a bi-
jective map µ′ : L → R that minimizes

P
`∈L,r∈R dµ(`, r).

Using standard algorithms, this problem can be solved in
time O(n5/2) (see [7]). The solution to this problem yields
the updated mapping µ′.

3.3.2 Rank-based methods
We discuss two rank-based method — greedy and a method

based on the stable marriage problem.

Rank-based greedy. In the rank-based greedy method,
we use the rank information instead of the score information.
Formally, the function dµ(`, ·) provides a ranking of all r ∈
R with respect to `; let the rank of r ∈ R be rank`(r).
Likewise, the function dµ(·, r) can be used to obtain the
rank of ` ∈ L with respect to r, denoted rankr(`). Let
d(`, r) = rank`(r)+rankr(`). We now apply the score-based
greedy method with the above distance function d(·, ·) to
find the updated mapping µ.

Stable marriage. Recall the stable marriage problem. We
are given a bipartite graph consisting of men and women,
where each man ranks all the women and each woman ranks
all the men. A marriage (bijective matching) of men and
women is said to be unstable if there are two couples (m, w)
and (m′, w′) such that m ranks w′ above w and w′ ranks m
above m′. Given the bipartite graph, the goal is to construct
a marriage that is stable. This problem can be solved in
O(n2) time (see [7]).

In our case, the men correspond to L and the women
correspond to R and as in the rank-based greedy case, the
function dµ(`, ·) provides a ranking of all r ∈ R with respect
to ` ∈ L and the function dµ(·, r) provides a ranking of all
` ∈ L with respect to r ∈ R. Hence by applying the stable
marriage algorithm, we can find the updated mapping µ.

Table 1 shows the results. The performance of score-based
greedy is on par with the other three algorithms and since
score-based greedy is simpler, we use this method going for-
ward.

3.4 Efficiency considerations
The methods presented in the previous section take quadratic

time to run. For increasingly deep query logs, it is not pos-
sible to proceed without some modifications for efficiency.
We describe a number of approaches here.

3.4.1 Expanding the vocabulary using distance ap-
proximations

In this approach we use a fixed µ : L→ R to approximate
the distance between a hash `′ ∈ L′ ⊃ L and a token r′ ∈
R′ ⊃ R. Let g′(·) be the NodeStart function for the larger
vocabulary. Let

γ(`′) =
X
`∈L

cooc′N (`′, `, QA)

be the mass of the co-occurrences covered by µ. Let

ρ(`′, r′) =
X
`∈L

min(cooc′N (`′, `, QA), cooc′N (r′, µ(`), QR))

be the overlap between `′ and r′ within L. Let

δ(`′, r′) = 1− ρ(`′, r′)

γ(`′)

be an estimate of the distance between `′ and r′ as given by
the terms in the size n vocabulary. We then set the distance

d̃′(`′, r′) = δ(`′, r′) + (1− γ(`′)) · |g
′(`′)− g′(r′)

C
,

where C is set to the number of features (in our case, 5).
Note that if γ(`′) is bounded away from 0, then δ(`′, r′) is
perhaps a good estimate of the actual distance and the first
term dominates and if γ(`′) is close to 0, then g′(·) plays a
heavier role.

We will report some experiments for this expansion after
describing a pruning technique below.

3.4.2 Pruning
We give two approaches to heuristic pruning that can dra-

matically reduce the number of candidate hash-token pairs
that must be considered.

α-pruning. The first approach is to restrict the set of
pairs (`, r) ∈ L × R that are ever considered in all the Up-
dateMapping methods. For each `, we order the r’s based
on increasing values of |g(`) − g(r)| and choose the top α
fraction of r’s in this ordering, for some α < 1. Thus, the
total number of pairs to be considered is now αn2.

β-pruning. In a similar spirit, for each s, we choose T ′ ⊆
term(Q) such that |T ′| is minimal and

P
t′∈T ′ coocN (s, t, Q) ≥

β, for some β < 1. In other words, each s chooses the
fewest t’s such that these t’s garner at least β mass of the
co-occurrence distribution. We do not explore the perfor-
mance of β-pruning further.

