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ABSTRACT

As XML database sizes grow, the amount of space used for stor-
ing the data and auxiliary data structures becomes a majtrfa
in query and update performance. This paper presents a new st
age scheme for XML data that supports all navigational djmera
in near constant time. In addition to supporting efficientrigs,
the space requirement of the proposed scheme is within dacdns
factor of the information theoretic minimum, while inserts and
deletions can be performed in near constant time as well. r&s a
sult, the proposed structure features a small memory fiowtiat
increases cache locality, whilst still supporting stadd&Pls, such
as DOM, and necessary database operations, such as queties a
updates, efficiently. Analysis and experiments show thatpito-
posed structure is space and time efficient.

Categories and Subject Descriptors

H.3.2 [Information Systemg: Information Storage; H.2.4.n
[Textual Databasef XML Databases

General Terms
Algorithms, Design, Performance

Keywords

XML, Compact Storage, Storage Optimization, Query Process
ing

1. INTRODUCTION

The popularity of XML as a data representation language has
produced a wealth of research on efficiently storing and yguer
ing tree structured data. As the amount of XML data available
increases, it is becoming vital to be able to not only quergt an
maintain this information quickly, but also store it in a qomet
manner. Our work is also motivated by the mobile software de-
velopment at National ICT Australia and Green Pea Softwiare,
which managing large amount of XML data on mobile devices is
mandatory. We thus turn to the problem of findinganpact stor-
age scheméor XML, i.e., a space-efficient representation of the
data structure which also maintains low access and updats co
for all of the desired primitive operations for data proegs The
flexibility of XML makes finding a scheme which satisfies akge
requirements at the same time extremely challenging.

Copyright is held by the International World Wide Web Coefere Com-
mittee (IW3C2). Distribution of these papers is limited tassroom use,
and personal use by others.

WWW 2007May 8-12, 2007, Banff, Alberta, Canada.

ACM 978-1-59593-654-7/07/0005.

1073

When looking for a compact storage scheme for XML, there are
several issues that need to be addressed. For example, tib has
support fast operations, especially we are consideringvacé ap-
plications that target people on the move. Moreover, ifriatee
compression methods are employed, they need to be optindal a
can be switched on or off due to low computation power of some
mobile devices. In summary, from our experience, the magues
include:

e It must support fast navigational operatioridany XML ap-
plications, such as collaborative document editing system
depend upon efficient tree traversal, using a standard-inter
face such as DOM. Halverson et al [10] demonstrated that a
combinationof navigational and structural join operators is
most effective for evaluating queries. Hence, it is impeeat
that the storage scheme supports fast traversal of the XML
tree, in all possible directions, preferably in constamietior
near constant time. Previous work, such as that of Zhang
et al [23], has addressed the issue of succinctly repregenti
XML, but at the cost of linear time navigational operations,
which is not acceptable for many practical applicationst Ou
proposed structure efficiently supports tree navigatiom-pr
itives in O(lgn/1glgn) time, and also includes support for
efficient structural joins.

It must support efficient insertions and deletio8gveral pa-
pers address the space issue by storing XML in compressed
form[4,16,19,22]. They also support path expression gseri

or fast navigational access but do not allow efficient update
operations such as node insertion. This can be a critical con
cern in many database applications. In this paper, we pro-
vide a scheme which allows near constant time for update
operations in practice, with a theoretical worst case tifne o
o(lgn).

It must support efficient join operation€urrent query op-
timization techniques for XML such as work of Halverson

et al [10], make heavy use of the structural join [2], which
relies on a constant time operator to determine the aneestor
descendant relationship between two nodes. Thus, any gen-
eral XML storage scheme should also support such an op-
erator in near constant time. Our scheme supports ancestor-
descendant queries M(Ig n/ lglgn) time.

It must be practical Many succinct tree representation
schemes are elegant theoretical structures that unfaoelyna
do not translate well into practice. Thus, while theordtica
guarantees are important for any proposed structure,ipract
cal considerations should not be forgotten. In this paper, w
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focus on developing a practical storage scheme, using val-
ues that fit to the natural machine word size, block size and
byte alignment, to allow our scheme to be used in real-world
database systems.

It should separate the topology, schema and text of the doc-
ument All XML query languages select and filter results
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Most XML storage schemes, such as [9, 10, 12, 15], make use of
interval and preorder/postorder labeling schemes to stmon-
stant time order lookup, but fail to address the issue of teain
nance of these labels during updates. Recently, Silbemsteid [21]
proposed a data structure to handle ordered XML which guaran
tees both update and lookup costs. Similarly, the L-Treeliad
scheme proposed by Chen et al [6] addressed the same prafdem a

based on some combination of the topology, schema and texthas the same time and space complexity as [21], howeverdihey

data of the document. To allow efficient scans over these
parts of the document, it is natural to find a representation
that partitions them into separate physical locations.

It should permit extra indexesMany applications may re-
quire addition specialized indexes to be built upon theiada

not support persistent identifiers. The major differendevben our
proposal and these two work is that we try to minimize spaeges
while allowing efficient access, query and update of thesteta.
In this paper, we show that our proposed topology repretenta
costs linear space while [21] cosidog n space.

The work most related to this paper regarding databases with

Therefore, a general purpose database system is requiredefficient storage is from Zhang et al [23]. The succinct appho

to provide a storage representation, such that it is flexible
enough to accommodate such need. More specifically, the

proposed by Zhang et al [23] targeted secondary storage)sed
a balanced parentheses encoding for each block of data.rtunfo

storage scheme used by the database system must provide §ately, their summary and partition schemes support radisalect

simple, efficient and stable way of referencing its stored da
items.

