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ABSTRACT
In today’s Web, many functionality-wise similar Web ser-
vices are offered through heterogeneous interfaces (operation
definitions) and business protocols (ordering constraints de-
fined on legal operation invocation sequences). The typical
approach to enable interoperation in such a heterogeneous
setting is through developing adapters. There have been ap-
proaches for classifying possible mismatches between service
interfaces and business protocols to facilitate adapter devel-
opment. However, the hard job is that of identifying, given
two service specifications, the actual mismatches between
their interfaces and business protocols.

In this paper we present novel techniques and a tool that
provides semi-automated support for identifying and resolu-
tion of mismatches between service interfaces and protocols,
and for generating adapter specification. We make the fol-
lowing main contributions: (i) we identify mismatches be-
tween service interfaces, which leads to finding mismatches
of type of signature, merge/split, and extra/missing mes-
sages; (ii) we identify all ordering mismatches between ser-
vice protocols and generate a tree, called mismatch tree, for
mismatches that require developers’ input for their resolu-
tion. In addition, we provide semi-automated support in
analyzing the mismatch tree to help in resolving such mis-
matches. We have implemented the approach in a tool inside
IBM WID (WebSphere Integration Developer). Our exper-
iments with some real-world case studies show the viability
of the proposed approach. The methods and tool are sig-
nificant in that they considerably simplify the problem of
adapting services so that interoperation is possible.
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faces; D.2.12 [Software Engineering]: Interoperability–
Data Mapping, Interface Definition Languages; H.4.m [In-
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1. INTRODUCTION
While standardization in Web services has proved effec-

tive for integration at the lower levels of interoperability
stack, interoperation at the level of service interfaces and
business protocols is still a challenge due to the heterogene-
ity of service specifications, developed by different teams or
companies. Service interfaces (often syntactically specified
in WSDL) declare all operations of a service. Business pro-
tocols define ordering constraints on the allowed operation
invocation sequences [5, 4, 8].

In today’s Web, services that are similar in terms of func-
tionality are offered through different interfaces and pro-
tocols. The default approach for a company, using one of
such services, in switching to another similar service is to
develop new clients for the new service. This approach is
often time consuming and costly (it requires re-designing,
re-implementing, re-testing, and deploying the new client’s
code), and also does not always allow for reusing existing
implementations. On the service side, even a small change
in a service may have a significant impact on potentially
thousands of clients, some of which are not prepared for the
change. So, a company may have to keep several versions of
a same service operating.

An alternative to developing new clients (or keeping sev-
eral versions of a service for different clients) is that of devel-
oping service adapters. Service adaptation refers to the pro-
cess of generating a service (the adapter) that mediates the
interactions among two services with different interfaces and
protocols so that interoperability can occur. Adaptation has
received a significant attention in different areas including
software component integration (e.g., [29, 13, 6]), process
integration ([20]), and recently in the Web services area [23,
12, 11, 18, 7, 3]. It has been also accepted as a common prac-
tice to facilitate interoperation of heterogeneous applications
in commercial products, e.g., in BEA WebLogic Adapters
[2], and IBM WebSphere Integration Developer (WID)[16].

In the literature, many approaches (e.g., [11, 18, 3]) attack
the problem by identifying possible classes of mismatches
between service interfaces and protocols and suggest meth-
ods to resolve mismatches in each class. As an example, we
present below some of the most common mismatch classes [3].
We denote by SP the service provider and SC the service
clients to be adapted:

• message signature. Message m in SP (corresponding
to the request of a certain functionality1) has a differ-
ent name and/or data types in the interface of SC.

1Receiving (sending) a message corresponds to invoking an
operation (its reply, respectively).
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Figure 1: Ordering mismatches: (a) unspecified re-
ception, (b) deadlock, (c) an adapter for protocols
in (a)

• message split/merge. Message m in SP corresponds to
(can be invoked by combining) messages m1, m2, ...,
mn in SC, or vice versa.

• missing/extra messages. One or more messages in SP
do not have any correspondence in SC, or vice versa.

• message ordering. The protocol definition of SP may
expect a message m in a different order with respect
to what sent by SC, or vice versa.

There are two subtypes of ordering mismatch: unspeci-
fied reception, in which one party sends a message while the
other is not expecting it; and deadlock, i.e., the case where
both parties are waiting to receive some message from the
other. To illustrate the concepts, consider the protocols of
SP and SC in Figure 1(a): SC sends message b (shown by
a -b), while SP does not expect to receive it (unspecified
reception). In Figure 1(b) instead, SC expects to receive
message ack after sending a (shown by +ack), while SP is
waiting to receive b (+b). This is a deadlock case.

Adaptation in case of unspecified reception could be auto-
matically handled as an adapter for protocols in Figure 1(a)
can receive b, buffer it and send it to SP after exchanging a

(e.g. see [29]). Figure 1(c) shows the adapter for protocols
in Figure 1(a), in which +〈SC, b〉 means adapter receives
message b from service SC. However, adaptation in a dead-
lock case is a challenging task and requires extra knowledge
(e.g., construction of messages ack or b in the adapter) to
resolve the deadlock.

While identifying classes of possible mismatches between
service specifications is important, the problem of service
adaptation is not really addressed until we can assist de-
velopers in comparing two services, identifying which types
of mismatches there are, and in developing the adapter.
Approaches for automatic adapter generations for software
component models [29, 6] and service protocols [7] exist.
While they do provide interesting insights into the problem,
they make the following assumptions regarding two key is-
sues: (i) they assume there is no mismatch at the interface-
level, or the interface mappings have been provided by the
developer, and (ii) if there are interactions which lead to
deadlocks, such interactions are considered as not adaptable.
However, our experiments show that: first, the interactions
of many real-world services may result in deadlocks; and sec-
ond, careful analysis of some of such cases reveals that they
are in fact adaptable (see e.g., the example in Section 2).