To postulate the effect of pruning, we study how far the
ranks of hashes and tokens migrate. Let rank(s, Q) be the
rank of s, when the terms in Q are ordered according to
freq(s, Q). Specifically, for ` ∈ L, we plot the distribution of

WWW 2007 / Track: Security, Privacy, Reliability, and Ethics Session: Defending Against Emerging Threats

633

Vocabulary matchable score mincost rank stable
(n) set greedy matching greedy marriage
1000 918 0.99 0.99 0.99 0.99
2000 1851 0.96 0.96 0.97 0.96
4000 3648 0.92 0.92 0.91 0.92
8000 7182 0.83 0.85 0.82 0.83

Table 1: Accuracy of score-based greedy, mincost matching, rank-based greedy, and stable-marriage algo-
rithms.

|rank(`, L) − rank(µ∗(`), R)|, where µ∗ is the correct map-
ping. Figure 3 plots this value for various buckets of values
of rank(`, L). For example, an x-value of 200 corresponds
to tokens with rank from 100 to 200. And the y-axis shows
the absolute distance between the token’s rank in QR versus
QA.

Figure 3: Rank migration.

We present a simple evaluation of the effectiveness of α-
pruning and vocabulary expansion. We study a 2K-word
mapping problem using the most frequent terms of our query
logs. The size of the matchable set for this case is 1851, so we
measure performance as number of correctly mapped hashes
out of 1851. We perform four experiments.

Exp1: Begin by mapping 1K nodes using NodeStart and
10 iterations of greedy updates. Then perform vocab-
ulary expansion with α-pruning using α = 0.1 in order
to map the remaining 1K nodes.

Exp2: Begin by mapping 1K nodes using NodeStart and
10 iterations of greedy updates. Then perform vocab-
ulary expansion with no α-pruning in order to map the
remaining 1K nodes.

Exp3: Begin by mapping 2K nodes using NodeStart, then
perform a single iteration of greedy updates.

Exp4: Begin by mapping 2K nodes using NodeStart, then
perform two iterations of greedy updates.

The success rates are as follows.

Experiment 1 2 3 4
Accuracy 0.96 0.98 0.94 0.98

Thus, α-pruning shows some impact on overall perfor-
mance, but this cost may be acceptable at a 10X improve-
ment in runtime. Vocabulary expansion is capable of high
accuracy, and is thus a promising technique for larger prob-
lems scales. We employ this technique for larger runs in
Section 4.

We now present two additional approaches to improving
efficiency, each of which may be employed in either an ex-
act setting or an approximate setting for greater efficiency.
The first is based on a heap structure for continuous update
of the possible mappings, and the second is based on an
inverted index. We present these approaches, and have im-
plemented them in our algorithms, but we leave a thorough
performance evaluation for future work.

3.4.3 Heap-based continuous update
In the first proposal, we continuously enlarge the domain

of µ and use this to approximate the distance between a hash
`′ ∈ L′ \ L and a token r′ ∈ R′ \ R. Initially we implicitly
assume d′(`′, r′) = 1 for all the pairs. We place the tuple
〈`, µ(`), dµ(`, µ(`))〉 on a heap.

We then repeat the following until the heap is empty. Let
(`′, r′, ·) be the pair that has the smallest distance on the
heap. We set µ(`′) = r′. Now, we go through all the `′′ ∈
L′ \L that co-occur with `′ and all the r′′ ∈ R′ \R that co-
occur with r′ and update the estimated distance d′(`′′, r′′)
using the new mapping information as

d′(`′′, r′′)−min
`
cooc′′N (`′′, `′, QA),˛̨

cooc′′N (`′′, `′, QA)− cooc′′N (r′′, r′, QR)
˛̨´

.

If the 〈`′′, r′′, ·〉 exists in the heap, we update its distance by
d′(`′′, r′′); otherwise, we insert the 〈`′′, r′′, d′(`′′, r′′)〉 into
the heap.

