
Homepage Live: Automatic Block Tracing for Web
Personalization*

Jie Han1 Dingyi Han1 Chenxi Lin2 Hua-Jun Zeng2 Zheng Chen2 Yong Yu1

1Dept. of Computer Science and Engineering
Shanghai Jiao-Tong University
Shanghai 200030, P. R. China

{micro_j, handy, yyu}@sjtu.edu.cn

2Microsoft Research Asia
5F, Sigma Center, 49 Zhichun Road

Beijing 100080, P. R. China

{chenxil, hjzeng, zhengc}@microsoft.com

ABSTRACT
The emergence of personalized homepage services, e.g.
personalized Google Homepage and Microsoft Windows Live,
has enabled Web users to select Web contents of interest and to
aggregate them in a single Web page. The web contents are often
predefined content blocks provided by the service providers.
However, it involves intensive manual efforts to define the
content blocks and maintain the information in it. In this paper,
we propose a novel personalized homepage system, called
“Homepage Live”, to allow end users to use drag-and-drop
actions to collect their favorite Web content blocks from existing
Web pages and organize them in a single page. Moreover,
Homepage Live automatically traces the changes of blocks with
the evolvement of the container pages by measuring the tree edit
distance of the selected blocks. By exploiting the immutable
elements of Web pages, the tracing algorithm performance is
significantly improved. The experimental results demonstrate the
effectiveness and efficiency of our algorithm.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User/Machine Systems – Human
factors, Human information processing; H.5.4 [Information
Interfaces and Presentation]: Hypertext/Hypermedia –
Navigation, User issues

General Terms
Algorithms, Experimentation, Human Factors

Keywords
Adaptive User Interfaces, Tracing, Web Blocks, Tree Edit
Distance, Tree Pruning.

1. INTRODUCTION
Web users often want to save shortcuts to their interesting
information on the Web for convenient re-use. One conventional
way is to use Favorites folders to organize the URLs of interest so
that they could be visited quickly next time. Some tools are also

developed to help users organize their shortcuts, such as Mind-It1.
However, users may only be interested in some parts of the pages
instead of the whole pages. In order to fulfill this requirement,
various personalized homepage applications emerged recently on
the Web to enable Web users to select Web contents of interest
and to customize layouts and visual styles. For example,
personalized Google Homepage 2 allows users with Google
accounts to consolidate various Google features, ranging from
stocks, weather, quote, to search and email, into a personalized
homepage. Microsoft Windows Live3, enables passport users to
organize their homepage by collecting their favorite information,
including Microsoft services, gadgets, or any RSS feeds. Figure 1
illustrates a screenshot of Windows Live. Similar ideas [2] are
also proposed by some researchers using the name of “one-stop
browsing”.

Figure 1. A Screenshot of Microsoft Windows Live Service

Unfortunately, it is not trivial to define the content blocks and to
maintain the information in it. Service providers often define
their own markup specification and organize their contents by
manual effort. Information such as news and blogs often update
rapidly, which make the maintenance of these content blocks
difficult and expensive.

1 NetMind. http://www.netmind.com/.
2 http://www.google.com/ig.
3 http://www.live.com/.

* This work is conducted during the first author’s internship in
Microsoft Research Asia.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

WWW 2007 / Track: Browsers and User Interfaces Session: Personalization

1

In this paper, we propose “Homepage Live”, which allow end
users to easily collect their favorite Web content blocks from
existing Web pages and organize them in a single page. Some
previous work [5] [7] [9][17] has shown that a Web page can be
partitioned into multiple semantically coherent blocks. Homepage
Live automatically recognize these blocks and allows end users to
use drag-and-drop actions to select the ones of interest.
A more challenging problem for Homepage Live is how to trace a
content block because many Web pages keep updating every day,
especially the ones of newsletter. For example, Google News4
updates the news portal averagely once half an hour. Contents
may be inserted and removed; the layouts of Web pages also
change frequently. We leverage the Web page DOM tree structure
to trace the block. By parsing a Web page into a DOM tree, each
block to be traced is represented as a sub-tree. Therefore the block
tracing problem is defined as to identify a certain sub-tree in an
updated DOM tree of a new page. The intuitive solution is to
identify the block by comparing the sub-trees one by one through
the general tree edit distance algorithm. The time complexity of
the algorithm is O(N2D2) where N is the node number of the
whole tree and D is the maximum child number of nodes in the
whole tree. It is quite time-consuming to trace several blocks
simultaneously, especially when some huge pages are involved.
Since our problem is to trace the block in two sequential Web
pages, there may exist some nodes with unchanged attributes to
provide the hints for tracing. We propose an enhanced edit
distance algorithm by utilizing such information. First, all nodes
with their attributes in two trees are indexed and a fast matching
algorithms is used to find the common nodes in two trees. Then,
two trees are pruned into reduced trees. Finally, we apply tree edit
distance algorithm on the reduced trees. The time cost for tree edit
distance algorithm in our proposed algorithm is reduced to
O(N’2D’2), while N’ and D’ is much smaller than original ones.
Based on the proposed tracing algorithm, we built Homepage
Live to enable Web users to mark blocks from different Web
pages and to organize the layout of these blocks. When the pages
are updated, the application can automatically trace the marked
blocks and show the new version to the users.
The rest of this paper is organized as follows: In Section 2 we
discuss the related work. In Section 3 we demonstrate the demo
system, and formulate the tracing problem in Section 4. We then
introduce two simple algorithms of low accuracy and our
advanced algorithms in Section 5 and 6 respectively. In Section 7
we present the experimental evaluation. A case study is given in
Section 8. Finally, we conclude the paper in Section 9.