In this paper, we first provide a model for service adapters
consisting of interface mappings and the adapter protocol.
The adapter protocol represents the message exchanges of
adapter with adapted services, and actions that instruct the

adapter how to utilize interface mappings before/after each
message exchange (Section 3). Then, we present a method
and tool that provides semi-automated support to mismatch
identification and adapter generation. We aim at identi-
fying and resolving both interface-level and protocol-level
mismatches and at providing a platform that can generate
adapters semi-automatically. Specifically, we make the fol-
lowing contributions:

• We provide semi-automated support to identify interface-
level mismatches and identify the input for mapping
functions that resolve those mismatches. We do this by
leveraging approaches in XML schema matching [24],
but we refine and extend them by considering, beyond
message types, the contextual information provided by
the service schema (the WSDL document). This en-
ables a significant increase in precision for mismatch
detection and resolution (Section 4).

• We provide automated support for identification of
protocol-level mismatches, and generate adapter, if there
is no deadlock. In addition, and most importantly, we
propose a way to handle deadlock situations. We gen-
erate a tree, called mismatch tree for all mismatches
that result in a deadlock. A mismatch tree provides
a concise representation of all deadlocks and messages
involved in each deadlock. Then, we make suggestions
to resolve each deadlock by analyzing service inter-
faces, protocols and execution logs, if available. The
combination of the concise tree representation and the
suggestions for deadlock resolution assist the user in
the decision makings leading to the generation of the
final adapter (Section 5).

• We present an implementation of the approach in a
tool, which assists users in the process of interface
mappings, mismatch trees generation and analysis, and
generation of adapter specifications. The tool has been
implemented inside IBM WID (WebSphere Integration
Developer) and in the context of Wombat project [19].
We experimentally validated our approach in both syn-
thetic and real-world scenarios (Section 6).

Finally, in Section 7 we discuss related work and present
the concluding remarks.

2. A MOTIVATING EXAMPLE
As a motivating example, we consider an adaptation task

for services in the management of shopping carts. XWe-
bCheckOut2 and Google Checkout3 are commercial check-
out services. They provide a facility for sellers to manage
the orders that they receive on their own websites. The only
major difference between these two services is that Google
Checkout also provides an administration website for buy-
ers (people who do shopping on sellers’ websites). Buyers
register their details with Google and manage their orders
through that website. In XWebCheckOut, sellers provide
administration support for buyers in sellers’ websites. Some
APIs are provided by XWebCheckOut to facilitate this task,
for which there is no counterpart in Google APIs. Other
than this, the two services offer similar functionalities, but
through different interfaces and protocols.

2www.xwebservices.com/Web Services/XWebCheckOut/
3code.google.com/apis/checkout/
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Figure 2: CO Client to replace XWebCehckout ser-
vice with Google checkout APIs using adapters

Assume that XWebCheckOutClient (for short CO Client)
is a seller and a client of XWebCheckOut. For some reason
(e.g., XWebCheckOut rises service fees), the client decides
to either replace XWebCheckOut or extend its offering with
Google Checkout APIs. Ideally, CO Client would like to
adapt its implementation to interact with Google Checkout,
as opposed to developing a new client from scratch (Fig-
ure 2).

These two services provide similar APIs for order creation
and management, payment processing, and order cancella-
tion. However, there are differences in the interface defini-
tion (message names, number, and types) and how they ex-
change messages to fulfill a functionality. For example, Fig-
ure 3 shows the protocols of the two services for placing an
order. Using existing approaches to adaptation, besides the
problem of having to derive interface mappings ”by hand”,
it would not be possible to derive adapters for these proto-
cols. This is because their interaction results in deadlock, as
in states 2 the CO Client service expects to receive message
AddOrderResponse, which is not supported by Google, while
Google expects the message Notification-Acknowledgment
in state iv. Hence, their interaction leads to deadlock. How-
ever, the services are in fact adaptable (by construction of
above two messages in the adapter). In the following we
show how both the interface and protocol adaptation prob-
lems can be addressed in this example and in general.

3. SERVICE ADAPTERS
In this section, we introduce concepts and definitions to

provide a formal basis to service adaptation. We begin with
the interface definition, which is essentially a simple for-
malization of WSDL. An interface I of a Web service SP ,
denoted by Is, is defined as follows:

Definition 3.1. An interface Is is a triplet P = (D, M,
O), where D is the set of (XML) data types of the service,
O is the set of operations supported by the service, M is the
set of messages exchanged as part of operation invocations,
in which:

• a message m has optionally i ≥ 1 parts, represented as
m =< d1, d2, ..., di >, m ∈M, dj ∈ D, 1 ≤ j ≤ i

• o =< mreq, mres, mf >, that is, o ∈ O is an operation
associated to at least a request message mreq or to a
response message mres (or both) and possibly a fault
message mf .

1

2

3

- AddOrderRequest

i

ii

iii

iv

v

+ Place-Order

- Request-Received

- New-order-notification

+Notification-Acknowledgment

+ AddOrderResponse

CO_Client

Google APIs

Figure 3: The detailed protocols of CO Client and
Google checkout APIs for placing an order

Next, we extend the notion of mapping between compo-
nent interfaces in [29] for Web services.

Definition 3.2. Given interfaces Is = (Ds, Ms, Os) of ser-
vice SP and Ic = (Dc, Mc, Oc) of service SC, an interface
mapping IM<s,c> from SP to SC is a set of functions such
that: m ← func(X), m ∈ Ms and where the input X is
either a set of messages {m′|m′ ∈Mc}, or a constant value,
or an empty set.