3.4.4 Using an inverted index
In this section we propose a way to speed up the compu-

tations by using a reverse index. We compute an index I
on the tokens in R such that I(r) will return all the tokens
that co-occur with r. Now, given current mapping µ and an
` ∈ L, we can quickly compute the distance to any r ∈ R by
using the following set:

S` =
[

`′∈L|
cooc(`,`′,QA)>0

I(µ(`′)).

If |S`| � |R|, then we gain. Note however that if `′ is
a high-frequent hash, then µ(`′) is a corresponding high-
frequent token and so |S`| could be large, rendering this
whole method less attractive.

WWW 2007 / Track: Security, Privacy, Reliability, and Ethics Session: Defending Against Emerging Threats

634

4. ANALYSIS
In this section we describe larger-scale experiments on our

base query logs, then turn to an evaluation of the impact
of varying the size of the query logs, and the distance in
time between the capture of the raw and anonymized log
files. In the following section, we move to a discussion of
particular privacy breaches that are possible under token-
based hashing.

4.1 Larger-scale matching experiments
In this section we employ matching algorithms that suc-

cessively matches the most frequent 1K, 2K, 4K, 8K, and
16K tokens and hashes in the log-file. The technique is
vocabulary expansion with a single greedy update at each
expansion stage. Table 2 shows basic data to characterize
the information available to the mapping algorithm at these
scales. As the table shows, the 1000-th most frequent term
appears around 1000 times; and for a sub-graph consisting
of only the 1000 most frequent terms, the average degree
is about 300 (i.e., on average each term co-occurs with 300
other terms in the top 1000). As we move to 16K terms, the
frequency of the least frequent term is 52 in the hashes and
63 in the tokens, so the total available information becomes
sparser.

The results are shown in Figure 4, which shows for each
depth the performance on the entire range, plus the perfor-
mance on the top and bottom half of the range. Table 3
gives the actual accuracy at each expansion increment. We
are able to perform the inversion with accuracy 99.5% for
the first 1K hashes, dropping to 68% for all 16K hashes. To
give some insight into these results, it is possible to ask how
many hashes, if the mapping µ of all their co-occurring terms
were perfect, would in fact have lowest distance to their cor-
rect match—this may be seen as a difficult threshold for an
algorithm to beat. This is about 92% for 10K terms, com-
pared with 83% for our algorithm at 8K terms, indicating
that while there are still gains to be had, the matching is
becoming quite difficult as the tail gets longer.

Figure 4: Accuracy of expanding the vocabulary
with distance approximations.

n 1K 2K 4K 8K 16K
Accuracy 0.99 0.96 0.92 0.83 0.68

Table 3: Accuracy for matching up to 16K
terms/hashes.

4.2 Varying the query logs
We now turn to an examination of how variation in the

raw and anonymized logs impacts the performance of the
algorithms.

First a note on terminology. For a query log Q, we use
interval to denote the time difference between the start and
end time when the query log was collected. For a raw query
log and an anonymized query log, we use gap to denote the
time difference between the start time of the anonymized
log and the start time of the raw log.

For some of the experiments presented in this section, we
seeded the algorithm with a “bootstrap mapping” consisting
of a small number of correct mappings in order to allow
faster convergence; however, this mapping did not have a
significant impact on overall accuracy.

4.2.1 Effect of the query log gap
Recall that gap refers to the time between the raw query

log and the anonymized query log. We took a random sam-
ple of 3 million queries from a six-hour interval of time for
both the raw and anonymized query logs. For efficiency, we
use the heap-based continuous update method, with an ini-
tial bootstrap mapping of 100. The vocabulary size was set
to 1000. We show results for matching 1K terms, for vari-
ous values of the gap. The results appear in Table 4, which
shows non-monotonic behavior: we perform very well with
a gap of one week compared to a gap of one day. This might
reflect some weekly periodicity in the query logs.

Gap 1dy 1wk 1mo 2mo
Accuracy 0.74 0.95 0.70 0.77
Matchable 930 915 853 892

Table 4: Accuracy with different gaps between the
tokens (R) and the hashes (L).

