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ABSTRACT
As XML database sizes grow, the amount of space used for stor-

ing the data and auxiliary data structures becomes a major factor
in query and update performance. This paper presents a new stor-
age scheme for XML data that supports all navigational operations
in near constant time. In addition to supporting efficient queries,
the space requirement of the proposed scheme is within a constant
factor of the information theoretic minimum, while insertions and
deletions can be performed in near constant time as well. As are-
sult, the proposed structure features a small memory footprint that
increases cache locality, whilst still supporting standard APIs, such
as DOM, and necessary database operations, such as queries and
updates, efficiently. Analysis and experiments show that the pro-
posed structure is space and time efficient.

Categories and Subject Descriptors
H.3.2 [Information Systems]: Information Storage; H.2.4.n

[Textual Databases]: XML Databases

General Terms
Algorithms, Design, Performance

Keywords
XML, Compact Storage, Storage Optimization, Query Process-

ing

1. INTRODUCTION
The popularity of XML as a data representation language has

produced a wealth of research on efficiently storing and query-
ing tree structured data. As the amount of XML data available
increases, it is becoming vital to be able to not only query and
maintain this information quickly, but also store it in a compact
manner. Our work is also motivated by the mobile software de-
velopment at National ICT Australia and Green Pea Software,in
which managing large amount of XML data on mobile devices is
mandatory. We thus turn to the problem of finding acompact stor-
age schemefor XML, i.e., a space-efficient representation of the
data structure which also maintains low access and update costs
for all of the desired primitive operations for data processing. The
flexibility of XML makes finding a scheme which satisfies all these
requirements at the same time extremely challenging.
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When looking for a compact storage scheme for XML, there are
several issues that need to be addressed. For example, it hasto
support fast operations, especially we are considering software ap-
plications that target people on the move. Moreover, if intensive
compression methods are employed, they need to be optional and
can be switched on or off due to low computation power of some
mobile devices. In summary, from our experience, the major issues
include:

• It must support fast navigational operations: Many XML ap-
plications, such as collaborative document editing systems,
depend upon efficient tree traversal, using a standard inter-
face such as DOM. Halverson et al [10] demonstrated that a
combinationof navigational and structural join operators is
most effective for evaluating queries. Hence, it is imperative
that the storage scheme supports fast traversal of the XML
tree, in all possible directions, preferably in constant time or
near constant time. Previous work, such as that of Zhang
et al [23], has addressed the issue of succinctly representing
XML, but at the cost of linear time navigational operations,
which is not acceptable for many practical applications. Our
proposed structure efficiently supports tree navigation prim-
itives in O(lg n/ lg lg n) time, and also includes support for
efficient structural joins.

• It must support efficient insertions and deletions: Several pa-
pers address the space issue by storing XML in compressed
form [4,16,19,22]. They also support path expression queries
or fast navigational access but do not allow efficient update
operations such as node insertion. This can be a critical con-
cern in many database applications. In this paper, we pro-
vide a scheme which allows near constant time for update
operations in practice, with a theoretical worst case time of
O(lg2 n).

• It must support efficient join operations: Current query op-
timization techniques for XML such as work of Halverson
et al [10], make heavy use of the structural join [2], which
relies on a constant time operator to determine the ancestor-
descendant relationship between two nodes. Thus, any gen-
eral XML storage scheme should also support such an op-
erator in near constant time. Our scheme supports ancestor-
descendant queries inO(lg n/ lg lg n) time.

• It must be practical: Many succinct tree representation
schemes are elegant theoretical structures that unfortunately
do not translate well into practice. Thus, while theoretical
guarantees are important for any proposed structure, practi-
cal considerations should not be forgotten. In this paper, we
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focus on developing a practical storage scheme, using val-
ues that fit to the natural machine word size, block size and
byte alignment, to allow our scheme to be used in real-world
database systems.

• It should separate the topology, schema and text of the doc-
ument: All XML query languages select and filter results
based on some combination of the topology, schema and text
data of the document. To allow efficient scans over these
parts of the document, it is natural to find a representation
that partitions them into separate physical locations.

• It should permit extra indexes: Many applications may re-
quire addition specialized indexes to be built upon their data.
Therefore, a general purpose database system is required
to provide a storage representation, such that it is flexible
enough to accommodate such need. More specifically, the
storage scheme used by the database system must provide a
simple, efficient and stable way of referencing its stored data
items.

In this paper, we propose a compact XML storage engine, called
ISX (for Integrated Succinct XML system), to store XML in a more
concise structure and address all of the above issues. Theoretically,
ISX uses an amount of space near the information theoretic mini-
mum on random trees. For a constantǫ, where1 ≤ ǫ ≤ 2, and
a document withn nodes, we need2ǫn + O(n) bits to represent
the topology of the XML document. Node insertions can be han-
dled in constant time on average but worst caseO(lg2 n) time, and
all node navigation operations take worst caseO( lg n

lg lg n
) time but

constant time on average.
The rest of this paper is organized as follows: Section 2 sum-

marizes relevant work in the field. Section 3 presents the basics of
ISX and its topology layer. The fast node navigation operators, the
querying interfaces and the update mechanism are then described
in detail in Section 4. Finally, Section 5 presents the experiment
results and Section 6 concludes the paper.

2. RELATED WORK
To our best knowledge, Liefke and Suciu [16] proposed the first

compressed XML scheme called XMill. Although XMill achieves
a good compression ratio, its major drawback (which is the lack
of support for query and update) hinders its broad application in
database systems. Various approaches were proposed after XMill
and they share similar benefits and drawbacks, e.g., XMLPPM [7].

Related work that share the same motivations with this paperin-
cludes Maneth et al [17], Tolani and Haritsa [22], Min et al [19]
and Buneman et al [4]. Compared to XMill, XGrind [22] has
a lower compression ratio but supports certain types of queries.
XPRESS [19] uses reverse arithmetic encoding to encode tagsus-
ing start/end regions. Both XGrind and XPRESS require top-down
query evaluation, and do not support set-based query evaluation
such as structural joins.