The interface mapping IM<s,c> may contain more than
one mapping functions for a given message m ∈ Is, or
may not contain any function for another message m′ ∈ Is.
This definition allows for specifying 1 − 1 mappings (to re-
solve message signature mismatches) and 1 − n mappings
(resolving message split/merge mismatches) between mes-
sages of the two interfaces. Based on messages mappings
in IM<s,c> we can establish the mappings between oper-
ations Os and Oc in Is and Ic. Finally, we define the the
interface mapping IMA for the adapter as the union of map-
pings from interface Is to Ic, and from Ic to Is, that is
IMA = IM<s,c> ∪ IM<c,s>. We use im to refer to a given
mapping function for message m in IMA.

We adopt finite state machines (FSM) as the modeling for-
malism for business protocols [15, 4]. FSM is a well-known
paradigm, easy to understand and formalize for developers,
and widely used for modeling business interactions [8].

Definition 3.3. A business protocol is a tuple P = (S, s0,
F, M, T ), where S is the set of states of the protocol, M is
the set of messages supported by the service, T ⊆ S2×M is
the set of transitions, s0 is the initial state, and F represents
the finite set of final states.

We define the notion of adapter for service protocols by
extending the proposal of [29] for software components as
follows. An adapter is analogous to protocol model where
states are pairs of states of the services to be adapted, tran-
sitions are labeled with a message along with the message
target (SP or SC). In addition, adapters have actions. Ac-
tions are associated to transitions and allow adapters to, for
example, store messages (to handle ordering mismatches)
or to apply message transformations by utilizing mapping
functions.

Definition 3.4. The protocol of an adapter A (denoted by
PA) for adapting interactions between Ps and Pc is a protocol
with the following extensions:
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• MA = Ms ∪Mc.

• Each state sA of PA is a pair 〈ss, sc〉, in which ss

(sc,respectively) indicates the corresponding state of Ps

(Pc, respectively) while adapter is in state sA.

• Each transition tA of adapter is shown in form of +/−
〈sA, s′A, partner, m〉, in which + (or −) specify that
the adapter A is receiving (sending, respectively) mes-
sage m from (to) partner service, and takes the adapter
from state sA to s′A. The parameter partner can be one
of SP or SC.

• A transition tA may be associated to actions “save
(m)” and “activate (m)” after receiving a message m;
to actions “synthesize (m,im)” , im ∈ IMA before
sending a message m, and to action “inactivate (m)”
after sending a message m.

The optional actions allow to instruct the adapter to use
interface mappings information. save(m) instructs the adapter
to save message m inside the adapter. For each message
m ∈ MA, an activity flag is kept inside the adapter, and
activate(m) (inactivate(m)) actions sets/unsets the activ-
ity flag of a message m to true in the adapter to show if the
adapter has received the message. Finally, Synthesize(m, im)
instructs the adapter to use the interface mapping im infor-
mation to construct m. Finally, given the above definitions,
an adapter is defined as follows:

Definition 3.5. An adapter A for protocols Ps and Pc is
specified with a tuple A=(PA,IMA).

As discussed before, unlike existing approaches for auto-
mated adapter generation in [29, 7, 6], we do not assume the
the interface mapping IMA is provided, but we propose an
approach to help the developer in providing interface map-
pings. The interface mappings is performed in a two-step
process: (i) identifying interface matching, which is the pro-
cess of identifying the relationships between messages in Is

and Ic. This includes identifying relationships between the
data types of messages in the two interfaces. The purpose of
this step is to find the set X of parameters of the function
func(X) that generates m; (ii) Specifying mapping func-
tions. In this step, the mapping function func(X) that re-
turns m is specified. We propose a methodology to help the
user in performing the first step, as discussed in Section 4.
The second step is performed by the adapter developer, as
discussed in Section 6. The identification of the matching
between data types of messages in X and message m is the
most important part in specifying func(X).

4. INTERFACE-LEVEL MISMATCHES
Given two service interfaces Is and Ic and protocols Ps

and Pc, the goal is to find the matching between messages
in interfaces Is and Ic. In this phase, we do consider not
only the information in Is and Ic, but also the ordering
constraints that protocols define. We argue that interface
matching cannot be addressed properly without considering
the ordering constraints, as well, since e.g., a given mapping
function m ← func(m1, m2) may seem possible by looking
at the interface-level information, but considering the pro-
tocol information, the adapter may not have received m1

and m2 when it is needed to synthesize m. In the following,
we present a semi-automated approach for identifying a set
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Figure 4: AddOrderRequest and its candidates for
matching in Google checkout APIs

of initial matchings based on information at the interface-
level, and then discuss in Section 4.2 how we improve the
matching results based on protocol-level information.

4.1 Interface Matching
As mentioned before, we base our interface matching on

approaches in schema matching [24]. The reason is that like
approaches in schema matching, we are interested in finding
the matching between the data elements in the schemas of
two services. This helps us to find the relationships between
messages of Web services. Schema matching is a hard prob-
lem. In general the results on large and arbitrary schemas
(of services) may not be always useful [25]. Fortunately, we
have additional information compared to schema matching
approaches in service interfaces, which are message and op-
eration definitions, that act as additional constraints. We
use the following heuristics based on message and opera-
tion definitions to increase the precision of matching in the
matching of schema definitions of any two service interfaces:

Pair-wise matching of schemas of messages. Our
experiments with schema matchers show that usually we do
not get precise matching results using the whole schemas
of two services at once. Working on service (WSDL) inter-
face allows us to break down the problem of schema match-
ing into matching schemas of individual messages of two
schemas. We identify fragments of schemas to be compared
at each step. We perform such comparison for all pairs of
messages from the two interfaces. This results in increasing
the precision of each matching, however, the number of re-
quired matchings increases from one to the Cartesian prod-
uct of number of messages in the two interfaces. We believe
that is an acceptable overhead to achieve higher precision.

