
Measuring Semantic Similarity between Words Using Web
Search Engines

Danushka Bollegala
The University of Tokyo

Hongo 7-3-1, Tokyo
113-8656, Japan

danushka@mi.ci.i.u-
tokyo.ac.jp

Yutaka Matsuo
National Institute of Advanced

Industrial Science and
Technology

Sotokanda 1-18-13, Tokyo
101-0021, Japan

y.matsuo@aist.go.jp

Mitsuru Ishizuka
The University of Tokyo

Hongo 7-3-1, Tokyo
113-8656, Japan

ishizuka@i.u-tokyo.ac.jp

ABSTRACT
Semantic similarity measures play important roles in infor-
mation retrieval and Natural Language Processing. Previ-
ous work in semantic web-related applications such as com-
munity mining, relation extraction, automatic meta data
extraction have used various semantic similarity measures.
Despite the usefulness of semantic similarity measures in
these applications, robustly measuring semantic similarity
between two words (or entities) remains a challenging task.
We propose a robust semantic similarity measure that uses
the information available on the Web to measure similarity
between words or entities. The proposed method exploits
page counts and text snippets returned by a Web search
engine. We define various similarity scores for two given
words P and Q, using the page counts for the queries P, Q
and P AND Q. Moreover, we propose a novel approach to
compute semantic similarity using automatically extracted
lexico-syntactic patterns from text snippets. These different
similarity scores are integrated using support vector ma-
chines, to leverage a robust semantic similarity measure.
Experimental results on Miller-Charles benchmark dataset
show that the proposed measure outperforms all the existing
web-based semantic similarity measures by a wide margin,
achieving a correlation coefficient of 0.834. Moreover, the
proposed semantic similarity measure significantly improves
the accuracy (F -measure of 0.78) in a community mining
task, and in an entity disambiguation task, thereby verifying
the capability of the proposed measure to capture semantic
similarity using web content.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval

General Terms
Algorithms

Keywords
semantic similarity, Web mining

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

1. INTRODUCTION
The study of semantic similarity between words has long

been an integral part of information retrieval and natural
language processing. Semantic similarity between entities
changes over time and across domains. For example, apple
is frequently associated with computers on the Web. How-
ever, this sense of apple is not listed in most general-purpose
thesauri or dictionaries. A user who searches for apple on
the Web, may be interested in this sense of apple and not
apple as a fruit. New words are constantly being created as
well as new senses are assigned to existing words. Manually
maintaining thesauri to capture these new words and senses
is costly if not impossible.

We propose an automatic method to measure semantic
similarity between words or entities using Web search en-
gines. Because of the vastly numerous documents and the
high growth rate of the Web, it is difficult to analyze each
document separately and directly. Web search engines pro-
vide an efficient interface to this vast information. Page
counts and snippets are two useful information sources pro-
vided by most Web search engines. Page count of a query is
the number of pages that contain the query words 1. Page
count for the query P AND Q can be considered as a global
measure of co-occurrence of words P and Q. For example,
the page count of the query “apple” AND “computer” in
Google 2 is 288, 000, 000, whereas the same for “banana”
AND “computer” is only 3, 590, 000. The more than 80
times more numerous page counts for “apple” AND “com-
puter” indicate that apple is more semantically similar to
computer than is banana.

Despite its simplicity, using page counts alone as a mea-
sure of co-occurrence of two words presents several draw-
backs. First, page count analyses ignore the position of a
word in a page. Therefore, even though two words appear
in a page, they might not be related. Secondly, page count
of a polysemous word (a word with multiple senses) might
contain a combination of all its senses. For an example, page
counts for apple contains page counts for apple as a fruit and
apple as a company. Moreover, given the scale and noise in
the Web, some words might occur arbitrarily, i.e. by ran-
dom chance, on some pages. For those reasons, page counts
alone are unreliable when measuring semantic similarity.

1Page count may not necessarily be equal to the word fre-
quency because the queried word might appear many times
on one page
2http:://www.google.com

WWW 2007 / Track: Semantic Web Session: Similarity and Extraction

757

Snippets, a brief window of text extracted by a search en-
gine around the query term in a document, provide useful in-
formation regarding the local context of the query term. Se-
mantic similarity measures defined over snippets, have been
used in query expansion [36], personal name disambigua-
tion [4] and community mining [6]. Processing snippets is
also efficient as it obviates the trouble of downloading web
pages, which might be time consuming depending on the size
of the pages. However, a widely acknowledged drawback of
using snippets is that, because of the huge scale of the web
and the large number of documents in the result set, only
those snippets for the top-ranking results for a query can
be processed efficiently. Ranking of search results, hence
snippets, is determined by a complex combination of vari-
ous factors unique to the underlying search engine. There-
fore, no guarantee exists that all the information we need to
measure semantic similarity between a given pair of words
is contained in the top-ranking snippets.

This paper proposes a method that considers both page
counts and lexico-syntactic patterns extracted from snippets,
thereby overcoming the problems described above.

For example, let us consider the following snippet from
Google for the query Jaguar AND cat.

“The Jaguar is the largest cat in Western Hemisphere and
can subdue larger prey than can the puma”

Here, the phrase is the largest indicates a hypernymic re-
lationship between the Jaguar and the cat. Phrases such
as also known as, is a, part of, is an example of all in-
dicate various semantic relations. Such indicative phrases
have been applied to numerous tasks with good results, such
as hyponym extraction [12] and fact extraction [27]. From
the previous example, we form the pattern X is the largest
Y, where we replace the two words Jaguar and cat by two
wildcards X and Y.

Our contributions in this paper are two fold:

• We propose an automatically extracted lexico-syntactic
patterns-based approach to compute semantic similar-
ity using text snippets obtained from a Web search
engine.

• We integrate different web-based similarity measures
using WordNet synsets and support vector machines
to create a robust semantic similarity measure. The in-
tegrated measure outperforms all existing Web-based
semantic similarity measures in a benchmark dataset.
To the best of our knowledge, this is the first attempt
to combine both WordNet synsets and Web content to
leverage a robust semantic similarity measure.

The remainder of the paper is organized as follows. In
section 2 we discuss previous works related to semantic sim-
ilarity measures. We then describe the proposed method in
section 3. Section 4 compares the proposed method against
previous Web-based semantic similarity measures and sev-
eral baselines on a benchmark data set. In order to evaluate
the ability of the proposed method in capturing semantic
similarity between real-world entities, we apply it in a com-
munity mining task. Finally, we show that the proposed
method is useful for disambiguating senses in ambiguous
named-entities and conclude this paper.