Buneman et al [4] separate the tree structure and its data. They
then use bi-simulation to compress the documents that sharethe
same sub-tree, however, they can only support node navigations in
linear time. With a similar idea but different technique, Maneth
et al [5, 17] also compress XML by calculating the minimal shar-
ing graph equivalent to the minimal regular tree grammar. Inorder
to provide tree navigations, a DOM proxy that maintains runtime
traversal information is needed [5]. Since only the compression ef-
ficiency was reported in the paper, both query and navigationper-
formance of their proposed scheme are unclear.

Most XML storage schemes, such as [9,10,12,15], make use of
interval and preorder/postorder labeling schemes to support con-
stant time order lookup, but fail to address the issue of mainte-
nance of these labels during updates. Recently, Silberstein et al [21]
proposed a data structure to handle ordered XML which guaran-
tees both update and lookup costs. Similarly, the L-Tree labeling
scheme proposed by Chen et al [6] addressed the same problem and
has the same time and space complexity as [21], however, theydo
not support persistent identifiers. The major difference between our
proposal and these two work is that we try to minimize space usage
while allowing efficient access, query and update of the database.
In this paper, we show that our proposed topology representation
costs linear space while [21] costsn log n space.

The work most related to this paper regarding databases with
efficient storage is from Zhang et al [23]. The succinct approach
proposed by Zhang et al [23] targeted secondary storage, andused
a balanced parentheses encoding for each block of data. Unfortu-
nately, their summary and partition schemes support rank and select
operations in linear time only. Their approach also uses theDewey
encoding for node identifiers in their indexes. The drawbacks of
the Dewey encoding are significant: updates to the labels require
linear time, and the size of the labels is also linear to the size of the
database in the worst case. Thus, the storage of the topologycan
require quadratic space in the worst case.

Finally, there are several related proposals published recently,
e.g. [8,9]. [9] show that all XPath axes can be handled using apre-
order/postorder labeling. Instead of maintaining these two labels
(i.e., two integers), our proposed scheme requires less than 3 bits
per node to process all XPath axes, which is an attractive alternative
for applications that are both space and performance conscious.

Ferragina et. al. [8] first shred the XML tree into a table of two
columns, then sort and compress the columns individually. It does
not offer immediate capability of navigating or searching XML data
unless an extra index is built. However, the extra index willde-
grade the overall storage size (i.e., the compression ratio). Further-
more, the times for disk access and decompression of local regional
blocks have been omitted from their experiments. As a result, the
performance of actual applications may be different from what the
experiments shown. Same as most other related work, data updates
have been disregarded.

3. ISX STORAGE AND TOPOLOGY
LAYER

Improving the Efficiency of
Database−System Teaching.

inproceedings

dblp

author year booktitle@mdate title

2003−06−23Jeffrey D. Ullman 2003 SIGMOD Conference

Figure 1: A DBLP XML document fragment

This section describes the storage layer of the ISX system. It
consists of three layers, namely,topology layer, internal node
layer, and leaf node layer. In Figure 3, the topology layer stores
the tree structure of the XML document, and facilitates fastnavi-
gational accesses, structural joins and updates. The internal node
layer stores the XML elements, attributes, and signatures of the text
data for fast text queries. Finally the leaf node layer stores the ac-
tual text data. Text data can be compressed by various common
compression techniques and referenced by the topology layer.
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3.1 ISX Topology Layer

Jacobson [11] showed that the lower bound space requirement
for representing a binary tree islg(Cn) = lg(4n · Θ(n− 3

2 )) =
2n + o(n) bits, where the Catalan numberCn is the number of
possible binary trees overn nodes.

Our storage scheme is based on thebalanced parenthesesen-
coding from [14], representing the topology of XML. Different
from [14], our topology layer (Figure 3) actually supports efficient
node navigation and updates.

The balanced parentheses encoding used in tier 0 reflects the
nesting of element nodes within any XML document and can be
obtained by a preorder traversal of the tree: we output an open
parenthesis when we encounter an opening tag and a close paren-
thesis when we encounter a closing tag. In Figure 3, the topology
of a DBLP XML fragment shown in Figure 1 is represented in tier
0 using thebalanced parenthesesencoding. In our implementation,
we use a single bit 0 to represent an open parenthesis and a single
bit 1 to represent a close parenthesis.

Definition: An excess is the difference between the number of open
and close parentheses occurring in a given section of the topology.
For instance, in Figure 3, the excess between the open parenthesis
of dblp and the close parenthesis of@mdate is 3. The excess be-
tween the close parenthesis of the text node”2003” andbooktitle
is -1. The depth of a nodex in the XML document tree can be cal-
culated by finding the excess between the open parenthesis ofx and
the beginning of the document.

3.2 Representation of Elements, Attributes and Texts

We avoid any pointer based approach to link a parenthesis to its
label, as it would increase the space usage from2n to a less desir-
ableΘ(n lg n). As our representation of the topology also does not
include aO(lg n) bit persistent object identifier for each node in
the document, we must find a way to link the open parenthesis of
x in tier 0 to the actual label itself. To address this, we adoptfrom
Munro’s work [20] although they do not use balanced parentheses
encoding. Instead, they control the topology size by using multiple
layers of variable-sized pointers, and may require many levels of
indirection. In addition, we make the element structure an exact
mirror of the topology structure instead of mirroring to thepoint-
ers. This allows us to find the appropriate label for a node by sim-
ply finding the entry in the corresponding position at the element
structure. As mentioned earlier, a pointer based approach would
require space usage ofΘ(n lg n), which is undesirable. The next
issue is to handle the variable length of XML element labels.We
adopt the approach taken in previous work [22,23], and maintain a
symbol table, using a hash table to map the labels into a domain of
fixed size. In the worst case, this does not reduce the space usage,
as every node can have its own unique label. In practice, however,
XML documents tend to have a very small number of unique labels.
Therefore, we can assume that the number of unique labels used in
the internal nodes (E) is very small, and essentially constant. This
approach allows us to have fixed size records in the internal node
layer.