To illustrate the approach, let’s consider the schema of
<Order> in XWebCheckout and its corresponding matches in
Google APIs depicted in Figure 4. We used COMA++ [9]4

to find the matching between the whole schema of XWe-
bCheckout and that of Google Checkout. The only matched
elements where <address> in <Billing> and <Shipping>

to <address> data type in Google. However, in pair-wise
comparison of <Order> (schema of AddOrderRequest mes-

4available at dbs.uni-leipzig.de/de/Research/coma.html
COMA++ is one of the best available schema matchers
that enjoys from combining several available methods for
schema matching
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sage) the result was more precise. The relationships be-
tween messages Place-Order and New-Order-Notification

are captured as depicted in Figure 4. These two schemas
are the closest to <Order> in the schema of Google Check-
out with the matching score of 0.29 and 0.55, respectively.
This is because the parameter of AddOrderRequest is of type
Order, which has the following schema elements: Order_ID,
Shopper_ID, Basket, Shipping, Billing, Credit_Card, el-
ement Receipt, and comments (Figure 4). Basket contains
all items that are ordered by buyers. Shipping and Billing

specify the shipping and billing addresses, respectively. In
Google, message new-order-notification contains almost
all the data types in Order, however, Order and Place-Order

are matched only in Shopper_ID, Buyer-ID, and Basket,
Shopping-Cart.

Finally, we used the observation that if some parts of a
message are matched with elements in one message and some
other parts of the same message are matched with elements
of other messages, then it is an indication of a merge/split
mismatch (1-n matching).

Incorporating message name into the schema. Our
experiments also show that if we incorporate the message
name into the schema for that message, it increases the pre-
cision of mappings. This is performed through creating a
new complex XML element, named after the message, and
includes the schema of the messages. This is considered in
Figure 4.

Considering the message type. An indication that
helps in reducing the number of required pair-wise message
matchings is considering the message type, i.e., if a message
is an input or output of an operation definition. When gen-
erating adapters for compatibility (adapting a client to work
with a given service), we only check the matching between
output (input) messages of each operation of the client in-
terface with the input (output, respectively) messages in
the service interface. When generating adapters for replace-
ability (developing the adapter to make the specification of
a service similar to another given service) we check only
matching between the input (output) messages of opera-
tions of a service with the input (output, respectively) in
the other service interfaces.

In Figure 4 we have the interfaces of the two services XWe-
bCheckout and the Google Checkout. Without considering
the operation definitions, the matching results in Figure 4
suggest that message new-order-notification is the best
match for message AddOrderRequest based on the match-
ing score. However, if we consider the operation definition
constraints on mappings, we observe that AddOrderRequest
is an input message for AddOrder operation, while mes-
sage new-order-notification is an output message in a
notification operation with the same name. On the other
hand, Place-Order message is the input of Place-Order

operation. So, considering the operation definitions we con-
clude that the only AddOrderRequest is a possible match for
Place-order, although it has a smaller matching score.

The following algorithm summarizes our interface match-
ing method, in which I1 and I2 denote the WSDL interface
of two services:

Figure 5 shows the matches for some of the operations
in the two interfaces for Google and XWebCheckout. The
result of matching indicates all operations required by the
interface of CO Client are covered by Google except two
operations, which are LoadOrder and UpdateOrder. In fact,

LoadOrder
AddOrder
UpdateOrder
DeleteOrder
ProcessPayment

XWebCheckout Google Checkout API
Place-Order

Cancel-Order

Charge-Order

…

New-Order-Notification

Figure 5: Operation mapping between XWe-

bChecoutClient and Google checkout APIs

Algorithm 1 Interface Matching Algorithm

Require: I1, I2
Ensure: Message Matching between I1, I2
1: XSDm ← XML schema of message m in I1 (I2)
2: for message m ∈ I1 do

3: for message m′ ∈ I2 do

4: match(XSDm, XSDm′ ) considering message types (in-
put/output)

5: end for

6: end for

7: Perform 1-n message matching

these two operations are used by CO Client in its Website
to allow buyers to load and update orders. However, since
Google provides a separate website for buyers, these two
operations are not needed to be invoked. On the other hand,
there are many messages in the Google interface that do not
have a match in CO Client, e.g., new-order-notification.
This is an extra message in the Google interface.

4.2 Applying Ordering Constraints
As discussed before, it may not be always possible to use

all matching results that are generated based only on the
interface information during the adapter generation. This
becomes clear by considering the ordering constraints that
two services impose on the exchange of messages. We re-
fer to such matches as non-plausible matches. As an ex-
ample, let’s consider the protocol definitions SP and SC in
Figure 1(b). Interface matching results for these protocols
specifies that message <SC,ack> is matched to message
<SP,ack>. However, considering ordering constraints, we
observe that the message <SP,ack> is not received by the
time that <SC,ack> is needed, so this mapping is not plau-
sible. Hence, the mapping function of message <SC,ack>

cannot take the set X identified in this step.
Therefore, we need to verify the interface matchings gener-

ated based on the information level information, and identify
the set of non-plausible interface mappings using the order-
ing constraints defined in protocols. This has to be done
before proceeding to ask the user to generate the interface
mapping functions that take the input X and transform it to
message m, as otherwise such mapping functions will be use-
less. However, there may be other possible matching (e.g.,
a different set X) that makes the mapping possible.

Among all types of possible mismatches that we studied
in the paper, decision making regarding if we need to de-
velop mapping functions for extra/missing messages in the
two interfaces also could not be answered without consid-
ering the protocol-level information. This is because the
protocol-level information will clarify if and at what state
during the interactions such messages are required. For ex-
ample, there are many messages in the Google interface,
e.g., merchant-calculation-results, which is not commu-
nicated with CO Client, and also New-Order-Notification,
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which is sent as a part of placing order but client does not
require it. However, Notification-acknowledgment should
be provided for a successful interaction with Google, so a
mapping is required to be provided. Answering all of these
questions requires protocol-level analysis. In the next sec-
tion, we present our approach for providing such an analysis.