2. RELATED WORK
Semantic similarity measures are important in many Web-

related tasks. In query expansion [5, 25, 40] a user query is
modified using synonymous words to improve the relevancy
of the search. One method to find appropriate words to
include in a query is to compare the previous user queries
using semantic similarity measures. If there exist a previous
query that is semantically related to the current query, then
it can be suggested either to the user or internally used by
the search engine to modify the original query.

Semantic similarity measures have been used in Semantic
Web related applications such as automatic annotation of
Web pages [7], community mining [23, 19], and keyword
extraction for inter-entity relation representation [26].

Semantic similarity measures are necessary for various ap-
plications in natural language processing such as word-sense
disambiguation [32], language modeling [34], synonym ex-
traction [16], and automatic thesauri extraction [8]. Manu-
ally compiled taxonomies such as WordNet3 and large text
corpora have been used in previous works on semantic sim-
ilarity [16, 31, 13, 17]. Regarding the Web as a live cor-
pus has become an active research topic recently. Simple,
unsupervised models demonstrably perform better when n-
gram counts are obtained from the Web rather than from a
large corpus [14, 15]. Resnik and Smith [33] extracted bilin-
gual sentences from the Web to create a parallel corpora
for machine translation. Turney [38] defined a point-wise
mutual information (PMI-IR) measure using the number of
hits returned by a Web search engine to recognize synonyms.
Matsuo et. al, [20] used a similar approach to measure the
similarity between words and apply their method in a graph-
based word clustering algorithm.

Given a taxonomy of concepts, a straightforward method
to calculate similarity between two words (concepts) is to
find the length of the shortest path connecting the two words
in the taxonomy [30]. If a word is polysemous then multiple
paths might exist between the two words. In such cases,
only the shortest path between any two senses of the words
is considered for calculating similarity. A problem that is
frequently acknowledged with this approach is that it relies
on the notion that all links in the taxonomy represent a
uniform distance.

Resnik [31] proposed a similarity measure using informa-
tion content. He defined the similarity between two concepts
C1 and C2 in the taxonomy as the maximum of the infor-
mation content of all concepts C that subsume both C1 and
C2. Then the similarity between two words is defined as
the maximum of the similarity between any concepts that
the words belong to. He used WordNet as the taxonomy;
information content is calculated using the Brown corpus.

Li et al., [41] combined structural semantic information
from a lexical taxonomy and information content from a cor-
pus in a nonlinear model. They proposed a similarity mea-
sure that uses shortest path length, depth and local density
in a taxonomy. Their experiments reported a Pearson cor-
relation coefficient of 0.8914 on the Miller and Charles [24]
benchmark dataset. They did not evaluate their method in
terms of similarities among named entities. Lin [17] defined
the similarity between two concepts as the information that
is in common to both concepts and the information con-
tained in each individual concept.

3http://wordnet.princeton.edu/

WWW 2007 / Track: Semantic Web Session: Similarity and Extraction

758

Recently, some work has been carried out on measuring
semantic similarity using Web content. Matsuo et al., [19]
proposed the use of Web hits for extracting communities on
the Web. They measured the association between two per-
sonal names using the overlap (Simpson) coefficient, which
is calculated based on the number of Web hits for each indi-
vidual name and their conjunction (i.e., AND query of the
two names).

Sahami et al., [36] measured semantic similarity between
two queries using snippets returned for those queries by a
search engine. For each query, they collect snippets from
a search engine and represent each snippet as a TF-IDF-
weighted term vector. Each vector is L2 normalized and
the centroid of the set of vectors is computed. Semantic
similarity between two queries is then defined as the inner
product between the corresponding centroid vectors. They
did not compare their similarity measure with taxonomy-
based similarity measures.

Chen et al., [6] proposed a double-checking model using
text snippets returned by a Web search engine to compute
semantic similarity between words. For two words P and
Q, they collect snippets for each word from a Web search
engine. Then they count the occurrences of word P in the
snippets for word Q and the occurrences of word Q in the
snippets for word P . These values are combined nonlinearly
to compute the similarity between P and Q. This method
depends heavily on the search engine’s ranking algorithm.
Although two words P and Q might be very similar, there
is no reason to believe that one can find Q in the snippets for
P , or vice versa. This observation is confirmed by the exper-
imental results in their paper which reports zero similarity
scores for many pairs of words in the Miller and Charles [24]
dataset.

3. METHOD

3.1 Outline
We propose a method which integrates both page counts

and snippets to measure semantic similarity between a given
pair of words. In section 3.2, we define four similarity scores
using page counts. We then describe an automatic lexico-
syntactic pattern extraction algorithm in section 3.3. We
rank the patterns extracted by our algorithm according to
their ability to express semantic similarity. We use two-
class support vector machines (SVMs) to find the optimal
combination of page counts-based similarity scores and top-
ranking patterns. The SVM is trained to classify synony-
mous word-pairs and non-synonymous word-pairs. We select
synonymous word-pairs (positive training examples) from
WordNet synsets4. Non-synonymous word-pairs (negative
training examples) are automatically created using a ran-
dom shuffling technique. We convert the output of SVM
into a posterior probability. We define the semantic similar-
ity between two words as the posterior probability that they
belong to the synonymous-words (positive) class.

3.2 Page-count-based Similarity Scores
Page counts for the query P AND Q, can be considered as

an approximation of co-occurrence of two words (or multi-
word phrases) P and Q on the Web.

4Informally, a synset is a set of synonymous words

However, page counts for the query P AND Q alone do not
accurately express semantic similarity. For example, Google
returns 11, 300, 000 as the page count for “car” AND “au-
tomobile”, whereas the same is 49, 000, 000 for “car” AND
“apple”. Although, automobile is more semantically simi-
lar to car than apple is, page counts for query “car” AND
“apple” are more than four times greater than those for the
query “car” and “automobile”. One must consider the page
counts not just for the query P AND Q, but also for the indi-
vidual words P and Q to assess semantic similarity between
P and Q.

We modify four popular co-occurrence measures; Jaccard,
Overlap (Simpson), Dice, and PMI (Point-wise mutual infor-
mation), to compute semantic similarity using page counts.