2. RELATED WORK
There are many Web monitoring tools designed and developed
since the early 1990s. For example, Mind-It5 is one of such tools.
Users can register URLs of their interests and get notified by
email when the pages are updated. [9] proposes Web Tracker
which uses the Unix diff tools to show the difference to users.
Similar to our work, the Do-I-Care agent [1] employs relevance
feedback to detect the users’ interests. [6] and [9] adapts
Hirschberg’s solution for finding the longest common
subsequence to HTML pages. ChangeDetectorTM [3] is a site level
Web monitoring tool that can potentially be used to discover

4 Google News. http://news.google.com/.
5 http://www.netmind.com/

“silent news” hidden under corporate Web sites. All these work
emphasize on the evolution of Web pages at the granularity of
page level or site level. Different from them, our algorithm adopts
DOM tree mapping methods at block level.
A Web page can be divided into a set of blocks with different
kind of information. Currently, research on Web blocks has
become more active, which has many potential applications such
as block based Web search [4]. A variety of approaches have been
suggested for segmenting a Web page into blocks. These
approaches, e.g. DOM-based segmentation [7], location-based
segmentation [9], and vision-based page segmentation [5][18], are
distinguished from each other by taking various factors as
partition criteria. Though these methods have considered the
structure of a Web page instead of treating it as a whole unit, they
only segment statically. They do not discuss the change of these
blocks during the evolution of the Web page, which happens
frequently on the Web. In our work, we dynamically trace the
block in a Web page after a user marks a block. [16] proposes a
hierarchical and fragment-aware model of dynamic Web pages
and considers the lifetime of fragments. It aims at detecting
fragments that are most beneficial to caching and content
generation while our work aims towards tracing the block
interested by users.
The idea of building a “one-stop browsing” application is also
adopted in Internet scrapbook [18], Stuff I’ve Seen [9], Web
Montage [2] and WebViews [12]. Internet scrapbook is a system
which tackles the similar problem to ours. The system enables
users to collect content blocks on Web pages and trace it in
updated versions. It exploits the plan html tags and contents over
the Web pages to trace the target block. Stuff I’ve Seen [9]
provides a unified index of information that a person read, such as
emails, Web pages, documents, etc. By a query interface, the
system can efficiently find all the related information that the user
has ever seen. It regards Web pages as a unit for searching, which
is different from the idea of Web Montage’s and ours. Web
Montage [2] is quite similar to our application. The difference is
that they do not exploit the DOM tree of HTML pages while we
do. They trace the Web page blocks by recording the size and the
position on the distal page of the original block. The method is
just too simple for dynamically changing Web pages. If the block
size or position is changed, the users have to modify the records.
Similar to them, WebViews [12] uses a simple method based on
recording the node path of the HTML DOM tree, named XPath to
trace the blocks.
Some applications aiming at data records extraction also adopt
DOM tree analyzing approaches. Hasan et al. have encoded the
DOM tree path by a method similar to regular expressions [8].
Bing et al. have proposed to use tree edit distance to find the
similar data records on one Web page [15][21].. Since their
targets are different from ours, their methods can not be applied
directly to solve our problem. Although the method we proposed
in Section 6 is also based on tree edit distance, it is still different
from what Bing et al. proposed and we have optimized it.

3. HOMEPAGE LIVE
Homepage Live is an application which offers “one-stop
browsing” for users. It allows users to collect blocks from
different Web pages and organize them in a single sheet as a
personalized page. Figure 2 illustrates a snapshot of Homepage
Live. The sheet in the right panel is composed of blocks from
different sites.

WWW 2007 / Track: Browsers and User Interfaces Session: Personalization

2

Figure 2. Homepage Live

In contrast to identifying a Web page with its URL, our system
needs to support the users to mark a Web page block. Our system
can help users outline the blocks they want from Web pages, and
trace them. When a user re-opens the system, it will automatically
access all these Web pages, detect the blocks’ positions in the
pages by an efficient tracing algorithm, and present the extracted
real time content to the user.
To sum up, running a personalized homepage is a two-step
process in Homepage Live. First, the users collect the blocks from
different Web pages to construct their personalized homepage.
Second, the system display the collected Web blocks and
automatically update the contents according to the changes of
corresponding Web pages.