4.2.2 Effect of the query log interval
The goal of this experiment is to measure the impact of

the interval of a query log on accuracy; recall that by in-
terval we mean the start and end times of the query logs.
We use the raw query log data starting May 17, 2006 and
the anonymized query log data starting July 17, 2006. We
considered intervals of one hour, three hours, six hours, nine
hours, one day, and one week intervals. For each interval,
we took a random sample of 3 million queries from the raw
and anonymized query logs. For efficiency, we use the heap-
based continuous update method, with an initial bootstrap
mapping of 100. The vocabulary size was set to 1000.

The results are shown in Table 4.2.2. The matchable set is
quite high for different interval sizes implying a large overlap
in the queries, irrespective of the interval size.

WWW 2007 / Track: Security, Privacy, Reliability, and Ethics Session: Defending Against Emerging Threats

635

token side statistics hash side statistics
number of queries 3,849,916 3,187,228

vocabulary freq. of average freq. of average
size (n) the least degree the least degree

freq. term in graph freq. term in graph
1000 1406 333.8 1181 303.4
2000 737 366.3 598 326.9
4000 358 334.9 296 294.1
8000 159 266.0 131 231.1
16000 63 187.5 52 160.7

Table 2: Basic statistics of the data. Dataset for vocabulary size n consists of the subsets of the query logs
with only top-n (i.e., n most frequent) terms.

Interval 1hr 3hr 6hr 9hr 12hr 1dy 1wk
Accuracy 0.91 0.95 0.82 0.97 0.96 0.98 0.98
Matchable 874 844 915 892 883 894 899

Table 5: Accuracy for different intervals between
the start and end times for each query log.

5. DANGEROUS LIAISONS
In this section we perform an analysis of the breaches in

privacy that may be revealed by the level of hash inversions
we have shown to be possible in Section 3. First we de-
fine key categories of entities that (arguably) reveal privacy.
Next we consider the portion of the query log where the hash
inversion makes almost no mistakes, and study occurrences
of these privacy-relevant entities.

5.1 Privacy-relevant entities
We selected key categories of privacy-relevant entity types

that we spot in query strings: person names, company names,
place names, adult terms, and revealing terms. We define
these five categories below, and describe how we performed
the extraction.

i. Person names.
We built a simple context-free name spotter suitable for

use in short snippets of text based on “dictionary” lookup
constrained by a number of hand-crafted rules. To begin
with, we formed a set of potential names by pairing up all
firstnames and lastnames from the top 100K names pub-
lished by the US census. For a firstname-lastname pair to
be considered valid, it must satisfy at least one of the fol-
lowing three conditions:

(1) The firstname-lastname pair is present in a list of man-
ually maintained true names.

(2) Either the firstname or the lastname is absent from a
small English word dictionary.

(3) The frequency of either the firstname or the lastname
in the census data is less than 0.006.

In addition, the firstname-lastname pair must not be present
in a manually maintained list of false names. We performed
manual evaluation over random samples to determine which
query strings actually correspond to names to verify that
names identified in query strings that satisfy the above con-
ditions are indeed valid person names.

Not surprisingly, most occurrences of person names in
query logs are famous people of one flavor or another. We de-

fine a subset of person names to be non-star names. These
are names that occur fewer than 10 times in the log; we
chose the threshold by hand based on the point at which
few famous names appeared.

ii. Company names.
We employed the Forbes top 1000 public companies, and

top 300 private companies, plus a number of abbreviations
added by hand. We perform case-insensitive matching of
these company names to the log. Any queries ending in
“inc” or “corp” are also tagged as relevant to companies.

iii. Places.
We gathered the names of all US states, and their abbre-

viations (with the exception of OR). A word followed by a
US state or followed by “city” or “county” is considered to
be a place name if it occurs in the dictionary capitalized, or
doesn’t occur in the dictionary.

iv. Adult terms.
These are gathered by scanning the top 2K most popular

terms in the query log, and manually annotating those that
are clearly adult searches. We selected 14 adult terms. In a
log of 3.51M queries, adult terms occur 71418 times, covering
about 2% of all queries.

v. Revealing terms.
These are terms that are not adult per se, but nonetheless

have implications for privacy, if they were revealed for in-
stance to an employer or a spouse. We selected 12 revealing
words for this study: career, surgery, cheats, lesbian,
disease, hospital, jobs, pregnancy, medical, cheat, gay,
and cancer. In a log of 3.51M queries, revealing terms occur
37593 times, covering about 1% of all queries.