For the remainder of this paper we use the notation H(P)
to denote the page counts for the query P in a search engine.
The WebJaccard coefficient between words (or multi-word
phrases) P and Q, WebJaccard(P, Q), is defined as,

WebJaccard(P, Q)

=

(
0 if H(P ∩Q) ≤ c

H(P∩Q)
H(P)+H(Q)−H(P∩Q)

otherwise.
(1)

Therein, P ∩ Q denotes the conjunction query P AND Q.
Given the scale and noise in Web data, it is possible that
two words may appear on some pages purely accidentally.
In order to reduce the adverse effects attributable to random
co-occurrences, we set the WebJaccard coefficient to zero if
the page count for the query P ∩Q is less than a threshold
c5.

Similarly, we define WebOverlap, WebOverlap(P, Q), as,

WebOverlap(P, Q)

=

(
0 if H(P ∩Q) ≤ c

H(P∩Q)
min(H(P),H(Q))

otherwise.
(2)

WebOverlap is a natural modification to the Overlap (Simp-
son) coefficient.

We define the WebDice coefficient as a variant of the Dice
coefficient. WebDice(P, Q) is defined as,

WebDice(P, Q)

=

(
0 if H(P ∩Q) ≤ c

2H(P∩Q)
H(P)+H(Q)

otherwise.
(3)

We define WebPMI as a variant form of PMI using page
counts as,

WebPMI(P, Q)

=

8<:0 if H(P ∩Q) ≤ c

log2(
H(P∩Q)

N
H(P)

N
H(Q)

N

) otherwise.
(4)

Here, N is the number of documents indexed by the search
engine. Probabilities in Eq. 4 are estimated according to
the maximum likelihood principle. To calculate PMI accu-
rately using Eq. 4, we must know N , the number of docu-
ments indexed by the search engine. Although estimating
the number of documents indexed by a search engine [2] is an
interesting task itself, it is beyond the scope of this work. In
the present work, we set N = 1010 according to the number
of indexed pages reported by Google.

5we set c = 5 in our experiments

WWW 2007 / Track: Semantic Web Session: Similarity and Extraction

759

3.3 Extracting Lexico-Syntactic Patterns from
Snippets

Text snippets are returned by search engines alongside
with the search results. They provide valuable information
regarding the local context of a word. We extract lexico-
syntactic patterns that indicate various aspects of semantic
similarity. For example, consider the following text snippet
returned by Google for the query “cricket” AND “sport”.
Here, the phrase is a indicates a semantic relationship be-

“Cricket is a sport played between two teams, each with
eleven players.”

Figure 1: Pattern Extraction Example

tween cricket and sport. Many such phrases indicate se-
mantic relationships. For example, also known as, is a, part
of, is an example of all indicate semantic relations of differ-
ent types. In the example given above, words indicating the
semantic relation between cricket and sport appear between
the query words. Replacing the query words by wildcards X
and Y we can form the pattern X is a Y from the example
given above. However, in some cases the words that indi-
cate the semantic relationship do not fall between the query
words. For example, consider the following example.

“Toyota and Nissan are two major Japanese car manufac-
turers.”

Figure 2: Pattern Extraction Example

Here, the relationship between Toyota and Nissan is that
they are both car manufacturers. Identifying the exact set
of words that convey the semantic relationship between two
entities is a difficult problem which requires deeper semantic
analysis. However, such an analysis is not feasible consider-
ing the numerous ill-formed sentences we need to process on
the Web. In this paper, we propose a shallow pattern extrac-
tion method to capture the semantic relationship between
words in text snippets.

Our pattern extraction algorithm is illustrated in Figure 3.
Given a set S of synonymous word-pairs, GetSnippets func-
tion returns a list of text snippets for the query “A” AND
“B” for each word-pair A, B in S. For each snippet found,
we replace the two words in the query by two wildcards. Let
us assume these wildcards to be X and Y. For each snippet
d in the set of snippets D returned by GetSnippets, func-
tion GetNgrams extract word n-grams for n = 2, 3, 4 and 5.
We select n-grams which contain exactly one X and one Y.
For example, the snippet in Figure 2 yields patterns X and

²

±

¯

°

Algorithm 3.1: ExtractPatterns(S)

comment: Given a set S of word-pairs, extract patterns.

for each word-pair (A, B) ∈ S
do D ← GetSnippets(“A B”)

N ← null
for each snippet d ∈ D
do N ← N + GetNgrams(d, A, B)

Pats ← CountFreq(N)
return (Pats)

Figure 3: Extract patterns from snippets.

Table 1: Contingency table
v other than v All

Freq. in snippets for
synonymous word pairs pv P − pv P
Freq. in snippets for

non-synonymous word pairs nv N − nv N

Y, X and Y are, X and Y are two. Finally, function Count-
Freq counts the frequency of each pattern we extracted. The
procedure described above yields a set of patterns with their
frequencies in text snippets obtained from a search engine.
It considers the words that fall between X and Y as well as
words that precede X and succeeds Y .

To leverage the pattern extraction process, we select 5000
pairs of synonymous nouns from WordNet synsets. For pol-
ysemous nouns we selected the synonyms for the dominant
sense. The pattern extraction algorithm described in Fig-
ure 3 yields 4, 562, 471 unique patterns. Of those patterns,
80% occur less than 10 times. It is impossible to train a clas-
sifier with such numerous sparse patterns. We must measure
the confidence of each pattern as an indicator of synonymy.
For that purpose, we employ the following procedure.

First, we run the pattern extraction algorithm described
in Figure 3 with a non-synonymous set of word-pairs and
count the frequency of the extracted patterns. We then use
a test of statistical significance to evaluate the probable ap-
plicability of a pattern as an indicator of synonymy. The
fundamental idea of this analysis is that, if a pattern ap-
pears a statistically significant number of times in snippets
for synonymous words than in snippets for non-synonymous
words, then it is a reliable indicator of synonymy.

To create a set of non-synonymous word-pairs, we select
two nouns from WordNet arbitrarily. If the selected two
nouns do not appear in any WordNet synset then we select
them as a non-synonymous word-pair. We repeat this pro-
cedure until we obtain 5000 pairs of non-synonymous words.