3.1 Collecting the Blocks
Different from the Web montage [2], we develop a manual block
marking tool in Homepage Live to help users collect the blocks.
When browsing, the Web page is first parsed into a DOM tree.
Each content block in the Web page is mapped to a node in the
DOM tree. Then, the tool enables the user to select the block
through the mouse operating in different ways:
1) The user can move the mouse on the Web page to select a
block and the selected block will be marked by a red rectangle.
2) The user can scroll the wheel of the mouse to change the
granularity of the selected block, which is shown in Figure 3. An
up-scroll means the parent node is the target block and a down-
scroll means the child node under the current cursor is the target
block.

3) After the block is confirmed by double-clicking the mouse, the
user can drag the block into the personalized page in Homepage
Live.
4) The user can organize the layout and the visual style of
personalized pages by drag-and-drop.

Figure 3. Block Selection

3.2 Tracing Web Page Blocks
When the user runs the application again, the application uses a
tracing algorithm to analyze the original pages and the new pages.
It can detect the new block position in the updated pages, and
present the extracted new blocks to the user. Take Figure 4 as an
example, if the user is only interested in the NYSE Composite
chart block of the page, the application will fetch the page and
show the latest charts.

Figure 4. An Example of Sequential Blocks

WWW 2007 / Track: Browsers and User Interfaces Session: Personalization

3

?

<div id="div_1">
<div id="div_2">

<p>***</p>
<p>---</p>

</div>
<div id="div_3">

<p>|||</p>
</div>
<div id="div_4">

</div>

</div>

<div id="div_a">

<p>***</p>
<p>----</p>
<div id="div_b">

</div>
<div id="div_c">

<p>||||< /p>
</div>

</div>

div_1

div_2 div_3 div_4

---***im g_1 ||| im g_2

div_a

div_b div_c----***im g_1

||||im g_2

Figure 5. DOM Tree of Web pages

In this paper, we emphasize on the problem of how to trace the
block when the content of the corresponding block is changed.
Since Web pages are often updated to attract users, their content
and layout are also frequently changing. In this case, the tracing
problem is a challenging job as we may not just record the visual
position and size of the block.
In the following sections, we will define the problem and focus on
solving it.

4. TRACING PROBLEM DEFINITION
4.1 Definition
Given a Web page and a user’s target block, our problem is to
find the corresponding block in the evolved page. The term
“corresponding” is to describe the relationship between the users’
target block in the evolved page and its original version. The
layouts and contents are represented by DOM (Document Object
Model) tree. Each HTML page corresponds to a DOM tree where
tags are internal nodes and the detailed texts, images or hyperlinks
are the leaf nodes. Figure 5 shows two pages with two segments
of their HTML codes and their corresponding DOM trees. The
right tree is an updated version of the left one.
Formally, given a DOM tree To and its sub-tree Bo, when To has
evolved to Te, the problem is to find out the evolved block Be in Te,
corresponding to Bo. Be should be unique if it exists.

4.2 Difficulty of the Problem
From first glance, the tracing is an easy problem. In fact, due to
the diversity of Web pages, the original page could be edited in
various kinds of styles. We had a study on a 25-URL data set. The
URLs are frequently updating pages, such as Google news, Yahoo
news, MSNBC news, etc. For each URL we crawl 101 versions
of these URLs with an interval of thirty minutes.

Table 1. Statistics for Web Page Evolution

I t em Aver age
< 1000 52%
1000 - 2000 40%
> 2000 8%

> 30% 16%
%10 - 30% 12%
5% - 10% 44%

< 5% 28%
70% - 80% 36%
80% - 90% 64%

> 90% 16%
30% - 90% 20%
15% - 30% 24%
5% - 15% 20%

< 5% 20%
> 90% 32%

85% - 90% 52%
75% - 85% 16%

Accumul at ed Cont ent Var i at i on 88. 5%

Cont ent Var i at i on af t er an Hour 81. 7%

Accumul at ed St r uct ur e Var i at i on 34. 0%

Node Number 1171

Di st r i but i on

St r uct ur e Var i at i on af t er an Hour 11. 4%

Table 1 lists the measurement of our study. The node number of a
Web Page ranges from several hundreds to several thousands and
averaged 1171. Averagely speaking, the structure and contents
vary 11.4% and 81.7% hourly respectively and finally the
variation accumulate to 34% and 88.5% respectively. Here
structure variation stands for the percentage of deleted, new added
and tag-updated nodes over all the nodes, while the contents
variation stands for the percentage of content-updated nodes over
all the nodes. The data means that a large portion of page
structure and most of the content will be changed during the Web
Page evolution. Besides, from the distribution analysis, we can
observe the diversity of Web Pages. Some of the pages change a
lot and some of them are just slightly adjusted in structure.
To sum up, the difficulty of the problem comes from the diversity
of Web Pages and the tremendous changes during the Web Page
evolution.