Note that each element in the XML document actually has two

())((( )(())( )))(()Tier 0

Tier 1

Tier 2

Character Data

Offset TableSymbol Table,

Topology Labels +

Text Data Signatures

(Text Data)
Internal Node Layer
(Tags)

Leaf Node LayerTopology Layer

Figure 2: Overview of the data structure

available entries in the array, corresponding to the opening and
closing tags. We could thus make the size of each entry1

2
lg E

bits, and split the identifier for each elements over its two entries.
However, the two entries are not in general adjacent to each other,
and hence splitting the identifier could slow down lookups aswe
would need to find the closing tag corresponding to the opening
tag and decrease cache locality. Hence, we prefer to use entries of
lg E bits and leave the second entry set to zero; this also provides
us with some slack in the event that new element labels are used in
updates.

Since text nodes are also leaf nodes, they are represented as
pairs of adjacent unused spaces in the internal node layer. We
thus choose to make use of this “wasted” space by storing a
hash value of the text node of size2 lg E bits. This can be
used in queries which make use of equality of text nodes such as
//*[year="2003"], by scanning the hash value before scan-
ning the actual data to significantly reduce the lookup time.Since
texts are treated independently from the topology and node layers,
they can be optionally compressed by any compression schemes.
Instead of employing more sophisticated compression techniques
such as BWT [8] that are relatively slow on mobile devices, a stan-
dard LZW compression method (e.g., gzip) is used in this paper.

Algorithm 1 Node Navigation Operators
PARENT(node)
1 return BACKWARDEXCESS(node, |tier0|, 2)
FIRSTCHILD (node)
1 if (tier0[NEXT(node)] is open parenthesis)then
2 return NEXT(node)
3 else
4 return NOT-FOUND
NEXTSIBLING (node)
1 if (tier0[NEXT(FINDCLOSE(node))] is an open parenthesis)then
2 return NEXT(FINDCLOSE(node))
3 else
4 return NOT-FOUND
PREVIOUSSIBLING (node)
1 if (PREV(node) is a close parenthesis)then
2 return FINDOPEN(PREV(node))
3 else
4 return NOT-FOUND
NEXTPRECEDING(node)
1 prec←PREV(node)
2 while (prec is an open parenthesis)do prec←PREV(prec)
3 prec←PREV(prec)
4 while (prec is a close parenthesis)do prec←PREV(prec)
5 return prec
NEXTFOLLOWING(node)
1 follow ←NEXT(FINDCLOSE(node))
2 while (follow is a close parenthesis)do follow ←NEXT(follow)
3 return follow

4. QUERYING AND UPDATE
MAINTENANCE

In addition to efficiently storing large volumes of data, an XML
database system should also have the following features: 1)direct
node navigation operators; 2) XPath query processing interface;
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Figure 3: Balanced parentheses encoding of Figure 1
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and 3) efficient node insertion/deletion mechanism. For therest of
this section, we present algorithms and other auxiliary data struc-
tures satisfying the above features, utilising the ISX topology layer.
Furthermore, we provide a detailed cost analysis of our proposed
approach for the database operators.

4.1 Node Navigation with Topology Layer Primitives

Given an arbitrary nodex of a large XML document, a naviga-
tion operator should be able to traverse back and forth the entire
document via various step axes of nodex. Some frequently used
step axes for an XML document tree areparent, first-child, next-
sibling, previous-sibling, next-followingandnext-preceding. These
step axes can then be used to provide programming interfaces, such
as the DOM API, for external access to the XML database.

Node navigation operators are described by the pseudo-codein
Algorithm 1, which shows a tight coupling between the ISX topol-
ogy layer primitives and the navigation operators. Each navigation
operator in Algorithm 1 is mapped to a sequence of calls to the
topology layer primitives described in Algorithm 2.

4.2 Auxiliary Tiers

) ( ( ) ) (( ( ( ( ) ) ( ( ) ( ) ) ( ( ) ) ) )
b00 b01 b02 b03 b04

Tier 0

b20

b10

0
T1 =4,1,0,4,−1,3,1

1
T1 =2,2,−1,1,−1,1,1

2
T1 =3,3,−1,1,−1,1,1

3
T1 =3,2,−1,1,0,2,1

4
T1 =0,4,−4,0,−4,0,0

b11

0
T2 =9,6,0,4,−1,3,3

1
T2 =3,6,−3,1,−4,0,1Tier 2

Tier 1

Figure 4: Example of Tiers of Topology Part

Node navigation operators are highly dependent on topology
layer primitives such as FORWARDEXCESSand BACKWARDEX-
CESS. In the worst case, node navigation operators could take lin-
ear time. However, we can significantly improve the performance
of the topology layer primitives by adding auxiliary data structures
(tier 1 and tier 2 blocks) on top of the tier 0 layer described in Sec-
tion 3.1.

Figure 4 presents the auxiliary tiers 1 (T 1) and 2 (T 2), where
each tier contains contiguous arrays of tuples, with each tuple hold-
ing summary information of one block in the lower tier. The tier 0

Algorithm 2 Primitive Operators for Topology Layer Access
FORWARDEXCESS(start, end, k)
1 for eachcurrent from start to end do
2 if (tier0[current] is an open parenthesis)then
3 k ← k − 1
4 else
5 k ← k + 1
6 if (k = 0) then
7 return current
8 return NOT-FOUND
BACKWARDEXCESS(start, end, k)
1 for eachcurrent from start to end step−1 do
2 if (tier0[current] is an open parenthesis)then
3 k ← k − 1
4 else
5 k ← k + 1
6 if (k = 0) then
7 return current
8 return NOT-FOUND
PREV(node)
1 if (node > 0) then return node− 1 else returnNOT-FOUND
NEXT(node)
1 if (node < |tier0|) then return node + 1 else returnNOT-FOUND
FINDCLOSE(node)
1 return FORWARDEXCESS(node, |tier0|, 0)
FINDOPEN(node)
1 return BACKWARDEXCESS(node, |tier0|, 0)

in the figure corresponds to thebalanced parenthesesencoding of
the topology of the XML document, which was described in Sec-
tion 3. For tiers 1 and 2, each tier 1 block stores an array of tier 0
tuplesT 0