5. PROTOCOL-LEVEL MISMATCHES
After applying the interface matching techniques, we get

the matching between messages of Is and Ic, and so the
interface mapping IMA. Given IMA, in this section, we
use the protocol definitions Ps and Pc of the two services
to find all protocol-level mismatches. As discussed before,
there are two types of mismatches at the protocol-level: un-
specified reception, and deadlock. Existing approaches han-
dle unspecified reception automatically (see e.g., [29, 6, 7]).
The interaction of the generated adapter in these approaches
guarantee to be deadlock-free. However, investigating if the
deadlocks can be resolved is challenging, and has not been
addressed. Note that our focus is different than other exist-
ing work that use formal verifications e.g., based on CSP and
Pi-Calculus to generate deadlock-free interaction given the
protocols of the services [21]. There, the goal, similarly in
automatic adapter generation, is realized by removing paths
of interactions that result in deadlock. However, we focus
on how to resolve the deadlock, if possible, rather than dis-
allowing them without investigating their resolution. The
presented approach is general and could be applied to dead-
lock resolution in above mentioned approaches, as well.

As we explain in the following, mismatches with deadlock
is caused by either the lack of required interface mappings
in IMA, or non-plausible interface mappings in IMA. In
fact, we only understand these two cases by considering the
protocol-level information. In this section, we propose tech-
niques to identify such mismatches, represent and analyze
them to help the user in providing new interface mappings
or refining existing interface mappings in IMA, if possible,
to avoid the deadlocks during the adapter generation.

We perform protocol-level analysis through simulating the
adapter generation process, which explores all possible mes-
sage exchanges between the two services according to Ps and
Pc. In the following we first present an algorithm for adapter
simulation. Then we discuss our approach for providing a
concise representation of all mismatches with deadlock, and
analyzing them to make suggestions to the developer to re-
solve such mismatches. Suggestions are in form of identi-
fying the input X for the mapping functions that enable
construction of the messages that are engaged in deadlocks.

5.1 Adapter Simulation Process
The following algorithm summarizes the adapter simula-

tion procedure, which is adapted from the automatic adapter
generation process in [29]. The input of the algorithm is pro-
tocols Ps, Pc, and interface mapping IMA between Is and
Ic. The output of this algorithm is protocol PA also MT ,
which stands for mismatch tree for representing all deadlock
cases in the two protocols.

The variable Q implements a queue structure that is a list
to keep track of all possible state sA of the adapter. For each
sA, function TransitionOut(sA, Px), Px = Ps, or Px = Pc,
checks if there are possible message exchanges between the
service and the adapter, or the state sA is a deadlock state
(Out == False). A state is a deadlock state if there is no

Algorithm 2 Adapter Simulation Algorithm

Require: Ps, Pc, IMA

Ensure: PA, MT
1: Q← {< init, init >}; AddTo(PA, < init, init >)
2: while Q 6= ∅ do

3: sA ← dequeue(Q)
4: Out← FALSE
5: if (s′A, t′A)← TransitionOut(sA, Ps) & s′A 6= sA then

6: enqueue(Q, s′A);
7: AddTo(PA, s′A, t′A)
8: Out← TRUE
9: end if

10: if (s′A, t′A)← TransitionOut(sA, Pc) & s′A 6= sA then

11: enqueue(Q, s′A);
12: AddTo(PA, s′A, t′A)
13: Out← TRUE
14: end if

15: if Out == FALSE then

16: IdentifyNonP lausibleMappings()
17: MT ← HandleDeadlockState(sA)
18: end if

19: end while

possible message exchange between the service and any of
the two services SP and SC in that state. This happens
if both services are waiting to receive some messages that
the adapter can not synthesize. If one of the following two
conditions holds it means that a transition out of sA exists
and the adapter transits from state sA to s′A:

• Px is ready to send a message, so the adapter receives
it, generates s′A, and corresponding t′A, and the set
of actions for t′A (saving the message in the adapter,
and activating its flag).

• Px is ready to receive a message m that is associated
to a mapping im : m = func(m′

1, ..., m
′

k), and all in-
put messages m′

1, ..., m
′

k, k > 0 are received in the
adapter (their activation flags are equal to True). So,
the adapter generates s′A, and corresponding t′A, and
the actions to synthesize m.

If outgoing transitions are found for a state sA, then the
new states of s′A are put in Q, and s′A and corresponding
t′A are added to PA. Otherwise, sA is a deadlock state. In
existing approaches for automatic adapter generation [29, 6,
7], deadlock states are removed from the adapter, i.e., such
interactions are not supported by the adapter. However, in
the following we propose an approach to give the user an
opportunity to examine if the adaptation is possible or not.

5.2 Handling Mismatches with Deadlock
As discussed before, mismatches with deadlock are due to

one of the following two cases: (i) provided mapping im for
a message m is not plausible, or (ii) there is no mapping pro-
vided for a message m (e.g., for a missing/extra message).
To illustrate the approach, let’s consider protocols SP and
SC in Figure 6(a), in which their interactions result in dead-
lock as both are waiting to receive some messages in states
1 and 1′, respectively (SP is waiting for message a and SC
for message c). We propose the following two approaches for
dealing with such situations: (i) progressive user interaction,
(ii) mismatch trees generation.

5.2.1 Progressive User Interaction
In this approach, as soon as the algorithm finds a dead-

lock state (line 17 in Algorithm 2), we prompt the user with
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Figure 6: (a) ordering mismatch with deadlock, (b)
the mismatch tree for SP and SC

messages that are responsible for the deadlock. For example,
for protocols SP and SC in Figure 6(a), when adapter is in
state 〈1, 1′〉, we prompt the user and ask for the mappings
function for one of messages 〈SP, a〉 or 〈SC, c〉 to resolve
the deadlock. To facilitate decision making for the devel-
oper, we provide information on how it might be possible
to construct each of these messages based on available evi-
dences (See section 5.2.3). The developer may confirm that
it is feasible to provide a mapping for one of these messages.
In this case, the process of adapter generation proceeds un-
til finding the next deadlock state. However, the developer
may acknowledge that no mappings could be provided for
any of these messages, then this deadlock state is tagged to
be removed from the adapter during the adapter generation.