For each extracted pattern v, we create a contingency
table, as shown in Table 1 using its frequency pv in snip-
pets for synonymous word pairs and nv in snippets for non-
synonymous word pairs. In Table 1, P denotes the total
frequency of all patterns in snippets for synonymous word
pairs (P =

P
v pv) and N is the same in snippets for non-

synonymous word pairs (N =
P

v nv).
Using the information in Table 1, we calculate the χ2 [18]

value for each pattern as,

χ2 =
(P + N)(pv(N − nv)− nv(P − pv))2

PN(pv + nv)(P + N − pv − nv)
. (5)

We selected the top ranking 200 patterns experimentally as
described in section 4.2, according to their χ2 values. Some
selected patterns are shown in Table 2.

Before we proceed to the integration of patterns and page-
counts-based similarity scores, it is necessary to introduce
some constraints to the development of semantic similarity
measures. Evidence from psychological experiments suggest
that semantic similarity can be context-dependent and even
asymmetric [39, 22]. Human subjects have reportedly as-
signed different similarity ratings to word-pairs when the
two words were presented in the reverse order. However,
experimental results investigating the effects of asymmetry

WWW 2007 / Track: Semantic Web Session: Similarity and Extraction

760

reports that the average difference in ratings for a word pair
is less than 5 percent [22]. In this work, we assume seman-
tic similarity to be symmetric. This is in line with previous
work on semantic similarity described in section 2. Under
this assumption, we can interchange the query word markers
X and Y in the extracted patterns.

3.4 Integrating Patterns and Page Counts
In section 3.2 we defined four similarity scores using page

counts. Section 3.3 described a lexico-syntactic pattern ex-
traction algorithm and ranked the patterns according to
their ability to express synonymy. In this section we describe
leverage of a robust semantic similarity measure through in-
tegration of all the similarity scores and patterns described
in previous sections.

²

±

¯

°

Algorithm 3.2: GetFeatureVector(A, B)

comment: Given a word-pair A, B get its feature vector F .

D ← GetSnippets(“A B”)
N ← null
for each snippetd ∈ D
do N ← N + GetNgrams(d, A, B)

SelPats ← SelectPatterns(N, GoodPats)
PF ← Normalize(SelPats)
F ← [PF, WebJaccard, WebOverlap, WebDice, WebPMI]
return (F)

Figure 4: Create a feature vector F for a word-pair
(A, B).

For each pair of words (A, B), we create a feature vec-
tor F as shown in Figure 4. First, we query Google for
“A” AND “B” and collect snippets. Then we replace the
query words A and B with two wildcards X and Y , re-
spectively in each snippet. Function GetNgrams extracts
n-grams for n = 2, 3, 4 and 5 from the snippets. We select
n-grams having exactly one X and one Y as we did in the
pattern extraction algorithm in Figure 3. Let us assume
the set of patterns selected based on their χ2 values in sec-
tion 3.3 to be GoodPats. Then, the function SelectPatterns
selects the n-grams from N which appear in GoodPats. In
Normalize(SelPats), we normalize the count of each pat-
tern by diving it from the total number of counts of the
observed patterns. This function returns a vector of pat-
terns where each element is the normalized frequency of the
corresponding pattern in the snippets for the query “A”“B”.
We append similarity scores calculated using page counts in
section 3.2 to create the final feature vector F for the word-
pair (A, B). This procedure yields a 204 dimensional (4
page-counts based similarity scores and 200 lexico-syntactic
patterns) feature vector F . We form such feature vectors
for all synonymous word-pairs (positive training examples)
as well as for non-synonymous word-pairs (negative train-
ing examples). We then train a two-class support vector
machine with the labelled feature vectors.

Once we have trained an SVM using synonymous and non-
synonymous word pairs, we can use it to compute the seman-
tic similarity between two given words. Following the same
method we used to generate feature vectors for training, we
create a feature vector F ′ for the given pair of words (A′, B′),
between which we need to measure the semantic similarity.
We define the semantic similarity SemSim(A′, B′) between

0 200 400 600 800 100012001400160018002000
0.780

0.782

0.784

0.786

0.788

0.790

0.792

0.794

0.796

0.798

0.800

C
o
rr

e
la

ti
o
n
 C

o
e
ff
ic

ie
n
t

(r
)

Number of pattern features (N)

Figure 5: Correlation vs. No of pattern features

A′ and B′ as the posterior probability
Prob(F ′|synonymous) that feature vector F ′ belongs to
the synonymous-words (positive) class.

SemSim(A′, B′) = Prob(F ′|synonymous) (6)

Being a large-margin classifier, the output of an SVM is
the distance from the decision hyper-plane. However, this is
not a calibrated posterior probability. We use sigmoid func-
tions to convert this uncalibrated distance into a calibrated
posterior probability (see [29] for a detailed discussion on
this topic).

4. EXPERIMENTS
We conduct two sets of experiments to evaluate the pro-

posed semantic similarity measure. First we compare the
similarity scores produced by the proposed measure against
Miller-Charles benchmark dataset. We analyze the behav-
ior of the proposed measure with the number of patterns
used as features, the number of snippets used to extract the
patterns, and the size of the training dataset. Secondly, we
apply the proposed measure in two real-world applications:
community mining and entity disambiguation.

4.1 The Benchmark Dataset
We evaluate the proposed method against Miller-Charles [24]

dataset, a dataset of 30 word-pairs6 rated by a group of 38
human subjects. The word pairs are rated on a scale from
0 (no similarity) to 4 (perfect synonymy). Miller-Charles’
data set is a subset of Rubenstein-Goodenough’s [35] origi-
nal data set of 65 word pairs. Although Miller-Charles ex-
periment was carried out 25 years later than Rubenstein-
Goodenough’s, two sets of ratings are highly correlated (pear-
son correlation coefficient=0.97). Therefore, Miller-Charles
ratings can be considered as a reliable benchmark for eval-
uating semantic similarity measures.