WWW 2007 / Track: Browsers and User Interfaces Session: Personalization

4

5. SIMPLE METHODS
There are some simple methods to solve the problem. Here we
introduce two methods, direct path finding and tag string
matching.

5.1 Direct Path Finding
Direct Path Finding just records the tags on the path from the root
node of To to the root node of Bo. When tracing the evolved block,
it goes through the recorded path. If there is any different tag on
the path, it fails to find the target block in the evolved page.
Otherwise, it returns the block in the evolved page which shares
the same path with the original one.
This simple method can not deal with the problem of block
position changing. If a block moves from the left to the right
column, the method will fail to find it correctly.

5.2 Tag String Matching
Another intuitive method is string matching. Tag string matching
method encodes Bo by the tag sequence of its preorder traversal.
To find the evolved block, it compares the original tag sequence
with the tag sequence of every sub-tree of Te. The similarity of the
two tag sequences is the length of the longest common sub-
sequences (LCS). The sub-tree of Te that has the largest LCS
value is recognized as Be. The problem of this algorithm is that
there may exist several blocks that are similar to the original one.
Besides， flattening the tree structure into sequence will lose
useful information and decrease the precision a lot.

6. TREE MAPPING ALGORITHMS FOR
BLOCK TRACING
6.1 Tree Mapping for Block Tracing
String edit distance is not suitable for this problem as it does not
consider the tree structure. After string matching, it is hard to
decide which matching is the correct one as there are many
possible matching. In this paper, we exploit the tree structure and
propose to use labeled tree mapping to solve the tracing problem.
Through the mapping between the DOM trees of pages, we can
get the corresponding nodes between two trees,

Definition 1 A Labeled Tree is a tree with a label l attached to
each of its nodes.
DOM tree of Web pages can be transformed into labeled tree by
regarding tags as labels.
Definition 2 Let T[i] be the ith node of labeled tree T in a preorder
walk. Let l[r] be the label of node r. A mapping M between two
labeled trees T and T’ is a set of pairs (i, j), one from each tree,
satisfying the following conditions for all (i1, j1), (i2, j2) ∈ M:
(1) i1 = i2 iff j1 = j2;
(2) T[i1] is an ancestor of T[i2] iff T’[j1] is an ancestor of T’[j2].
(3) l[T[i1]] = l[T’[j1]], l[T[i2]] = l[T’[j2]]
Intuitively, the definition requires each node to appear no more
than once in a mapping. The hierarchical relation among the
nodes is also preserved.
There exist many mappings between two labeled trees. To
evaluate the mapping quality, we use edit distance.

Definition 3 The edit distance between two trees T and T’ is the
number of unmapped nodes in the two trees.

Our definition of edit distance differs from the one noted in [19]
to fit this problem better. Edit distance reflects the cost associated
with the minimal set of operations required to transform T into T’.
By finding a mapping with minimum edit distance, we can attain
the evolved block.
However, find such a mapping between labeled trees is an NP-
Complete Problem, as mentioned in [22]. Fortunately, the
mapping finding problem can be solved efficiently by the
restriction on the order of nodes. Furthermore, as a fact, elements
of Web page DOM trees do have order.

Definition 4 An Ordered Tree is a tree with children of each node
ordered.

Definition 5 Let T[i] be the ith node of ordered labeled tree T in a
preorder walk. Let l[r] be the label of node r. A mapping M
between an ordered labeled tree T of size n1 and an ordered
labeled tree T’ of size n2 is a set of pairs (i, j), one from each tree,
satisfying the following conditions for all (i1, j1), (i2, j2) ∈ M:
(1) i1 = i2 iff j1 = j2;
(2) T[i1] is an ancestor of T[i2] iff T’[j1] is an ancestor of T’[j2].
(3) l[T[i1]] = l[T’[j1]], l[T[i2]] = l[T’[j2]]
(4) T[i1] is on the left of T[i2] iff T’[j1] is on the left T’[j2];
The order between sibling nodes is preserved in the mapping of
ordered labeled tree as a supplement of the preservation of
hierarchical relation .
Now we propose the basic tree mapping algorithm to minimize
edit distance between the new DOM tree and the original one in
order to find target node in the new tree. Let t and 't are the root
nodes of tree T and T’ respectively, n(T) stands for the number of
nodes in T. The edit distance is accumulated by the number of
unmapped nodes recursively in the two trees as follows:

1. All nodes in T are not mapped to a node in 'T , then

)'()()',(TnTnTTDis +=

Intuitively, the edit distance of unmapped sub-trees is the
total number of their nodes.