This approach is simple, however, it has two main dis-
advantages: (i) it may involve too many interactions with
the developer, (ii) more importantly, as the future message
exchanges of two protocols after the deadlock point is not
taken into the account, the developer may not make the
best decision. For example, assuming that for resolving the
deadlock in Figure 6(a) it is possible to provide mapping
functions for any of 〈SP, a〉 or 〈SC, c〉 and the developer
selects to provide for 〈SP, a〉, then the next deadlock oc-
curs between 〈SP, b〉 and 〈SC, c〉. However, if the developer
had decided to provide mappings for 〈SC, c〉, then no more
deadlocks would have occurred.

5.2.2 Generation of Mismatch Trees
Motivated by the goal of finding all deadlock cases be-

tween two protocols, we perform a what-if analysis for each
deadlock case, in the sense that: assuming that a mapping
could be provided for each of the messages engaged in the
deadlock, then how the message exchanges between two pro-
tocols proceed until the exchange ends up in final states in
both protocols. Based on the result of this analysis, we build
a tree, which is called a mismatch tree (MT ). A MT repre-
sents all possible deadlocks between two protocols, and the
messages that are engaged in each deadlock. For example,
the MT for SP and SC in Figure 6(a) is depicted in Fig-
ure 6(b). It states that in state 〈1, 1′〉 of adapter (state 1 of
SP and 1′ of SC, respectively), there is a deadlock that mes-
sages <SP,a> and <SC,c> are involved in it. From the dead-
lock resolution point of view, this node represents a choice
(or-condition), in which if a mapping for either of <SP,a> or
<SC,c> is provided the deadlock is resolved. It also shows
all future deadlocks that would occur in each path of the
tree. For example, if the developer provides a mapping for
<SP,a>, then the next deadlock occurs in state 〈2, 1′〉, which
represents a choice between <SP,b> and <SC,c>.

1,3’ 2,4’

8,9’

…

<SP,c,ρ3> <SC,d,ρ3>

1,3’ 1,3’

<SP,a,ρ1> <SC,b,ρ2>

Figure 7: The general representation of a mismatch
tree. Shaded nodes specify and nodes, and black
nodes the leaves of the tree

In general, MT is an AND-OR tree. An AND-Node does
not represent a deadlock case itself, but specifies that all
deadlock cases that are children of this node should be re-
solved. The root of MT is an example of an AND-Node.
The outgoing edges of an AND-Node do not have any label,
but they are linked to other AND-Node or OR-Node. An
AND-Node inside MT is created if, for a given state ss of
Ps, or sc of Pc, there are k > 1 outgoing transitions that
each requires a message to be triggered (transitions with la-
bels +m1,+m2, ...,+mk). On the other hand, an OR-Node
refers to a deadlock case. This type of node has either two
outgoing edges corresponding to two messages, which are
engaged in the deadlock, or one edge, in the case that one
of the services SP or SC is in a final state and the other
requires the message on the label of the edge. The label
of an OR-Node consists of the name of a pair of states, in
which a deadlock occurs during the interaction of services.
The label of outgoing edges of an OR-Node takes the name
of messages that are engaged in the deadlock. See Figure 7
for the general representation of a MT , in which both nodes
of types AND-Node and OR-Node are present. In this per-
spective, MT in Figure 6(b) is a subtree that shows the
messages that are engaged in the deadlock that occurs in
state 〈1, 1′〉 of the adapter. The advantage of MT is that
it represents all possible deadlocks in a concise form, and
allows the developer to make informed decisions.

5.2.3 Evidences
Determining if a given message m engaged in a deadlock

could be constructed in the adapter or not is a very difficult
task, and depends on many factors including the state in
which the interaction between two services is, and also the
semantics of messages. In the following, we discuss some of
the evidences that can be used for identifying messages in
common deadlocks appear in Web services interactions:

Interface-based inference. For a given message m from
interface I, which is a label of an edge in MT , we can per-
form the following analysis on interface I to find indications
that might help to construct m:

(i) Messages with empty content. By inspecting the schema
of message m, we may observe that it is an empty message.
This is specially the case for some acknowledgment and re-
sponse messages.

(ii) Analyzing the messages of the same interface. If the
data structure of a message m is not empty, then we ana-
lyze the relationship between data structure m, and those
of all messages m1, ..., mk, k > 0, of the same interface
I, that has been received before the deadlock point in the
adapter. If elements of m could be matched to elements of
any of above messages, we may be able to construct this
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message from those messages. This technique is also help-
ful on some response and acknowledgment messages that
return some order-number, serial-number that is previously
exchanged between services. In this case, the probability
that m could be constructed is considered as the similarity
score of elements of m to existing messages in the adapter
from interface I.

(iii) Enumeration with default. In some schema defini-
tions, e.g., in Google APIs, the expected values for some
data types are given through enumeration. It may be pos-
sible for the adapter to continue interactions with a service
using some default values from such a list.

(iv) Acquiring m through operation invocation. In some
cases, we may observe that message m from interface I1

that is required in MT has a mapping to a message m′ from
the partner interface I2. And, m′ is the output message
of operation o〈m′′, m′〉 with input message m′′. And, we
observe that we can construct m′′ from the messages that
already have been received by the adapter. This allow to
get m through invoking operation o. The weight of m in
MT is a product of matching score of m and m′, and also
the matching score of m′′ to messages in the adapter.