1 , T 0
2 , . . . , T 0

n , wheren is the maximum number of tuples
allowed per tier 1 block. EachT 0

i for 0 < i ≤ n is defined as
(L0, R0, m0, M0, b0, B0, D0) and the density of each tier 0 block

can be calculated by using the formuladensity = L0+R0

|B|
. For

each tier 0 tuple,L0 is the total number of left parentheses of a
block;R0 is the total number of right parentheses of a block;m0 is
the minimum excess within a single block by traversing the paren-
theses array forward from the beginning of the block;M0 is the
maximum excess within a single block by traversing the parenthe-
ses array forward from the beginning of the block;b0 is the mini-
mum excess within a single block by traversing the parentheses ar-
ray backward from the last parenthesis of the block;B0 is the max-
imum excess within a single block by traversing the parentheses ar-
ray backward from the last parenthesis of the block; andD0 is total
number of character data nodes. In tier 2, each block stores an array
of tier 1 tuplesT 1

1 , T 1
2 , . . . , T 1

n , wheren is the maximum number
of tuples allowed per tier 2 block, Each tupleT 1

i for 0 < i ≤ n
is then defined as(L1, R1, m1, M1, b1, B1, D1), where:L1 is the

sum of allL0 for all tier 1 tuplesT 0 (
P|B|/|T0|

i=0 L0
i ); R1 is the sum

of all R0 for all tier 1 tuplesT 0 (
P|B|/|T0|

i=0 R0
i ); m1 is the local

forward minimum excess across all of its tier 1 tuples;M1 is the
local forward maximum excess across all of its tier 1 tuples;b1 is
the local backward minimum excess across all of its tier 1 tuples;
B1 is the local backward maximum excess across all of its tier 1
tuples; andD1 is the total number of character data nodes for all

tier 1 tuples (
P|B|/|T0|

i=0 D0
i ).

Although both tier 1 and tier 2 tuples look similar, the values of
m1, M1, b1 andB1 in tier 2 are calculated differently to that of in
tier 1. For tier 2, the function TIER2LOCALEXCESSin Algorithm 3
is used to calculate the local minimum/maximum excess and itis
not as trivial as the calculation for tier 1 blocks.

Let X = (L, R, m, M, b, B, D) be a tier 2 tuple holding the
summary information for the tier 1 tuplesY 1, . . . , Y n. To calcu-
late the local forward minimum excessX.m, we know the local
minimum excess from the beginning of the first parentheses ofY 1
until the end ofY 1 is equal toY 1.m, we then assign this value
to X.m. We know the excess at the end ofY 1 is Y 1.L − Y 1.R,
so the minimum ofY 1.m and(Y 1.L − Y 1.R + Y 2.m) gives the
forward minimum excess from beginning parenthesis ofY 1 to the
end parenthesis ofY 2. Similarly, the minimum of(Y 1.m, Y 1.L−
Y 1.R + Y 2.m, Y 1.L − Y 1.R + Y 2.L − Y 2.R + Y 3.m) gives
the minimum excess between the beginning parenthesis ofY 1 to
the end parenthesis ofY 3. Therefore,X.m can be calculated by
scanning its tier 1 tuples, updating the excess along the way. Both
maximum and minimum forward excesses can be calculated at the
same time. For backward excesses, the algorithm is identical, ex-
cept for the direction of traversal of the tier 1 tuples.

Algorithm 3 Calculate Local Excess in a Tier 2 Block
TIER2LOCALEXCESS(t2)

1 {t1start, t1end} ← { t2∗|T2|

|T1|
, (t2+1)∗|T 2|

|T1|
− 1}

2 {tier2[t2].m, tier2[t2].M} ← {tier1[t1start].m, tier1[t1start].M}
3 excess← tier1[t1start].L− tier1[t1start].R
4 for each t1 from t1start + 1 to t1end do
5 if (excess + tier1[t1].m < tier2[t2].M) then
6 tier1[t1].m← excess + tier1[t1].m
7 if (excess + tier1[t1].M > tier2[t2].M) then
8 tier1[t1].M ← excess + tier1[t1].M
9 excess← excess + tier1[t1].L− tier1[t1].R
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Example In Figure 4, if we need to calculate the minimum for-
ward excess for the tier 2 tupleT21, we first assign it toT21.m =
T13.m = −1. Now the excess at the end ofT13 is T13.L −
T13.R = 1 and1 + T14, m = 1 + (−4) = −3. As−3 is smaller
than−1, T21.m is assigned−3.

In the ISX system, the fixed block size for each tier is 4 kilobytes
in size. Therefore, each tier 0 block can hold up to 32768 bitsand
each tier 1 block can hold4KB

|T0|
tier 0 blocks. Similarly, each tier

2 block can hold up to4KB
|T0|

tier 1 blocks, which is equivalent to

( 4KB
|T0|

)2 tier 0 blocks. For a 32-bit word machine, there are only

2 tier 2 blocks and in theory, there areΘ(n/ lg2 n) tier 2 blocks.
Therefore, the worst case for navigational accesses isO(n/ lg2 n),
which is not much of an improvement onO(n). Fortunately, it is
relatively simple to fix this limitation: instead of having3 tiers,
we generalize the above structure in a straightforward fashion to
useO(lg n/ lg lg n) tiers. This means that the top-most tier has
Θ(n/ lglg n/ lg lg n n) = Θ(1) blocks, reducing the worst case nav-
igational access time toO(lg n/ lg lg n).