2. If r is mapped to r’, the edit distance is the total number of
the two trees minus the matched nodes. We assume that pi
and pi’ are monotonically increasing, so that standard
dynamic programming algorithm can be used to calculate
the mapping with minimum edit distance. Assume that there
are m pairs (Spi,Spi’) of sub-trees mapped as shown in Figure
6, then

))',()'()((
2)'()()',(

''0 pipipimi pi SSDisSnSn
TnTnTTDis

−+−

−+=

∑ <≤

Figure 6. An Example of Tree Matching by Condition 2

WWW 2007 / Track: Browsers and User Interfaces Session: Personalization

5

3. If r is mapped to the root node s’ of sub-tree S’ in T’, the
edit distance of the two trees is the edit distance of T and S’
in addition with the unmatched nodes in T’. As shown in
Figure 7,

)',()'()'()',(STDisSnTnTTDis +−=

Figure 7. An Example of Tree Matching by Condition 3

Now the edit distance Dis(T,T’) is well defined recursively. This
algorithm, listed in Table 2, calculates the minimum edit distance.
The counterpart mapping can be worked out easily by a similar
process.
However, the shortcoming of the algorithm is that the high
computational cost. The time complexity of this algorithm is
O(N2D2), where N is max(n(T),n(T’)) and D is maximum children
number of tree nodes. It could keep users waiting for minutes to
get the mapping results for large Web pages..

Table 2. General Minimum Edit Distance Mapping

 int Dis(T, T’) {

 r ← root of T;
 r’ ← root of T’
 S1,S2…Sx ← the sub-trees of T,
 S’1,S’2…S’y ← the sub-trees of T’
 //case 1

 minDis ← n(T) + n(T’);
 //case 2
 if (r.tag() == r’.tag()) {

 childrenDis[0][0] ← 0;
 for (i=0; i<=x; i++)
 for (j=0; j<=y; j++)
 if (i>0 || j>0) {

 childrenDis[i][j] ← min (
 Dis(Si, S’j) + childrenDis[i-1][j-1],
 childrenDis[i][j-1],
 childrenDis[i-1][j]
);
 }
 if (childrenDis[m][n] < minDis)

 minDis ← childrenDis[m][n];
 }
 //case 3
 for (i=0; i<=x; i++) {
 if (Dis(Si, T’) + (n(T) – n(Si)) < minDis)

 minDis ← Dis(Si, T’) + (n(T) – n(Si));
 }
 for (j=0; j<=y; j++) {
 if (Dis(T, Sj’) + (n(T’) – n(S’j)) < minDis)

 minDis ← Dis(T, Sj’) + (n(T’) – n(S’j));
 }
 return minDis;
}

6.2 Fixed Sub-tree Based Tracing
Although in Web pages, layout information is more immutable
than page content, there are still some tag attributes unchanged
during the evolution, including captions of small blocks, some
hyperlinks and some images. With the help of these immutable
elements, some sub-trees can be pruned away. After that, by
performing the algorithm on the reduced tree, the total time cost
could be greatly reduced. For this purpose, we introduce an
improved algorithm based on tree mapping in this section.

Here we define Fixed Node and Common sub-tree for the sake of
convenience in describing our algorithm.

Definition 6 A Fix Node is a node with both tag and attributes
immutable in two trees. In our real implementation, we have an
extra restriction that the content word length of Fix Node will be
no more than 2.

Definition 7 A Common Sub-Tree Pair is a sub-tree pair which
satisfies:
1) the sub-tree roots are the same Fix Nodes or
2) the two sub-trees contain a same set of Fix Nodes; and none of
their sub-trees contain all the Fix Nodes.
For example, in Figure 7, div_b and div_4 is a common sub-tree
pair but div_a and div_2 is not since the fix node img_2 is not
includes in div_2.
A Minimum Common Sub-Tree is the common sub-tree with
minimum size.

6.3 Algorithm Flow
In this section we will describe Fixed Sub-Tree Based Tracing
algorithm in detail. It is divided into three steps: finding Fix
Nodes; pruning away Fix Nodes and generating reduced trees;
and performing Minimum Edit Distance Mapping algorithms on
the reduced tree. The algorithm aims to reduce the uncertainty of
tree mapping by eliminating some definitely mapped nodes. Thus
the time complexity is reduced and the precision is improved.

6.3.1 Finding Fix Nodes
First, all the tags and contents of the nodes in the original tree are
indexed, for example by a binary tree or a hash table. Duplicated
nodes, with the same tags and contents, are removed for
disambiguation purpose. Then, for the evolved tree, we check all
nodes sequentially and pick out the nodes whose content appears
in the original tree.