4.2 Pattern Selection
We trained a linear kernel SVM with top N pattern fea-

tures (ranked according to their χ2 values) and calculated
the correlation coefficient against the Miller-Charles bench-
mark dataset. Results of the experiment are shown in Fig-
ure 5. In Figure 5 a steep improvement of correlation with
the number of top-ranking patterns is appearent; it reaches

6Because of the omission of two word pairs in earlier versions
of WordNet, most researchers had used only 28 pairs for
evaluations

WWW 2007 / Track: Semantic Web Session: Similarity and Extraction

761

Table 2: Features with the highest SVM linear ker-
nel weights

feature χ2 SVM weight
WebDice N/A 8.19

X/Y 33459 7.53
X, Y : 4089 6.00
X or Y 3574 5.83
X Y for 1089 4.49

X . the Y 1784 2.99
with X (Y 1819 2.85

X=Y 2215 2.74
X and Y are 1343 2.67

X of Y 2472 2.56

Table 3: Performance with different Kernels
Kernel Type Correlation
Linear 0.8345
Polynomial degree=2 0.5872
Polynomial degree=3 0.5387
RBF 0.6632
Sigmoid 0.5277

a maximum at 200 features. With more than 200 patterns
correlation drops below this maximum. Considering that
the patterns are ranked according to their ability to express
semantic similarity and the majority of patterns are sparse,
we selected only the top ranking 200 patterns for the re-
maining experiments.

Features with the highest linear kernel weights are shown
in Table 2 alongside their χ2 values. The weight of a feature
in the linear kernel can be considered as a rough estimate of
the influence it imparts on the final SVM output. WebDice
has the highest kernel weight followed by a series of pattern-
based features. WebOverlap (rank=18, weight=2.45), Web-
Jaccard (rank=66, weight=0.618) and WebPMI (rank=138,
weight=0.0001) are not shown in Table 2 because of space
limitations. It is noteworthy that the pattern features in
Table 2 agree with intuition. Lexical patterns (e.g., X or
Y, X and Y are, X of Y) as well as syntax patterns (e.g.,
bracketing, comma usage) are extracted by our method.

We experimented with different kernel types as shown in
Table 3. Best performance is achieved with the linear kernel.
When higher degree kernels such as quadratic (Polynomial
degree=2) and cubic (Polynomial degree=3) are used, cor-
relation with the human ratings decreases rapidly. Second
best is the Radial Basis Functions (RBFs), which reports a
correlation coefficient of 0.6632. For the rest of the experi-
ments in this paper we use the linear kernel.

4.3 Semantic Similarity
We score the word pairs in Miller-Charles’ dataset using

the page-count-based similarity scores defined in section 3.2,
Web-based semantic similarity measures proposed in previ-
ous work (Sahami [36], Chen [6]) and the proposed method
(SemSim). Results are shown in Table 4. All figures, except
those for the Miller-Charles ratings, are normalized into val-
ues in [0, 1] range for ease of comparison. Pearson’s correla-
tion coefficient is invariant against a linear transformation.

Proposed method earns the highest correlation of 0.834 in
our experiments. It shows the highest similarity score for
the word-pair magician and wizard. Lowest similarity is
reported for cord and smile7. Our reimplementation of Co-
occurrence Double Checking (CODC) measure [6] indicates
the second-best correlation of 0.6936. The CODC measure
is defined as,

CODC(P, Q)

=

(
0 if f(P@Q) = 0

e
log
h

f(P@Q
H(P) ×

f(Q@P)
H(Q)

iα
otherwise.

(7)

Therein, f(P@Q) denotes the number of occurrences of P in
the top-ranking snippets for the query Q in Google. H(P) is
the page count for query P . α is a constant in CODC model
and it is set to 0.15 according to Chen et al., [6]. CODC
measure reports zero similarity scores for many word-pairs
in the benchmark. One reason for this sparsity in CODC
measure is that even though two words in a pair (P, Q) are
semantically similar, we might not always find Q among
the top snippets for P (and vice versa). As might be ap-
pearent from the definition of the CODC measure in Eq. 7,
it returns zero under these conditions. Ranking of snip-
pets, (hence the value of f(P@Q)), depends directly upon
the search engine’s specifications. A search engine consid-
ers various factors such as novelty, authority, link structure,
user preferences when ranking search results. Consequently,
CODC measure is influenced by these factors.

Similarity measure proposed by Sahami et al. [36] is placed
third, reflecting a correlation of 0.5797. This method use
only those snippets when calculating semantic similarity.
Among the four page-counts-based measures, WebPMI gar-
ners the highest correlation (r = 0.5489). Overall, the re-
sults in Table 4 suggest that similarity measures based on
snippets are more accurate than the ones based on page
counts in capturing semantic similarity.

4.4 Taxonomy-Based Methods

Table 5: Comparison with taxonomy-based methods
Method Correlation
Human replication 0.9015
Resnik (1995) 0.7450
Lin (1998) 0.8224
Li et al. (2003) 0.8914
Edge-counting 0.664
Information content 0.745
Jiang & Conrath (1998) 0.8484
Proposed 0.8129

Table 5 presents a comparison of the proposed method
to the WordNet-based methods. The proposed method out-
performs simple WordNet-based approaches such as Edge-
counting and Information Content measures. It is compa-
rable with Lin (1998) [17] Jiang & Conrath (1998) [13] and
Li (2003) [41] methods. Unlike the WordNet based meth-
ods, proposed method requires no a hierarchical taxonomy
of concepts or sense-tagged definitions of words.

7We did not use any of the words in the benchmark dataset
or their synsets for training

WWW 2007 / Track: Semantic Web Session: Similarity and Extraction

762

Table 4: Semantic Similarity of Human Ratings and Baselines on Miller-Charles’ dataset
Word Pair Miller- Web Web Web Web Sahami [36] CODC [6] Proposed