5.2 Analysis
Our previous analysis, using query logs without session

information, showed that the first 1K most frequent terms
of a query log can be mapped with accuracy over 99% on
the matchable set. We assume this carries over to a different
query log with session information. In the top 1K most
frequent terms in this query log, we find 1839 person names,
948 places, and 82 companies. By analyzing co-occurrences
within a session, we find the following within-session results.
The first column in Table 6 gives the number of sessions that
contain an entity or a combination of entities specified in the
second column. From the table, it is evident that even the

WWW 2007 / Track: Security, Privacy, Reliability, and Ethics Session: Defending Against Emerging Threats

636

top 1K terms of the query log contains potentially privacy-
relevant information.

Session count Entity type
7417 person name

83801 company name
7769 place name
2960 non-star name

83 non-star name and a place name
169 non-star name and a company name
12 non-star name and an adult term
14 non-star name and a revealing term

Table 6: Number of sessions with privacy-relevant
entities in top 1K terms of the query log with session
information.

If the anonymized log-file does not include session infor-
mation, there are still potentially privacy-revealing queries.
Using the mapping of the top 8K terms achieved by our al-
gorithm, we find within correctly mapped individual queries
the following occurrences of potential privacy breaches. Ta-
ble 7 shows the number of distinct entities.

Count Entity type
4816 name
2072 place
220 company
84 query with name and place
9 query with non-star name and place

Table 7: Number of distinct privacy-relevant entities
using top 8K terms of the query log without session
information.

5.3 Mismatches
Finally, we found a number of mistakes made by our algo-

rithm, which give insights into the difficult cases, as well as
the types of co-occurrences that are common in query logs.
Some example mismatches are shown below. Not surpris-
ingly, since we seek to map hashes into words with similar
contexts, quite a number of hashes are (reasonably) mapped
into synonyms or paraphrases of the original tokens, as well
as related concepts that tend to appear in similar contexts.
Since these types of mismatches are semantically equivalent
or related to the correct matches, they may still be very
effective in incurring privacy breaches. Not all mismatches
remain “helpful” in this way. With limited amount of data
and noise incurred by the non-overlapping part of the vocab-
ulary, some of the hash-token pairs may never get correctly
mapped and remain as misleading contexts for other pairs.
Thus, it is not surprising that we also have inexplicable mis-
matches where there are no obvious semantic relations be-
tween the two words.

Synonyms.
retreat↔getaway
furnace↔ fireplace
pill↔ supplement
pics ↔ photos

Terms used in similar contexts.
celine↔ elvis
may↔ april
positive↔ negative
heel↔ toe
pilates↔ abdominal
wants ↔ millionaire
avis ↔ hertz

Unexplained.
killer ↔ crack
origami ↔ biodiesel
suicide ↔ geometry

6. CONCLUSIONS
In this paper we studied the natural token-based hashing

in which each search string is tokenized, and each token is
securely hashed into an identifier to create an anonymous
query log. We show that serious leaks are possible whether
the identifiers are presented in the same order as the under-
lying tokens, or whether the order is hidden. We thus show
that user concerns around privacy are very real at least in
the case of token-based hashing.

Future work includes expanding the scope and applicabil-
ity of our algorithms to make them work for large values of
n.

7. REFERENCES
[1] R. Barzilay and K. McKeown. Extracting paraphrases

from a parallel corpus. In Proc. of the 39th Annual
Meeting of the Association for Computational
Linguistics, pages 50–57, 2001.

[2] R. J. Bayardo and R. Agrawal. Data privacy through
optimal k-anonymization. In Proc. of the 21st
International Conference on Data Engineering, pages
217–228, 2005.