4.3 Improved Topology Layer Primitives

Algorithm 4 Topology Primitives using Auxiliary Structures

NEXT(node)
1 if (I0

node < L0
node + R0

node) then
2 return I0

node + 1
3 else
4 if (B0

node is the last tier 0 block) then
5 return NOT-FOUND
6 else
7 return B0

node + |B|
FASTFORWARDEXCESS(start, end, k)
1 current←FORWARDEXCESS(start, B0

x + |B| − 1, k)
2 if current 6= NOT-FOUND then
3 return current
4 for eachT 0

i ∈ B1
current whereT 0

i > T 0
current

5 if (current + m0
i ≤ k ≤ current + M0

i ) then
6 return FORWARDEXCESS(T 0

i ,B0

T0
i

+ |B| − 1, k)

7 current← current + L0
i − R0

i

8 for eachT 1
j ∈ B2

current whereT 1
j > T 1

current

9 if (current + m1
j ≤ k ≤ current + M0

j ) then
10 for eachT 0

i ∈ B1
j whereT 0

i > T 0
j

11 if (current + m0
i ≤ k ≤ current + M0

i ) then
12 return FORWARDEXCESS(T 0

i ,B0

T0
i

+ |B| − 1, k)

13 current← current + L0
i − R0

i

14 current← current + L1
j − R1

j

FASTBACKWARDEXCESS(start, end, k)
// Implemented in the same way as FASTFORWARDEXCESS,
// but in backward direction.

FORWARDEXCESS and BACKWARDEXCESS return the posi-
tion of the first parenthesis matching the given excessk within a
given range[start, end] (in forward and backward direction re-
spectively).

Using the auxiliary structures (tiers 1 and 2), instead of just a
linear scan of tier 0 layer, we can use tier 1 to test whether the
position of the parenthesis, matchingk excess, lies within thei-th
tier 0 block, i.e., checking whether(m0

i + ei) ≤ k ≤ (M0
i + ei),

whereei is the excess betweenstart and the beginning of thei-th
tier 0 block (excluding the first bit). However, as|B| = Θ(lg n),
there are potentiallyn/|B| tier 1 tuples to scan. Hence, we use tier
2 find the appropriate tier 1 block within whichexcess lies, thus
reducing the cost to a near constant in practice.

Using the above approach, we can replace primitives NEXT,
FORWARDEXCESSand BACKWARDEXCESSin Algorithm 2 with

improved primitives in Algorithm 4. Furthermore, since thedepths
of real-world XML documents are generally less than|B| (even the
depth of the highly nested Tree Bank dataset [18] is much lessthan
100), most matching parentheses lie within the same block, and oc-
casionally are found in neighboring blocks. Therefore, when FAST-
FORWARDEXCESSis called from navigation operations, we rarely
need to access additional blocks in either the auxiliary data struc-
ture or the topology bit array. In the worst case, when the matching
parentheses lie within different blocks, we only need to read two
tier 1 blocks and two tier 2 blocks for a 32-bit word size machine,
which is very small in size.

4.4 Update Operators

In ISX system, we also facilitate efficient update operators, such
as node insertion. So far for tier 0 layer, we have appeared to
treat the balanced parentheses encoding as a contiguous array. This
scheme is not suitable for frequent updates as any insertionor dele-
tion of data would require shifting of the entire bit array.

4.4.1 Updating Tier 0

In this section, we present the modification to our storage
scheme, that changes the space usage from2n to2ǫn, whereǫ ≥ 1,
so that we can efficiently accommodate frequent updates.

height of virtual binary trie: 3

1 d  =50%2 d  =75%3 d  =62.5%4 d  =50%5

d  =68.75%7

d  =62.5%8

d  =37.5%9

( ( ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ) ) )

d  =56.25%6
v0

v2

v1

v3

0

d: density within a range of blocks

b1b0 b2 b3 b4

Threshold
Density Depth

0[0.50, 0.75]

1[0.42, 0.83]

2[0.33, 0.92]

[0.25, 1.00] 3

0 1

10

0 1

0 1

d  =62.5%

Figure 5: Densities of the parentheses array and the corre-
sponding virtual balanced trie with block size |B| = 8 and
height = 3.

In our approach, we first divide the array into blocks of|B| bits
each, and store the blocks contiguously. Within each block,we
leave some empty space by storing them at the rightmost portion of
each block. Now, we only need to shiftO(|B|) entries per insertion
or deletion. We can control the cost of shifting by adjustingthe
block size.

After the initial loading of an XML document, the empty space
allocated to leaf nodes will eventually be used up as more data is
inserted into the database. Therefore, we need to guaranteean even
distribution of empty bits across the entire parentheses array, so
that we can still maintain theO(|B|) bound for the number of shifts
needed for each data insertion. This can be achieved by deciding
exactly when to redistribute empty space among the blocks and
which blocks are to be involved in the redistribution process.

To better understand our approach, we first visualize these blocks
as leaf nodes of avirtual balanced binary trie, with the position
of the block in the array corresponding to the path to that block
through the virtual binary trie. Figure 5 shows such a trie, where
block 0 corresponds to the leaf node under the path0 → 0 → 0,
and similarly block 3 corresponds to the path0→1→1. For each
block, we define:

• L: the total number of left parentheses within a block.

• R: the total number of right parentheses within a block.

• DENSITY(b): the density of a blockb, defined asL+R
|B|

.
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Algorithm 5 Node Insertion and Order Maintenance Operations
INSERT(x)
1 Rightshifttier0[x, L0

x + R0
x] to [x + 2, L0

x + R0
x + 2]

2 tier0[x, x + 1]← {open parenthesis, close parenthesis}
3 IncrementL0

x, R0
x, L1

x andR1
x

4 if (L0
x + R0

x > |B| − 2) then
5 MAINTAIN (x)
MAINTAIN (x)
1 {height, weight, δ} ← {lg n, height, 1}
2 {min, max} ← {B0

x,B0
x + |B|}

3 while (

PB1
max

B1
min

L0+R0

(max−min)|B|
≥ 3

4 + d
4h

) do
4 depth← depth− 1
5 δ ← 2δ
6 min← MAX (0, min− δ)
7 max← max + δ
8 Evenly distribute bits in blocks[min, max] and update

the corresponding tier 1 and tier 2 tuples.