Table 3. Finding Minimum Common Tree

 TreePair findMinCommonTree() {

 S ← the traced block;
 Fn ← the set of Fix Nodes;
 while (S != T && S ∉ Fn) {

 //two Fix Nodes’ lowest common ancestor
 if (S has more than two sub-trees
 which have Fix Node)
 break;

 S ← S’s direct super tree;
 }
 if (S = T) return (<T,T’>);

 if (S ∈ Fn){
 S’ ← corresponding Fix Node in T’

 return (<S,S’>);
 }

 Fn(S) ← the set of Fix Nodes in S;
 S’ ← (T’)’s the lowest sub-tree

 which contains Fn(S);

 Fn(S’) ← the set of Fix Nodes in S’;
 While (Fn(S) != Fn(S’)){

 if (Fn(S’) ⊇ Fn(S)){
 S ← S’s direct super tree
 Fn(S) ← the set of Fix Nodes in S;

 }
 else {

 S’ ← The direct super tree of S’
 Fn(S’) ← the set of Fix Nodes in S’;

 }
 }
 return (<S,S’>);
}

WWW 2007 / Track: Browsers and User Interfaces Session: Personalization

6

6.3.2 Generating the Reduced Trees
In this algorithm, only a subset of the nodes in the minimum
common sub-tree which contains the tracing block will be taken
into consideration in the mapping phase. We call it the reduced
tree. The ancestors and sibling-trees of the minimum common
sub-tree will be cut off, as mapping between them is unnecessary.
The reduced tree is built by the following process: First, our
algorithm finds the minimum common tree pair contains the
tracing blocks with the following algorithm in Table 3. After the
minimum common tree pair is found, the algorithm then prunes
away some sub-trees that are intuitively unnecessary to be taken
into consideration in the matching phase, in a rule based fashion.
For each Fix Node, all of its ancestor nodes, except the nodes lies
in the path from the root to the tracing block, should be cut off.
However, in the pruning process, all the nodes from the root to
the tracing block as well as the successors should be preserved,
because they are always useful in the matching phase.

Figure 8. An illustration of fixed sub-tree

based tracing mapping

6.3.3 Mapping on the Reduced Trees
Since the scale of DOM trees has been greatly reduced, only the
remaining nodes in the minimum common sub-tree will be taken
into consideration in this phase by minimum edit distance
algorithm.
Figure 8 shows an illustration of Fixed Sub-tree Based Tracing.
We mark the block with a bold circle in the left tree and want to
trace the corresponding nodes in the right tree. In the first step, we
pick out Fix Nodes, which are marked with shadows. In the
second step, we find that the minimum common sub-tree pair. In
this case, it is the pair of two whole trees. Then, we cut off all the
path contains Fix Nodes. The pruned nodes are embraced by
broken line in the bottom part of Figure 8. As a result, there will
be only four nodes in each reduced tree. After that, we perform
minimum edit distance algorithm and finally find the target block.

7. EXPERIMENTS AND ANALYSIS
This section provides empirical evidence about the accuracy and
usability of Homepage Live. The experimental results show the
effectiveness of our algorithm.

7.1 Data Set and Metrics
An experiment has been performed on a 25-url dataset to test the
effectiveness of our algorithm. These URLs are pages of Google
news, Yahoo news, MSNBC news, etc. All of them are frequently
updated, once about twenty minutes on the average. By recording
a version every thirty minutes, we get 101 pages for each URL.
Five users are asked to select their interested blocks of the first
version of 25 URLs, one block for each page. They are asked to
mark out the evolved blocks in the later 100 versions also. The
evolved blocks can be nothing since sometimes there are no
proper corresponding blocks. So, there are totally 125 block cases
traced. Each block has been traced 100 times. In total, there are
12,625 blocks marked.
Two metrics have been used to measure the effectiveness of
tracing the blocks. One is Correct Tracing Rate (CTR); the other
is Correct Case Rate (CCR). CTR is the percentage of the correct
tracing count of the total tracing count. In our experiments, there
are 12,500 traces. CCR is the percentage of the correct case count
of the total case count. In our experiments, each block is regarded
as a case and we only regard the whole case as correct if all the
100 tracings of the block are successful. The total number of
cases in our experiment is 125.

Table 4. CTR and CCR of the Four Methods

Method DPF TSM TED FSBP
CTR 0.95 0.94 0.98 0.98
CCR 0.75 0.71 0.87 0.87

0%

20%

40%

60%

80%

100%

500 900 1300 1700 2100 2500
Node Number

C
or

re
ct

 R
at

e

CCR CTR

Figure 9. Correct Rate of FSBP

vs. HTML DOM Tree Node Number.