Charles’ Jaccard Dice Overlap PMI SemSim
cord-smile 0.13 0.102 0.108 0.036 0.207 0.090 0 0
rooster-voyage 0.08 0.011 0.012 0.021 0.228 0.197 0 0.017
noon-string 0.08 0.126 0.133 0.060 0.101 0.082 0 0.018
glass-magician 0.11 0.117 0.124 0.408 0.598 0.143 0 0.180
monk-slave 0.55 0.181 0.191 0.067 0.610 0.095 0 0.375
coast-forest 0.42 0.862 0.870 0.310 0.417 0.248 0 0.405
monk-oracle 1.1 0.016 0.017 0.023 0 0.045 0 0.328
lad-wizard 0.42 0.072 0.077 0.070 0.426 0.149 0 0.220
forest-graveyard 0.84 0.068 0.072 0.246 0.494 0 0 0.547
food-rooster 0.89 0.012 0.013 0.425 0.207 0.075 0 0.060
coast-hill 0.87 0.963 0.965 0.279 0.350 0.293 0 0.874
car-journey 1.16 0.444 0.460 0.378 0.204 0.189 0.290 0.286
crane-implement 1.68 0.071 0.076 0.119 0.193 0.152 0 0.133
brother-lad 1.66 0.189 0.199 0.369 0.644 0.236 0.379 0.344
bird-crane 2.97 0.235 0.247 0.226 0.515 0.223 0 0.879
bird-cock 3.05 0.153 0.162 0.162 0.428 0.058 0.502 0.593
food-fruit 3.08 0.753 0.765 1 0.448 0.181 0.338 0.998
brother-monk 2.82 0.261 0.274 0.340 0.622 0.267 0.547 0.377
asylum-madhouse 3.61 0.024 0.025 0.102 0.813 0.212 0 0.773
furnace-stove 3.11 0.401 0.417 0.118 1 0.310 0.928 0.889
magician-wizard 3.5 0.295 0.309 0.383 0.863 0.233 0.671 1
journey-voyage 3.84 0.415 0.431 0.182 0.467 0.524 0.417 0.996
coast-shore 3.7 0.786 0.796 0.521 0.561 0.381 0.518 0.945
implement-tool 2.95 1 1 0.517 0.296 0.419 0.419 0.684
boy-lad 3.76 0.186 0.196 0.601 0.631 0.471 0 0.974
automobile-car 3.92 0.654 0.668 0.834 0.427 1 0.686 0.980
midday-noon 3.42 0.106 0.112 0.135 0.586 0.289 0.856 0.819
gem-jewel 3.84 0.295 0.309 0.094 0.687 0.211 1 0.686
Correlation 1 0.259 0.267 0.382 0.548 0.579 0.693 0.834

0 100 200 300 400 500 600 700 800 900 1000
0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

Number of snippets

Figure 6: Correlation vs. No of snippets

Therefore, in principle the proposed method could be used
to calculate semantic similarity between named entities, etc,
which are not listed in WordNet or other manually compiled
thesauri. However, considering the high correlation between
human subjects (0.9), there is still room for improvement.

4.5 Accuracy vs. Number of Snippets
We computed the correlation with the Miller-Charles rat-

ings for different numbers of snippets to investigate the effect
of the number of snippets used to extract patterns upon the

semantic similarity measure. The experimental results are
presented in Figure 6. From Figure 6 it is appearent that
overall the correlation coefficient improves with the number
of snippets used for extracting patterns. The probability of
finding better patterns increases with the number of pro-
cessed snippets. That fact enables us to represent each pair
of words with a rich feature vector, resulting in better per-
formance.

4.6 Training Data
We used synonymous word pairs extracted from Word-

Net synsets as positive training examples and automatically
generated non-synonymous word pairs as negative training
examples to train a two-class support vector machine in sec-
tion 3.4. To determine the optimum combination of positive
and negative training examples, we trained a linear kernel
SVM with different combinations of positive and negative
training examples and evaluated accuracy against the hu-
man ratings in the Miller-Charles benchmark dataset. Ex-
perimental results are summarized in Figure 7. Maximum
correlation coefficient of 0.8345 is achieved with 1900 posi-
tive training examples and 2400 negative training examples.
Moreover, Figure 7 reveals that correlation does not im-
prove beyond 2500 positive and negative training examples.
Therefore, we can conclude that 2500 examples are sufficient
to leverage the proposed semantic similarity measure.

WWW 2007 / Track: Semantic Web Session: Similarity and Extraction

763

 500
 1000

 1500
 2000

 2500
 3000

 3500
 4000

negative examples 500
 1000

 1500
 2000

 2500
 3000

 3500
 4000

positive examples

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85

correlation

Figure 7: Correlation vs. No of positive and nega-
tive training instances

4.7 Community Mining
Measuring semantic similarity between named entities is

vital in many applications such as query expansion [36], en-
tity disambiguation (e.g. namesake disambiguation) and
community mining [19]. Because most named entities are
not covered by WordNet, similarity measures that are based
on WordNet cannot be used directly in these tasks. Unlike
common English words, named entities are being created
constantly. Manually maintaining an up-to-date taxonomy
of named entities is costly, if not impossible. The proposed
semantic similarity measure is appealing for these applica-
tions because it does not require pre-compiled taxonomies.

In order to evaluate the performance of the proposed mea-
sure in capturing the semantic similarity between named-
entities, we set up a community mining task. We select 50
personal names from 5 communities: tennis players, golfers,
actors, politicians and scientists , (10 names from each com-
munity) from the open directory project (DMOZ)8. For each
pair of names in our data set, we measure their similarity
using the proposed method and baselines. We use group-
average agglomerative hierarchical clustering (GAAC) to clus-
ter the names in our dataset into five clusters.

Initially, each name is assigned to a separate cluster. In
subsequent iterations, group average agglomerative cluster-
ing process, merges the two clusters with highest correlation.
Correlation, Corr(Γ) between two clusters A and B is de-
fined as the following,

Corr(Γ) =
1

2

1

|Γ|(|Γ| − 1)

X
(u,v)∈Γ

sim(u, v) (8)

Here, Γ is the merger of the two clusters A and B. |Γ| de-
notes the number of elements (persons) in Γ and sim(u, v)
is the semantic similarity between two persons u and v in
Γ. We terminate GAAC process when exactly five clusters
are formed. We adopt this clustering method with differ-
ent semantic similarity measures sim(u, v) to compare their
accuracy in clustering people who belong to the same com-
munity.

We employed the B-CUBED metric [1] to evaluate the
clustering results. The B-CUBED evaluation metric was
originally proposed for evaluating cross-document co-reference
chains. We compute precision, recall and F -score for each

8http://dmoz.org

Table 6: Results for Community Mining
Method Precision Recall F Measure
WebJaccard 0.5926 0.712 0.6147
WebOverlap 0.5976 0.68 0.5965
WebDice 0.5895 0.716 0.6179
WebPMI 0.2649 0.428 0.2916
Sahami [36] 0.6384 0.668 0.6426
Chen [6] 0.4763 0.624 0.4984
Proposed 0.7958 0.804 0.7897

name in the data set and average the results over the dataset.
For each person p in our data set, let us denote the cluster
that p belongs to by C(p). Moreover, we use A(p) to denote
the affiliation of person p, e.g., A(“Tiger Woods”) =“Tennis
Player”. Then we calculate precision and recall for person
p as,

Precision(p) =
No. of people in C(p) with affiliation A(p)

No. of people in C(p)
,

(9)

Recall(p) =
No. of people in C(p) with affiliation A(p)

Total No. of people with affiliation A(p)
.