Log based value/type inference. If the log of previous
interactions of the service that we are developing the adapter
in that service side is available, e.g., in case of CO Client, it
keeps the log of its previous interactions with XWebCheck-
out. Then, this log is used to infer the data types/values
exchanged for specific elements in the required message m.
For example, we may observe that a fixed value for data el-
ements of m is exchanged, or it is part of previous messages
exchanged between services.

As another example, we used this evidence to adapt a
client of version 1 of XWebCheckout service to use version
2 of this service. The main difference between these two
versions is in the schema definitions: version 1 uses simple
data types and all inputs are defined as strings, while in
version 2 complex XML types are used to declare the ex-
pected schemas. Analysis of log of client made it clear that
exchanged contents in messages of version 1 of the service
are in XML format and conform to the XML schemas in the
second version, with few exceptions. However, by consider-
ing only the schema definitions we could not make such an
inference.

Developer Input. As discussed, determining if a given
message m could be constructed in the adapter or not is
very difficult and depends on many factors that may not
be captured by any of above evidences. For this reason, we
also rely on the input by the adapter developer to identify
if it is feasible to provide a mapping function to construct a
message m in the adapter or not.

5.2.4 Analyzing Mismatch Trees Using Evidences
As discussed before, we assign a weight to each edge in

the tree based on the analysis of available evidences to show
the probability that the message on the edge could be con-
structed. So, the complete representation of each message
on edges of MT is in the format of <P,m,ρ>, in which P
denotes the protocol name, m the message name, and ρ is
the probability that message m can be constructed based
on evidences (Figure 7). This probability takes values be-
tween 0 and 1, in which value 0 specifies that we do not have
any indication that this message could be constructed, while
1 suggests that this message could be constructed based on

2,iv

3,iv 2, v

2,iv 2,iv

<CC_Client,AddOrderResponse,1>

<Google,
NotificationAcknowlegment,1>

<Google,
NotificationAcknowlegment,1>

<CC_Client,AddOrderResponse,1>

Figure 8: The mismatch tree for the placing order
protocol of CO Client, Google Checkout in Figure 3

available evidences. At this stage, we end up with a weighted
tree, in which each edge has a weight between 0 and 1. For
each deadlock case in this weighted MT (i.e., for each sub-
tree corresponding to one children of the root node of MT ),
we are interested to find the shortest path, i.e., with the
minimum number of messages, that maximizes the proba-
bility that the deadlock could be resolved by constructing
messages that are engaged in the deadlock. The probabil-
ity that we can construct one message is independent from
the probability of the construction of any other messages.
So, we can define the probability that each deadlock case is
resolved using the set of messages in a specific path as the
product of the weights of each edge in that path. Then, we
rank different paths in each subtree (corresponding to each
deadlock case). The result of this ranking is a list, in which
the top path corresponds to the best shortest path in the
weighted subtree, that we suggest to the adapter developer.

5.2.5 Mismatch Tree for the Running Example
Let’s consider very simple protocols of CO Client and

Google Checkout depicted in Figure 3. In Figure 4 we con-
cluded that Place-Order message is a plausible matching
for AddOrderRequest message in CO Client. However, there
is no matchings for messages New-order-notification and
Request-Received in CO Client, and also no matching for
AddOrderResponse in Google Checkout. Figure 8 shows the
mismatch tree MT generated for these two protocols. The
first mismatch with deadlock occurs in state 〈2, iv〉 between
messages AddOrderResponse and Notification-Ack. If a
mapping for either of these messages could be provided,
then there will be another deadlock case which shows the
other message is still required (in states 〈3, iv〉 and 〈2, v〉).
Since Request-Received and New-order-notification are
of type of extra messages they do not create any deadlock,
but the adapter could receive them. However, after receiving
Notification-acknowledgment, it needs to send message
Notification-Ack to the Google. This has been captured
by the mismatch tree.

To assign weight to different paths of MT in Figure 8, in
the first step, we analyzed the WSDL interfaces of CO Client
and Google Checkout. Notification-acknowledgment has
a serial-number element as its content. Considering the
relationship between messages received up to this state of
adapter reveals that this element has been received as a part
of message New-order-notification that is sent by Google
Checkout. So we estimate that the probability of provision
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of this content as 1. In case of CO Client, inspecting the
content of message AddOrderResponse shows that it is an
empty message. So, in this special case, the probability
of construction of this messages is also estimated to be 1.
Based on this analysis, the adapter developer can create the
required mappings in IM to resolve the deadlock.

To summarize, the adapter simulation process in the al-
gorithm 2 generate one of the following results for any given
protocols Ps and Pc and interface mappings IM : (i) it out-
puts that there is no adaptation required, and protocols suc-
cessfully interact (if there is no protocol-level mismatches);
(ii) adaptation is required, but there is no interactions with
deadlock (there are mismatches of type of unspecified re-
ception), and generates the adapter protocol (PA); (iii) the
adaptation is required, and there are interactions with dead-
lock. For such interactions, the mismatch tree MT is gen-
erated for further analysis (line 17). Based on analysis of
MT the developer may updates interface mappings IM to
resolve some deadlocks, or tag some of the deadlocks as non-
resolvable. In the next run of the algorithm, it removes all
the deadlock states tagged as non-resolvable.

6. IMPLEMENTATION AND EXPERIMENTS
The approach presented in the paper has been imple-

mented inside IBM WID (WebSphere Integration Devel-
oper), which is an Eclipse-based IDE for development of
composite applications based on SCA (Service Component
Architecture) architecture [26], and in the context of Wom-
bat project for analysis of service interactions [19]. Figure 9
shows the architecture of the tool. Services to be adapted
and the generated adapter are implemented as SCA compo-
nents and the interface mapping component uses the compo-
nent of InterfaceMap in IBM WID to implement mappings.
The mismatch tree editor is implemented by extending the
state machine editor in WID to represent mismatch trees,
and the backend to check for evidences. Mapping functions
could be implemented as XQuery, XSLT or even plain Java
functions. Interface mapping editor allows developers to cre-
ate new and also edit discovered mappings. The interface
matching component is implemented on top of COMA++
tool [9] (http://dbs.uni-leipzig.de/de/Research/coma.html).