0%

20%

40%

60%

80%

100%

0% 5% 10% 15% 20%
Block Position Change Percentage

C
or

re
ct

 R
at

e

CCR CTR

Figure 10. Correct Rate of FSBP

vs. Block Position Change Percentage

WWW 2007 / Track: Browsers and User Interfaces Session: Personalization

7

7.2 Effectiveness
We have applied four methods on the data set. They are: Direct
Path Finding (DPF), Tree String Matching (TSM), Tree Edit
Distance (TED) and Fix Sub-tree Based Tracing (FSBT). Each
method is implemented as their definition in Section 5, Section 6
and Section 7 respectively. The CTR and CCR values are listed in
Table 4. It is clear that TED and FSBP have the best effectiveness.
They do not beat each other in the data set. That is to say,
compared with TED, FSBT did not lose precision in our
experiment while it improved computational performance, which
will be listed in the next sub-section.
Figure 9 shows the relation between the correct rate of FSBP and
the HTML DOM tree node number. Figure 10 shows the relation
between the correct rate of FSBP and the block position change
percentage. The data is collected based on the 25 URLs, i.e. for
each URL, we calculated their corresponding CCR and CTR.
Since there are 5 cases on each page, the value of CCR is 0%,
20%, 40%, 60%, 80% or 100% and the CTR varies from 0% to
100% with the interval of 1/500. The block position change
percentage also varies from 0% to 100% with the step of 1/500,
which is calculated as the division on the number of position
changed blocks in the 100 evolved pages by the total number 500.
From the charts, we do not find a clear drop of correct rates when
the page DOM tree node number grows or the block position
change percentage grows. That is to say, the size and the change
rate of the Web page do not impact our algorithm much. Thus,
these two figures proved the scalability of our algorithm.

7.3 Computational Cost
The computational cost can be measured by the time and memory
space needed for block tracing. We have compared the costs of
TED and FSBP.
The experiment result is partially listed in table 5. In table 5 we
list the average time cost and memory cost of TED and FSBP.
The time is measured by millisecond and the metrics of memory
is kilo-byte. From the table it’s clear that FSBP outperforms TED
coherently, in terms of both time and memory. Averagely
speaking, FSBP saves around 18% of time and 55% of memory.

Table 5. Computational Cost of TED and FSBP

TED Ti me FSBP Ti me Ted Memor y FSBP Memor y
921 755 57231 25583

Intuitively, the computational cost of TED is in proportion to the
tree size, while that of FSBP approximately depends on the size
of the reduced tree. Table 6 lists some of our experiment data.
The columns means the tree size, marked block size, the number
of fix nodes, the size of minimum common tree and the size of
reduced tree respectively. From the table we can find that the size
of reduced tree relies much on the size of tracing block but not the
size of the whole tree. Therefore, the increasing size of trees does
not impact the computational cost of FSBP significantly.

Table 6. Relation of size between tree and reduced tree

8. CASE STUDY
As a case study, we compare the two versions of MSN news
(http://www.msnbc.com) to show the performance of the
algorithm. The latter version is updated 24 hours later than the
former.
The first case indicates the adaptation of our algorithm when the
content of the block is changed. As shown in Figure 11, an extra
item is added to the original page and the titles of the rest items
are also changed. Our algorithm can trace the changed block
according to the structure of the two Web pages since the root of
traced block is a Fix Node.
In the second case, we show the case when the order of the sub-
nodes in a block is changed and our algorithm can also work well.
As shown in Figure 11, the traced block is consisted of two parts:
image and description parts. The description is put in right side of
block in the original page while it is changed to the left side in the
evolved page. Since our algorithm considers that the inner
structure of the two sub-trees is little changed and the position of
block in the whole page tree structure is little changed, it can still
trace such block through the whole tree matching algorithm.
In these two cases, direct path finding may work properly and the
tree string matching method does not work. Moreover, they both
fail in case 3 because the confusion of two blocks in the original
page, “more on decision 2006” and “more top stories”. The same
path and sub-tree structure of them infer the confusion. However,
with the help of the label “more top stories”, we identified it as a
Fix Node and therefore find the target block.

9. CONCLUSION
In this paper, we have introduced a novel application, Homepage
Live, for tracing interesting blocks on different Web pages in a
single display. The application adopts a novel method where tree
edit distance is utilized to trace the block when the page is
updated. By exploiting the immutable elements of Web pages, we
decrease the time complexity and space complexity a lot. When
given two Web pages, the method first recognizes the immutable
nodes in each DOM tree. Then, the DOM trees are pruned into a
reduced tree with removing the unchanged nodes. Finally, the fast
tree matching algorithm is applied to trace the target block. The
experimental results show that the tracing precision is much
higher than direct path finding and tree string matching. It has
achieved a 98% correct tracing rate and an 87% correct case rate.

WWW 2007 / Track: Browsers and User Interfaces Session: Personalization

8

With the ability of automatic recognizing and tracing Web blocks,
we are able to develop some sections or gadgets for personalized
homepage applications, e.g. Google Homepage and Microsoft
Windows Live, as an additional choice of the limited candidate
pieces of information developed by the service providers
themselves.

10. REFERENCES
[1] Ackerman, M., Starr, B. and Pazzani, M., The Do-I-Care

Agent: Effective Social Discovery and Filtering on the Web.
In Proceedings of RIAO’97, 17-31.

[2] Anderson, C. R. and Horvitz, E.. Web montage: a dynamic
personalized start page. In Proceedings of the Eleventh
International Conference on World Wide Web, pages 704--
712. ACM Press, 2002.

[3] Boyapati, V., Chevrier, K., Finkel, A., Glance, N., Pierce, T.,
Stockton, R. and Whitmer, C.. ChangeDetectorTM: A Site-
Level Monitoring Tool for the WWW. In Proceedins of 11th
International World Wide Web Conference (WWW 2002),
2002, 570-579.