(10)
Since, we selected 10 people from each of the five cate-

gories, the denominator in Formula 10 is 10 for all the names
p.

Then, the F -score of person p is defined as,

F(p) =
2× Precision(p)× Recall(p)

Precision(p) + Recall(p)
. (11)

Overall precision, recall and F -score are computed by tak-
ing the averaged sum over all the names in the dataset.

Precision =
1

N

X
p∈DataSet

Precision(p) (12)

Recall =
1

N

X
p∈DataSet

Recall(p) (13)

F−Score =
1

N

X
p∈DataSet

F(p) (14)

Here, DataSet is the set of 50 names selected from the
open directory project. Therefore, N = 50 in our evalua-
tions.

Experimental results are shown in Table 6. The proposed
method shows the highest entity clustering accuracy in Ta-
ble 6 with a statistically significant (p ≤ 0.01 Tukey HSD) F
score of 0.7897. Sahami et al. [36]’s snippet-based similarity
measure, WebJaccard, WebDice and WebOverlap measures
yield similar clustering accuracies.

4.8 Entity Disambiguation
Disambiguating named entities is important in various ap-

plications such as information retrieval [9], social network
extraction [19, 3, 4], Word Sense Disambiguation (WSD) [21],
citation matching [11] and cross-document co-reference res-
olution [28, 10].

WWW 2007 / Track: Semantic Web Session: Similarity and Extraction

764

For example, Jaguar is a cat, a car brand and also an
operating system for computers. A user who searches for
Jaguar on the Web, may be interested in either one of these
different senses of Jaguar. However, only the first sense
(Jaguar as a cat) is listed in WordNet. Considering the
number of new senses constantly being associated to the
existing words on the Web, it is costly, if not impossible to
maintain sense tagged dictionaries to cover all senses.

Contextual Hypothesis for Sense [37] states that the con-
text in which a word appears can be used to determine its
sense. For example, a Web page discussing Jaguar as a car,
is likely to talk about other types of cars, parts of cars etc.
Whereas, a Web page on Jaguar the cat, is likely to contain
information about other types of cats and animals. In this
section, we utilize the clustering algorithm described in sec-
tion 4.7 to cluster the top 1000 snippets returned by Google
for two ambiguous entities Jaguar and Java. We represent
each snippet as a bag-of-words and calculate the similarity
SIM(Sa, Sb) between two snippets Sa,Sbas follows,

SIM(Sa, Sb) =
1

|Sa||Sb|
X

a∈Sa,b∈Sb

sim(a, b) (15)

In Formula 15 |S| denotes the number of words in snippet
S. We used different semantic similarity measures for sim
in Formula 15 and employed the group average agglomera-
tive clustering explained in section 4.7. We manually ana-
lyzed the snippets for queries Java (3 senses: programming
language, Island, coffee) and Jaguar (3 senses: cat, car, op-
erating system) and computed precision, recall and F-score
for the clusters created by the algorithm.

Our experimental results are summarized in Table 7. Pro-
posed method reports the best results among all the base-
lines compared in Table 7. However, the experiment needs
to be carried out on a much larger data set of ambiguous
entities in order to obtain any statistical guarantees.

4.9 Conclusion
In this paper, we proposed a measure that uses both page

counts and snippets to robustly calculate semantic simi-
larity between two given words or named entities. The
method consists of four page-count-based similarity scores
and automatically extracted lexico-syntactic patterns. We
integrated page-counts-based similarity scores with lexico
syntactic patterns using support vector machines. Training
data were automatically generated using WordNet synsets.
Proposed method outperformed all the baselines including
previously proposed Web-based semantic similarity measures
on a benchmark dataset. A high correlation (correlation co-
efficient of 0.834) with human ratings was found for semantic
similarity on this benchmark dataset. Only 1900 positive ex-
amples and 2400 negative examples are necessary to leverage
the proposed method, which is efficient and scalable because
it only processes the snippets (no downloading of Web pages
is necessary) for the top ranking results by Google. A con-
trasting feature of our method compared to the WordNet
based semantic similarity measures is that our method re-
quires no taxonomies, such as WordNet, for calculation of
similarity. Therefore, the proposed method can be applied
in many tasks where such taxonomies do not exist or are not
up-to-date. We employed the proposed method in commu-
nity mining and entity disambiguation experiments. Results
of our experiments indicate that the proposed method can

robustly capture semantic similarity between named enti-
ties. In future research, we intend to apply the proposed
semantic similarity measure in automatic synonym extrac-
tion, query suggestion and name alias recognition.

5. REFERENCES
[1] A. Bagga and B. Baldwin. Entity-based cross

document coreferencing using the vector space model.
In Proc. of 36th COLING-ACL, pages 79–85, 1998.

[2] Z. Bar-Yossef and M. Gurevich. Random sampling
from a search engine’s index. In Proceedings of 15th
International World Wide Web Conference, 2006.

[3] R. Bekkerman and A. McCallum. Disambiguating web
appearances of people in a social network. In
Proceedings of the World Wide Web Conference
(WWW), pages 463–470, 2005.

[4] D. Bollegala, Y. Matsuo, and M. Ishizuka.
Disambiguating personal names on the web using
automatically extracted key phrases. In Proc. of the
17th European Conference on Artificial Intelligence,
pages 553–557, 2006.

[5] C. Buckley, G. Salton, J. Allan, and A. Singhal.
Automatic query expansion using smart: Trec 3. In
Proc. of 3rd Text REtreival Conference, pages 69–80,
1994.

[6] H. Chen, M. Lin, and Y. Wei. Novel association
measures using web search with double checking. In
Proc. of the COLING/ACL 2006, pages 1009–1016,
2006.

[7] P. Cimano, S. Handschuh, and S. Staab. Towards the
self-annotating web. In Proc. of 13th WWW, 2004.

[8] J. Curran. Ensemble menthods for automatic
thesaurus extraction. In Proc. of EMNLP, 2002.

[9] D. R. Cutting, J. O. Pedersen, D. Karger, and J. W.
Tukey. Scatter/gather: A cluster-based approach to
browsing large document collections. In Proceedings
SIGIR ’92, pages 318–329, 1992.

[10] M. Fleischman and E. Hovy. Multi-document person
name resolution. In Proceedings of 42nd Annual
Meeting of the Association for Computational
Linguistics (ACL), Reference Resolution Workshop,
2004.