Our tool also supports defining rules that specify how to
use interface mappings during the adaptation. For example,
if two or more mappings are specified for a given message

m, rules specify where to use which one of the mappings, or
to define generalized forms of actions of adapter. For exam-
ple, by default after sending a message m, all set of input
messages in X that are used to build m and m itself is in-
activated. However, the developer can define rules to allow
a given mapping to be used in any state that is needed dur-
ing adapter generation and not to be inactivated. Rules are
represented in XML and implemented following the EMF
(Eclipse Modeling Framework) in Eclipse. The rule editor
allows the developers to edit discovered rules or create new
rules for a pair of protocols. The adapter generation pro-
cess accepts the rule definitions as the input. Finally, all
algorithmic parts are implemented using Java 1.5.

The result of application of the tool on matching CO Client
(in fact XWebCheckout) and Google Checkout APIs for
other functionalities (order payment, shipping, and cancel-
lation) shows that the interactions of the two services results
in deadlocks, and the mismatch tree generation and rank-
ing approach is very useful in enabling the adaptation be-
tween the two services. In addition, we have applied the tool
on a number of other service interfaces and business proto-
cols taken from the real-world scenarios, e.g., an ATM/Bank
interface and protocol definitions [19], mapping a client of
version 1 of XWebChecout service to work with version 2
of the service and the interface and protocol definitions of a
purchase order service taken from [1].

The lessons learned from these experiments include: (i)
in many services, only a subset of elements of the schema
defined for each message is essential for the proper function-
ing of the service. Functionality-wise similar services often
declare such essential information in their interfaces. Our
interface matching methodology proved effective in finding
the matching between messages, and between data types
of each message for such parts; (ii) such functionality-wise
similar services often define different ordering constraints on
the message exchange, and mainly the differences are of type
of signature mismatch or having extra/missing messages in
service interfaces. This later case often leads the interaction
to deadlock.

7. RELATED WORK AND CONCLUSION
The problem of adapting interactions models in software

has been studied in different contexts, and more notably in
the area of software components (e.g., [29, 6, 17, 13]) and
also recently in Web services [3, 12, 11, 18, 7]. There are
mainly two schools of work in this area: The first school of
approaches propose techniques for automatic generation of
adapters [29, 6]. All of them tackle ordering mismatch with
unspecified reception, and remove all interactions that lead
to deadlock from the adapter (hence, deadlock situations
are not in fact managed). In addition, they assume there is
no mismatch at the interface level, or that interface map-
pings are provided. The other school of approaches provide
classes of possible mismatches between interactions mod-
els and then propose adaptation templates based on design
patterns or adaptation operations to resolve the mismatches
(e.g., [14, 11, 18]). However, in all of these approaches de-
velopers need to manually inspect the protocols and identify
the mismatches.

At the interface level there are two main approaches in the
prior art: (i) approaches for finding similar operations in a
repository of service descriptions like UDDI to a given tex-
tual description or to some service operation signature, e.g.,
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[10, 27]. However, the objective of these approaches is not to
find the exact mapping between elements of messages (and
operation), but to find a measure of their similarity typi-
cally based on information retrieval techniques. In fact, the
proposed techniques are not applicable in interface mapping
context as we have only two service interfaces to map, while
e.g., Woogle [10] proposes a clustering-based approach that
requires a repository of service descriptions to be applied as
a learning phase.

The second class of prior art propose approaches for adapt-
ing a service WSDL interface to incompatible clients, e.g.,
[12, 23]. In [23] authors assume that interfaces of all ser-
vices that provide a similar functionality are derived from a
common base interface using limited number of derivation
actions that allow for adding or removing parameters to op-
erations, however the operation names remain the same. We
do not make any assumptions on service interfaces. We build
on top of schema mapping approaches [24, 9] and we extend
them by considering protocol definitions to identify the set
of relevant mappings in service interactions. In [12], the
author proposes defining service views on top of WSDL in-
terfaces by altering WSDL interfaces to enable interactions
with incompatible services, but no automatic support for
generation of views is proposed.

Semantic Web-based approaches based on ontologies also
provide an attractive alternative for Web service matching
(e.g., [1, 22]) and mediation [28]. However, the limited avail-
ability of ontologies in real-world Web services makes it hard
to apply these techniques at this stage. Commercial prod-
ucts, e.g., IBM WID, BEA WebLogic or Microsoft Biztalk
also provide facilities for manual mediating between service
interface and protocols, however, they offer limited auto-
mated support.

In summary, the innovative contributions of this paper lie
in, first, providing semi-automated support for identification
and resolution of interface-level mismatches. We propose a
method to identify parameters of mapping functions that
resolve those mismatches. Second, we provide automated
support for adapting behavioral models in presence of dead-
lock. Tackling this type of mismatch greatly expands the
range of syntactically incompatible but adaptable services
before automatically concluding that such services are not
adaptable. We showed this using a number of examples and
experiments (a case study) in the paper. In doing this, we
exploit domain-specific knowledge available in the context
of Web services, e.g., in WSDL interfaces, protocol speci-
fications, and execution logs, if available, to provide above
mentioned automated support.

We believe that these results are promising and encourag-
ing. We have experienced that the problem is real and press-
ing, and the solution does considerably simplify adapter de-
velopment. As future work, we are planning to extend the
work in several directions including: (i) performing more
real-world experiments in SOA applications to measure the
overhead of adapter generation approach as compared to
developing new clients, and to identify circumstances un-
der which adaptation is superior to new developments, (ii)
studying the performance overhead of adapters as standalone
SCA components in an SOA application environment versus
other deployment options like aspect-oriented approaches.
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