[4] Cai, D., Yu, S.P., Wen, J.R. and Ma, W.Y.. Block-based
Web search. In Proceedings of the 27th annual International
Conference on Research and Development in Information
Retrieval (SIGIR 2004), 2004, ACM Press, 456-463.

[5] Cai, D., Yu, S.P., Wen, J.R. and Ma, W.Y.. VIPS: a vision-
based page segmentation algorithm. Microsoft Technical
Report, MSR-TR-2003-79, 2003.

[6] Chen, Y.F., Douglis, F., Huan, H. and Vo, K.P., TopBlend:
An Efficient Implementation of HtmlDiff in Java. In
Proceedings of the WebNet 2000 Conference, San Antonio,
TX, Nov. 2000.

[7] Chen, J., Zhou, B., Shi, J., Zhang, H.J. and Qiu, F.. Function-
Based Object Model Towards Website Adaptation. In
Proceedings of 10th International World Wide Web
Conference (WWW 2001), 2001, 587-596.

[8] Davulcu, H., Yang, G., Kifer, M., and Ramakrishnan, I.
Computational aspects of resilient data extraction from
semistructured sources. In 19th ACM Symposium on
Principles of Database Systems, 136--144, 2000.

[9] Douglis, F., Ball, T., Chen, Y., and Koutsofios, E. 1998. The
AT&T Internet Difference Engine: Tracking and viewing
changes on the web. World Wide Web 1, 1 (Jan. 1998), 27-
44.

[10] Dumais, S., Cutrell, E., Cadiz, J., Jancke, G., Sarin, R., and
Robbins, D. C. 2003. Stuff I've seen: a system for personal
information retrieval and re-use. In Proceedings of the 26th
Annual international ACM SIGIR Conference on Research
and Development in informaion Retrieval (Toronto, Canada,
July 28 - August 01, 2003). SIGIR '03. ACM Press, New
York, NY, 72-79.

[11] Fishkin, K. and Bier, E., WebTracker – a Web Service for
tracking documents. In Proceedings of 6th International
World Wide Web Conference (WWW 1997), 2004.

[12] Freire, J., Kumar, B., and Lieuwen, D. 2001. WebViews:
accessing personalized web content and services. In
Proceedings of the 10th international Conference on World
Wide Web (Hong Kong, Hong Kong, May 01 - 05, 2001).
WWW '01. ACM Press, New York, NY, 576-586.

[13] Kovacevic, M., Diligenti, M., Gori, M., and Milutinovic, V.
2002. Recognition of Common Areas in a Web Page Using
Visual Information: a possible application in a page
classification. In Proceedings of the 2002 IEEE international
Conference on Data Mining (Icdm'02) (December 09 - 12,
2002). ICDM. IEEE Computer Society, Washington, DC,
250.

[14] Lin, S.H. and Ho, J.M. Discovering Informative Content
Blocks from Web Documents. In Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery
& Data Mining (SIGKDD 2002), 2002.

[15] Liu, B., Grossman, R. and Zhai, Y. Mining Data Records in
Web Pages. In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery & Data
Mining (KDD-2003), Washington, DC, USA, August 24 - 27,
2003.

[16] Ramaswamy, L., Lyengar, A., Liu, L. and Douglis, F..
Automatic Detection of Fragments in Dynamically
Generated Web Pages. In Proc. of 13th International World
Wide Web Conference (WWW 2004), 2004, 443-454.

[17] Song, R.H., Liu, H.F., Wen, J.R. and Ma, W.Y.. Learning
Block Importance Models for Web Pages. In Proceedings of
13th International World Wide Web Conference (WWW
2004), 2004, 203-211.

[18] Sugiura,A., Koseki,Y. Internet Scrapbook: Automating Web
Browsing Tasks by Demonstration. ACM Symposium on
User Interface Software and Technology 1998: 9-18

[19] Tai. The Tree-to-Tree Correction Problem. J. ACM 26(3):
422-433 (1979)

[20] Yu, S., Cai, D., Wen, J.R. and Ma, W.Y.. Improving Pseudo-
Relevance Feedback in Web Information Retrieval Using
Web Page Segmentation. In Proceedings of 12th
International World Wide Web Conference (WWW 2003),
2003, 11-18.

[21] Zhai, Y., and Liu, B.. Web Data Extraction Based on Partial
Tree Alignment, in Proceedings of the 14th international
World Wide Web conference (WWW-2005), May 10-14,
2005, in Chiba, Japan.

[22] Zhang, K., Statman, R. and Shasha, D. On the editing
distance between unordered labeled trees. Information
Processing Letters, 42(3):133–139, 1992.

WWW 2007 / Track: Browsers and User Interfaces Session: Personalization

9

Figure 11. Case Study

WWW 2007 / Track: Browsers and User Interfaces Session: Personalization

10