Given the above definition of density for leaf nodes, the density
of a virtual node is the average density of its descendant leaf nodes.
We then control the empty space within all nodes in the virtual
binary trie by setting a density threshold[min, max], within which
the block densities must lie. For a virtual node at heighth and depth
d in the virtual trie, we enforce a density threshold of[ 1

2
− d

4h
, 3

4
+

d
4h

]. For example, the density threshold range for virtual nodev0

in Figure 5 is[ 1
2
− 2

4×3
, 3

4
+ 2

4×3
] = [0.33, 0.92], since the depth

for v0 is 2 and height of the trie is 3.
Why do we use the formula above for controlling the density

threshold? This is due to two factors: first, in order to guarantee
good space utilization, the maximum density of a leaf node should
be 1, and the minimum density threshold of root node should be
1/2. Secondly, the density threshold should satisfy the following
invariant: the density threshold range of an ancestor node should
be tighter than the range for its descendant nodes. This is sothat
space redistribution for an ancestor nodev, the density threshold of
all its descendants are also immediately satisfied.

In the worst case, we use4 bits per node, since the root node can
be only half full. Thus, on a32-bit word machine, we can store
at most232/4 = 230 nodes. However, by adjusting the minimum
root node density threshold, from1

2
to 1

ǫ
it is possible to store more

than230 nodes by choosing a smallerǫ. In practice,ǫ should be2
and therefore2ǫn bits is in effect4n. The factorǫ should only be
less than2 when the document is relatively static.

Notice that although we shift the parentheses within tier 0 during
update, we never need to shift the tuples in tier 1 because thesame
T 0 tuple always corresponds to the same tier 0 block, regardless of
its density. Therefore unlike tier 0, we do not need to redistribute
tuples within tier 1 (similarly for tier 2) during the updateoperation.

4.4.2 Updating Auxiliary Tiers

From Section 4.2, the auxiliary tiers may first appear to increase
the update costs toO(lg3 n/ lg lg n), since moving a node requires
updatingO(lg n/ lg lg n) tiers. However, this overhead can be

Algorithm 6 Offset calculation for block and indexes within the
block in all tiers

B0
x = ⌊ x

|B|
⌋, I0

x = ⌊x mod |B|⌋

B1
x = ⌊B

0
x5 lg |B|

|B|
⌋, I1

x = ⌊(B0
x5 lg |B|)mod |B|⌋

B2
x = ⌊

B1
x5 lg(

|B|2)
5 lg |B|

)

|B|
⌋, I2

x = ⌊(B1
x5 lg( |B|2)

5 lg |B|
))mod |B|⌋

T 0
x = (L0

x, R0
x, m0

x, M0
x , D0

x) = (I0
x, . . . , I0

x + 4 lg |B|)
T 1

x = (L1
x, R1

x, m1
x, M1

x , D1
x) = (I1

x, . . . , I1
x + 4 lg |B|)

eliminated by updating the upper tiers once per redistribution, in-
stead of once per node. A simple proof then demonstrates thatthe
overall update cost is unaffected, and remainsO(lg2 n).

During the insertions and deletions in a tier 0 block, we simply
update the appropriate tuples in the corresponding blocks in the
higher tiers. Since the redistribution process we described in Sec-
tion 4.4.1 can be seen as a sequence of insertions and deletions, the
corresponding updates to the auxiliary tiers do not affect the worst
case complexity for updates.

4.5 Space Cost

Having 2ǫn bits used per node including update, using 32-bits
word, we can store as much as230 nodes. In our implementation
we also chose to use four kilobytes sized block. Based on these
values, we now discuss the space cost of each component of our
storage scheme. Of course, if larger documents need to be stored,
we can increase the word size that we use in the data structureand
adjust the bit length used on tier 1 and tier 2.

Tier 0: . From above, Tier 0 can take up at most232/2ǫ = 232 bits
space (or⌈ 2ǫn

|B|
⌉ = 217 blocks).

Tier 1: . We need lg |B| = 15 bits for each variable
(L0, R0, m0, M0, b0, B0, D0) within a T 0 tuple. EachT 0 tuple
requires a total of7 lg |B| = 112 bits including bit alignments and
based on this calculation, each tier 1 block can then store upto
⌊ |B|

|T0|
⌋ = 292 T 0 tuples, Since the maximum number of nodes

can be stored in tier 0 is230, then we only need2ǫn
|B|

= 217

T 0 tuples to represent all tier 0 blocks and they can be stored in
˚

2ǫn
|B|

/⌊ |B|

|T0|
⌋
ˇ

= ⌈ 14 lg |B|ǫn

|B|2
⌉ = 449 tier 1 blocks.

Tier 2: . We need a total of 24 bits for each variable
(L1, R1, m1, M1, b1, B1, D1) within a T 1 tuple. This is derived

from lg |B| + lg( |B|

|T0|
) = lg( |B|2

7 lg |B|
), where each variable holds

the size of a tier 1 tuple and total number of bits required to repre-
sent the total number of tuples per tier 1 block. So eachT 1 tuple

requires a total of|T 1| = 7 lg( |B|2

7 lg |B|
) = 168 bits and each tier

2 block holds up to⌊ |B|

|T1|
⌋ = 195 T 1 tuples. Thus, we will only

need a total of⌈ 14 lg |B|ǫn

|B|2
/ |B|

|T1|
⌉ =

98 lg |B| lg(
|B|2

7 lg |B|
)ǫn

|B|3
= 2 tier 2

blocks to store the 449 tier 1 tuples.
Since we only need a maximum of two tier 2 blocks, even for230

nodes document, we can just keep them in main memory. In fact,
the entire tier 1 can also be kept in main memory, since it requires
at most449∗4KB < 2MB. In summary, the space required by the
topology layer (in bits) is:

2ǫn +
14 lg |B|ǫn

|B|
+

98 lg |B| lg( |B|2

7 lg |B|
)ǫn

|B|2
= 2ǫn + o(ǫn)

and the space required by the internal node layer (in bits) plus the
symbol table is:ǫn lg E + O(E)

We can use the above equations to estimate the space used by an
XML file, using as our example a 100 MB copy of DBLP, which
was roughly 5 million nodes. If we assume there are no updatesaf-
ter the initial loading, we can setǫ = 1. According to the equation,
we will have used roughly2ǫn = 1MB for the topology layer, and
ǫn lg E + O(E) = 8MB. This, of course, disregards the space
needed for the text data in the document.