[3] A. Broder. A taxonomy of web search. SIGIR Forum,
36(2):3–10, 2002.

[4] B. J. Jansen, A. Spink, J. Bateman, and T. Saracevic.
Real life information retrieval: A study of user queries
on the web. SIGIR Forum, 32(1):5–17, 1998.

[5] B. J. Jansen, A. Spink, and T. Saracevic. Real life,
real users, and real needs: A study and analysis of
user queries on the web. Information Processing and
Management, 36(2):207–227, 2000.

[6] R. Jones, B. Rey, O. Madani, and W. Greiner.
Generating query substitutions. In Proc. of the 15th
International Conference on World Wide Web, pages
387–396, 2006.

[7] J. Kleinberg and E. Tardos. Algorithm Design.
Addison Wesley, 2005.

[8] L. Lee. Measures of distributional similarity. In Proc.
of the 37th Annual Meeting of the Association for
Computational Linguistics, pages 25–32, 1999.

[9] R. Lempel and S. Moran. Optimizing result
prefetching in web search engines with segmented
indices. ACM Transactions on Internet Technology,
4(1):31–59, 2004.

[10] A. Meyerson and R. Williams. On the complexity of
optimal k-anonymity. In Proc. of the 23rd ACM
Symposium on the Principles of Database Systems,
pages 223–228, 2004.

WWW 2007 / Track: Security, Privacy, Reliability, and Ethics Session: Defending Against Emerging Threats

637

[11] J. Novak, P. Raghavan, and A. Tomkins. Anti-aliasing
on the web. In Proc. of the 13th International
Conference on World Wide Web, pages 30–39, 2004.

[12] R. Pang and V. Paxson. A high-level programming
environment for packet trace anonymization and
transformation. In Proc. of the ACM SIGCOMM 2003
Conference on Applications, Technologies,
Architectures, and Protocols for Computer
Communications, pages 339–351, 2003.

[13] F. Pereira, N. Tishby, and L. Lee. Distributional
clustering of English words. In Proc. of the 31st
Annual Meeting of the Association for Computational
Linguistics, pages 183–190, 1993.

[14] D. E. Rose and D. Levinson. Understanding user goals
in web search. In Proc. of the 13th International
Conference on World Wide Web, pages 13–19, 2004.

[15] N. C. M. Ross. End user searching on the internet: An
analysis of term pair topics submitted to the excite
search engine. Journal of American Society of
Information Sciences, 51(10):949–958, 2000.

[16] P. Samarati and L. Sweeney. Generalizing data to
provide anonymity when disclosing information. In
Proc. of the 17th ACM Symposium on the Principles
of Database Systems, page 188, 1998.

[17] C. Silverstein, H. Marais, M. Henzinger, and
M. Moricz. Analysis of a very large web search engine
query log. SIGIR Forum, 33(1):6–12, 1999.

[18] A. Slagell and W. Yurcik. Sharing computer network
logs for security and privacy: A motivation for new
methodologies of anonymization. In Workshop of the
1st International Conference on Security and Privacy
for Emerging Areas in Communication Networks,
pages 80–89, 2005.

[19] A. Spink. A user-centered approach to evaluating
human interaction with web search engines: An
exploratory study. Information Processing and
Management, 38(3):401–426, 2002.

[20] A. Spink, B. J. Jansen, D. Wolfram, and T. Saracevic.
From e-sex to e-commerce: Web search changes.
Computer, 35(3):107–109, 2002.

[21] A. Spink and H. C. Ozmultu. Characteristics of
question format web queries: An exploratory study.
Information Processing and Management,
38(4):453–471, 2002.

[22] S. Zhong, Z. Yang, and R. N. Wright.
Privacy-enhancing k-anonymization of customer data.
In Proc. of the 24th ACM Symposium on the
Principles of Database Systems, pages 139–147, 2005.

WWW 2007 / Track: Security, Privacy, Reliability, and Ethics Session: Defending Against Emerging Threats

638