[11] H. Han, H. Zha, and C. L. Giles. Name
disambiguation in author citations using a k-way
spectral clustering method. In Proceedings of the
International Conference on Digital Libraries, 2005.

[12] M. Hearst. Automatic acquisition of hyponyms from
large text corpora. In Proc. of 14th COLING, pages
539–545, 1992.

[13] J. Jiang and D. Conrath. Semantic similarity based on
corpus statistics and lexical taxonomy. In Proc. of the
International Conference on Research in
Computational Linguistics ROCLING X, 1998.

[14] F. Keller and M. Lapata. Using the web to obtain
frequencies for unseen bigrams. Computational
Linguistics, 29(3):459–484, 2003.

[15] M. Lapata and F. Keller. Web-based models ofr
natural language processing. ACM Transactions on
Speech and Language Processing, 2(1):1–31, 2005.

[16] D. Lin. Automatic retreival and clustering of similar
words. In Proc. of the 17th COLING, pages 768–774,
1998.

WWW 2007 / Track: Semantic Web Session: Similarity and Extraction

765

Table 7: Entity Disambiguation Results
Jaguar Java

Method Precision Recall F Precision Recall F
WebJaccard 0.5613 0.541 0.5288 0.5738 0.5564 0.5243
WebOverlap 0.6463 0.6314 0.6201 0.6228 0.5895 0.56
WebDice 0.5613 0.541 0.5288 0.5738 0.5564 0.5243
WebPMI 0.5607 0.478 0.5026 0.7747 0.595 0.6468
Sahami [36] 0.6061 0.6337 0.6019 0.751 0.4793 0.5761
CODC [6] 0.5312 0.6159 0.5452 0.7744 0.5895 0.6358
Proposed 0.6892 0.7144 0.672 0.8198 0.6446 0.691

[17] D. Lin. An information-theoretic definition of
similarity. In Proc. of the 15th ICML, pages 296–304,
1998.

[18] C. D. Manning and H. Schütze. Foundations of
Statistical Natural Language Processing. The MIT
Press, Cambridge, Massachusetts, 2002.

[19] Y. Matsuo, J. Mori, M. Hamasaki, K. Ishida,
T. Nishimura, H. Takeda, K. Hasida, and M. Ishizuka.
Polyphonet: An advanced social network extraction
system. In Proc. of 15th International World Wide
Web Conference, 2006.

[20] Y. Matsuo, T. Sakaki, K. Uchiyama, and M. Ishizuka.
Graph-based word clustering using web search engine.
In Proc. of EMNLP 2006, 2006.

[21] D. McCarthy, R. Koeling, J. Weeds, and J. Carroll.
Finding predominant word senses in untagged text. In
Proceedings of the 42nd Meeting of the Association for
Computational Linguistics (ACL’04), pages 279–286,
2004.

[22] D. Medin, R. Goldstone, and D. Gentner. Respects for
similarity. Psychological Review, 6(1):1–28, 1991.

[23] P. Mika. Ontologies are us: A unified model of social
networks and semantics. In Proc. of ISWC2005, 2005.

[24] G. Miller and W. Charles. Contextual correlates of
semantic similarity. Language and Cognitive Processes,
6(1):1–28, 1998.

[25] M. Mitra, A. Singhal, and C. Buckley. Improving
automatic query expansion. In Proc. of 21st Annual
International ACM-SIGIR Conference on Research
and Development in Information Retrieval, pages
206–214, 1998.

[26] J. Mori, Y. Matsuo, and M. Ishizuka. Extracting
keyphrases to represent relations in social networks
from web. In Proc. of 20th IJCAI, 2007.

[27] M. Pasca, D. Lin, J. Bigham, A. Lifchits, and A. Jain.
Organizing and searching the world wide web of facts
- step one: the one-million fact extraction challenge.
In Proc. of AAAI-2006, 2006.

[28] X.-H. Phan, L.-M. Nguyen, and S. Horiguchi. Personal
name resolution crossover documents by a
semantics-based approach. IEICE Transactions on
Information and Systems, E89-D:825–836, 2005.

[29] J. Platt. Probabilistic outputs for support vector
machines and comparison to regularized likelihood
methods. Advances in Large Margin Classifiers, pages
61–74, 2000.

[30] R. Rada, H. Mili, E. Bichnell, and M. Blettner.
Development and application of a metric on semantic

nets. IEEE Transactions on Systems, Man and
Cybernetics, 9(1):17–30, 1989.

[31] P. Resnik. Using information content to evaluate
semantic similarity in a taxonomy. In Proc. of 14th
International Joint Conference on Aritificial
Intelligence, 1995.

[32] P. Resnik. Semantic similarity in a taxonomy: An
information based measure and its application to
problems of ambiguity in natural language. Journal of
Aritificial Intelligence Research, 11:95–130, 1999.

[33] P. Resnik and N. A. Smith. The web as a parallel
corpus. Computational Linguistics, 29(3):349–380,
2003.

[34] R. Rosenfield. A maximum entropy approach to
adaptive statistical modelling. Computer Speech and
Language, 10:187–228, 1996.

[35] H. Rubenstein and J. Goodenough. Contextual
correlates of synonymy. Communications of the ACM,
8:627–633, 1965.

[36] M. Sahami and T. Heilman. A web-based kernel
function for measuring the similarity of short text
snippets. In Proc. of 15th International World Wide
Web Conference, 2006.

[37] H. Schutze. Automatic word sense discrimination.
Computational Linguistics, 24(1):97–123, 1998.

[38] P. D. Turney. Minning the web for synonyms: Pmi-ir
versus lsa on toefl. In Proc. of ECML-2001, pages
491–502, 2001.

[39] A. Tversky. Features of similarity. Psychological
Review, 84(4):327–352, 1997.

[40] B. Vlez, R. Wiess, M. Sheldon, and D. Gifford. Fast
and effective query refinement. In Proc. of 20th
Annual International ACM-SIGIR Conference on
Research and Development in Information Retrieval,
pages 6–15, 1997.

[41] D. M. Y. Li, Zuhair A. Bandar. An approch for
measuring semantic similarity between words using
multiple information sources. IEEE Transactions on
Knowledge and Data Engineering, 15(4):871–882,
2003.

WWW 2007 / Track: Semantic Web Session: Similarity and Extraction

766