Based on the block size|B|, we know the exact size of tuples
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and tiers in our topology layer. Therefore, given a bit position x〈,
we can calculate which tier 0 block this bit belongs to and which
tier 1 block contains summary information for the tier 0 block. For
a givenx〈, Algorithm 6 lists all the calculations needed to find its
resident tier 0 to tier 2 blocks and the index within the blocks to get
the summary.

5. EXPERIMENTS

Features XMill XGrind NoK TIMBER ISX
Compression

√ √ √
Doc traversal

√ √ √ √ √
Node nav.of all axes uncertain

√ √
Update operation

√ √
Support XPath query

√ √ √ √

Table 1: Comparison of supported features

The ISX system is implemented in C++ using Expat XML
parser1. In this section, we compare the performance of ISX with
other related implementations, namely, XMill [16], XGrind[22],
NoK [23] and TIMBER [12]. Experiments were setup to measure
various performances according to the feature matrix of these im-
plementations as shown in Table 1.

We used an Apple G5 2.0 GHz machine with 2.5GB RAM and
160GB of 7,200 RPM IDE hard drive. The memory buffer pool of
ISX has been fixed to 64MB for all the experiments. Three XML
datasets were used, namely, DBLP [1], Protein Sequence Database
(PSD) [3], TreeBank [18]. We found that the experiment results
from PSD are very similar to those from DBLP due to their reg-
ular, shallow tree structure. Therefore, PSD results are skipped
from some plots below for clarity. Large datasets (i.e.,≥ 1GB)
were generated by repeatedly duplicating and merging the source
dataset, e.g., the 16GB DBLP document contains more than 770
million nodes.

5.1 Storage Size Comparison

Table 2 and 3 show that XMill has the best compression ratio
for both DBLP and TreeBank datasets. Compared to XMill that
does not support any direct data navigation and queries, XGrind
does allow simple path expressions. Therefore, it has a relatively
less attractive compression ratio. In fact, XGrind failed to run on
large datasets in our experiments. Both XMill and XGrind have
better space consumption as they are primarily designed forread-
only data and do not support efficient updates. Furthermore,they
only support access to the compressed data in linear time.

Table 2 and 3 show again that ISX is relatively less sensitiveto
the structure of the data. Although the compression ratio ofISX for
TreeBank is not as good as for DBLP, the reason is that TreeBank
has the text content that are harder to compress (TreeBank text are
more random than the DBLP’s). XMill compression ratio on Tree-
Bank is relatively much worse than that on DBLP is due to both the
random text content as well as the more complex tree structure of
the data.

5.2 Bulk Loading Performance

The performance comparison of bulk loading using ISX, NoK,
XGrind and XMill are shown in Figure 6. For the smaller datasets
(up to 500MB DBLP), Figure 6(a) shows our ISX system signifi-
cantly outperforms NoK and TIMBER in loading. It also highlights
the scalability of ISX in loading large datasets.

91http://www.sourceforge.net/projects/expat/

To further test the scalability of loading even larger XML doc-
uments, we compared the loading time of ISX and the other well
known systems such as XMill and XGrind on 1 to 16 GB of DBLP
documents. During the loading process, XGrind failed to load
XML documents greater than 100MB. Although Figure 6(b) shows
that the loading time for ISX is slower than XMill’s, it stillex-
hibits a similar trend (similar scalability). The gap between the two
curves is contributed by the fact that ISX does not compress the
XML data as much as XMill does. This results in a larger stor-
age layer than XMill, which will then uses higher number of disk
writes.

5.3 Query Performance

When consider using the proposed structure as a storage scheme
of a full-fledged database system, one must consider its query per-
formance. Figure 7 (with details listed in Tables 4) shows the query
performance of ISX against other schemes. Note that the query
times in Figure 7 are in logarithmic scale. From this experiment,
we found that ISX outperforms other systems in either the ISXor
ISX Stream (using the TurboXPath approach [13]) modes. The
performance of ISX is measured by using binary structural join to
perform XPath queries; while ISX Stream execute the same query
by scanning ISX topology layer linearly.

5.4 Navigation and Document Traversal

To test the performance and scalability of random node navi-
gation, we pre-loaded our XML datasets, and for each database,
we randomly picked a node and called the node traversal functions
(e.g., FIRSTCHILD , NEXTSIBLING ) multiple times. The average
access time for these node traversal operations are plottedin Fig-
ure 8(a). The graph shows that as the database size gets bigger,
the running time for these functions remains constant. Thisis not
surprising, since in general most nodes are located close totheir
siblings, and hence are likely to be in the same block. For exam-
ple, it generally only takes a scan of a few bits on average to access
either the first child node or the next sibling node. Some opera-
tions are faster than the others, due to their different implementa-
tion complexity (listed in Algorithm 1) and the characteristics of the
encoding itself. For instance, as Figure 8(a) shows, FIRSTCHILD

performed slightly faster than NEXTSIBLING function, because the
first child is always adjacent to a node, whereas its next sibling
might be several nodes away.

With fast traversal operations, ISX can traversal XML data in the
proposed compact encoding significantly faster than other XML
compression techniques such as XMill, as shown in Figure 8(b).
We argue that this feature is important to examine the content of
large XML databases or archives.

5.5 Update Performance

The worst case for Algorithm 5 happens when nodes are inserted
at the beginning of a completely packed database, i.e., withno gaps
between blocks. The insertion experiment was set to measureits
average worst case performance by inserting nodes at the begin-
ning of the database. For each experiment, we did multiple runs
(resetting the database after each run). The average insertion times
(per node) are shown in Figures 9. In Figure 9, we see an initial
spike in the execution time for the worst case insertion. This cor-
responds to the initial packed state of the database, in which case
the very first node insertion requires the redistribution ofthe en-
tire leaf node layer. Clearly, in practice this is extremelyunlikely
to happen, but the remainder of the graph demonstrates that even
this contrived situation has little effect on the overall performance.
The graph also shows that the cost of all subsequent insertions in-
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Source Data ISX ISX XMill XGrind Source Data ISX ISX XMill XGrind
(MB) (MB) Compressed (MB) (MB) (MB) (MB) (MB) Compressed (MB) (MB) (MB)
1 1 0.4 0.1 0.3 256 182 82.7 31.5 75.0
2 1 0.7 0.3 0.6 500 363 163.7 62.6 Failed
5 3 1.5 0.5 1.3 750 549 249.7 94.0 Failed
8 5 2.5 0.9 2.1 1000 726 327.5 125.3 Failed
16 10 5 1.8 4.3 2000 1452 654.9 250.5 Failed
32 21 10 3.7 8.6 4000 2903 1309.8 501.0 Failed
64 42 20 7.2 17.4 8000 5807 2619.6 978.48 Failed
128 87 40.2 14.9 35.8 16000 9411 4629.9 1952.81 Failed

Table 2: Storage size of ISX (with and without text compression), XMill and XGrind on DBLP

Source Data ISX ISX XMill Source Data ISX ISX XMill
(MB) (MB) Compressed (MB) (MB) (MB) (MB) Compressed (MB) (MB)
1 0.51 0.41 0.30 256 131.08 104.53 73.38
2 1.02 0.81 0.58 500 243.72 192.79 146.74
4 2.04 1.63 1.16 750 365.50 289.21 220.10
8 4.09 3.26 2.30 1000 487.43 385.58 293.489
16 8.19 6.53 4.60 2000 974.69 770.98 586.969
32 16.39 13.07 9.19 4000 1949.39 1541.97 1173.93
64 32.77 44.49 18.35 8000 4052.58 3205.59 2347.85
128 65.54 52.26 36.69 16000 7797.56 6167.87 4695.7

Table 3: Storage size of ISX (with and without text compression), XMill on TreeBank

 1

 10

 100

 1000

 10000

 0  100  200  300  400  500  600

Lo
ad

in
g 

T
im

e 
(S

ec
on

ds
)

XML Document Size (MB)

ISX
TIMBER

NoK

9(a) ISX vs. TIMBER and NoK (up to 500 MB data)

 0.1

 1

 10

 100

 1000

 10000

 100000

 0  2  4  6  8  10  12  14  16  18

Lo
ad

in
g 

T
im

e 
(S

ec
on

ds
)

Document Size (GB)

XMill (DBLP)
ISX (DBLP)

XGrind (DBLP)
XMill (TreeBank)
ISX (TreeBank)

9(b) ISX vs. XGrind and XMill (up to 16 GB data)

Figure 6: Loading Time Comparison

Query# XPath Expression 1 GB 2 GB 4 GB 8 GB 16 GB
|Final| |Final| |Final| |Final| |Final|

Q1 //inproceedings 402667 981484 2012761 4160339 8453066
Q2 //mastersthesis 74 156 315 627 1251
Q3 /dblp/article 442184 717449 1379945 2630711 5135130
Q4 //inproceedings/title 402667 981484 2012761 4160339 8453066
Q5 //article[.//month/text() = ”July”]//title 857309 1729184 3454708 6920136 13848372
Q6 //inproceedings[.//ee]//pages 796742 1607116 3210628 6430194 12868471

Table 4: Test Queries and Final Result Sizes
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Figure 7: Query Performance (in log scale) of ISX vs. Other Systems
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Figure 8: Navigation and traversal performance time of ISX

 12

 14

 16

 18

 20

 22

 24

 0  10  20  30  40  50  60  70  80  90  100

In
se

rt
io

n 
T

im
e 

(µ
se

c)

Number of Nodes Inserted

128MB DB
250MB DB
500MB DB

1GB DB
2GB DB
4GB DB
8GB DB

16GB DB

Figure 9: Insertion time of ISX using 128 MB - 16 GB DBLP

WWW 2007 / Track: XML and Web Data Session: Parsing, Normalizing, and Storing XML

1081



creases at a rate of approximatelyO(lg2 n). In fact, all subsequent
insertions up to 100,000 took no more than 0.5 milliseconds.

Updating the values of nodes will not cause extra processingtime
apart from the retrieval time for locating the nodes to be updated.
In case of deletion, the reverse sequence of steps for node insertion
will be performed (freed space will be left as gaps to be filledby
subsequent insertions).

6. CONCLUSIONS
A compact and efficient XML repository is critical for a wide

range of applications such as mobile XML repositories running on
devices with severe resource constraints. For a heavily loaded sys-
tem, a compact storage scheme could be used as an index storage
that can be manipulated entirely in memory and hence substantially
improve the overall performance. In this paper, we proposeda scal-
able and yet efficient, compact storage scheme for XML data.

Our data structure is shown to be exceptionally concise, without
sacrificing query and update performance. While having the ben-
efits of small data footprint, experiments have shown that the pro-
posed structure still out-performs other XML database systems and
scales significantly better for large datasets. In particular, all navi-
gational primitives can run in near constant time. Furthermore, as
shown in the experiments, our proposed structure allows direct doc-
ument traversal and queries that are significantly faster and more
scalable than previous compression techniques.
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