In this paper, we propose a compact XML storage engine,ctalle
ISX (for Integrated Succinct XML system), to store XML in arao
concise structure and address all of the above issues. 8tiedly,

ISX uses an amount of space near the information theoretic mi
mum on random trees. For a constantvherel < ¢ < 2, and

a document wittm nodes, we neeflen + O(n) bits to represent
the topology of the XML document. Node insertions can be han-
dled in constant time on average but worst c@¢k:* n) time, and

all node n_avigation operations take worst céx(qglglﬁ) time but
constant time on average.

The rest of this paper is organized as follows: Section 2 sum-
marizes relevant work in the field. Section 3 presents thiebaé
ISX and its topology layer. The fast node navigation opegatihe
querying interfaces and the update mechanism are thenilakescr
in detail in Section 4. Finally, Section 5 presents the expent
results and Section 6 concludes the paper.

2. RELATED WORK

To our best knowledge, Liefke and Suciu [16] proposed thé firs
compressed XML scheme called XMill. Although XMill achiese
a good compression ratio, its major drawback (which is tlok la
of support for query and update) hinders its broad appbaaitn
database systems. Various approaches were proposed Bfier X
and they share similar benefits and drawbacks, e.g., XMLPRM [

Related work that share the same motivations with this paper
cludes Maneth et al [17], Tolani and Haritsa [22], Min et a®][1
and Buneman et al [4]. Compared to XMill, XGrind [22] has
a lower compression ratio but supports certain types ofiegser
XPRESS [19] uses reverse arithmetic encoding to encodeutags
ing start/end regions. Both XGrind and XPRESS require toprd
query evaluation, and do not support set-based query diaiua
such as structural joins.

Buneman et al [4] separate the tree structure and its day Th
then use bi-simulation to compress the documents that share
same sub-tree, however, they can only support node nasigsaith
linear time. With a similar idea but different technique, iéth
et al [5, 17] also compress XML by calculating the minimalrsha
ing graph equivalent to the minimal regular tree grammaartter
to provide tree navigations, a DOM proxy that maintains iraat
traversal information is needed [5]. Since only the comgimesef-
ficiency was reported in the paper, both query and naviggtérn
formance of their proposed scheme are unclear.
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operations in linear time only. Their approach also use®#gey
encoding for node identifiers in their indexes. The drawbaak
the Dewey encoding are significant: updates to the labelsineq
linear time, and the size of the labels is also linear to the sf the
database in the worst case. Thus, the storage of the topokogy
require quadratic space in the worst case.

Finally, there are several related proposals publishedntéc
e.g. [8,9]. [9] show that all XPath axes can be handled usimga
order/postorder labeling. Instead of maintaining these labels
(i.e., two integers), our proposed scheme requires less3Haits
per node to process all XPath axes, which is an attractigerative
for applications that are both space and performance cmunsci

Ferragina et. al. [8] first shred the XML tree into a table obtw
columns, then sort and compress the columns individualigoés
not offer immediate capability of navigating or searchingXdata
unless an extra index is built. However, the extra index deait
grade the overall storage size (i.e., the compression) rétiother-
more, the times for disk access and decompression of |ogiainal
blocks have been omitted from their experiments. As a rethét
performance of actual applications may be different fronatithe
experiments shown. Same as most other related work, datdagd
have been disregarded.

3. ISXSTORAGE AND TOPOLOGY

LAYER

dblp

inproceedings

@mdate  author title year booktitle

2003706723Jemey D. Uliman Improving the Efficiency qf 2003 SIGMOD Conference
Database-System Teaching.

Figure 1: A DBLP XML document fragment

This section describes the storage layer of the ISX systéam. |
consists of three layers, nameligpology layer internal node
layer, andleaf node layer In Figure 3, the topology layer stores
the tree structure of the XML document, and facilitates fasti-
gational accesses, structural joins and updates. Thenalteode
layer stores the XML elements, attributes, and signaturteedext
data for fast text queries. Finally the leaf node layer stohe ac-
tual text data. Text data can be compressed by various common
compression techniques and referenced by the topology. laye
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3.1 ISX Topology Layer available entries in the array, corresponding to the omgmind

Jacobson [11] showed that the lower bound space requirementclosing tags. We could thus make the size of each ehtty
for representing a binary tree Ig(Cy) = lg(4™ - @(n’%)) _ bits, and split the identifier for each elements over its twtries.

2n + o(n) bits, where the Catalan numbeé¥, is the number of Ho:ﬁver, the P’t\f erlttzlesdaret_pot in g(lednelral agjaceTt tok EHET,0
possible binary trees overnodes. and hence splitting the identifier could slow down lookupsvas

Our storage scheme is based on tiatanced parenthesean- would need to find the closing tag corresponding to the ogenin

coding from [14], representing the topology of XML. Differe tag an_d decrease cache locality. Hence, we preTer_to us’esaotr_
from [L4], our topology layer (Figure 3) actually supporfoéent IgFE plts and leave Fhe second entry set to zero; this also p.mwde
node navigation and updates. us with some slack in the event that new element labels arckinse
The balanced parentheses encoding used in tier O reflects theuPd.ateS'

nesting of element nodes within any XML document and can be _Slnce te>_<t nodes are also leaf _nodes,_they are represented as
obtained by a preorder traversal of the tree: we output am ope pairs of adjacent unused spaces |n“ the |nt?rnal node Iayg. w
parenthesis when we encounter an opening tag and a close pare thus choose to make use of th|s. wasted. space by storing a
thesis when we encounter a closing tag. In Figure 3, the ¢gpol hash _value _Of the_text node of sizdg E. bits. This can be
of a DBLP XML fragment shown in Figure 1 is represented in tier used in quezles Wh,,'Ch make use of equality of text nodes ssch a
0 using thebalanced parenthesescoding. In our implementation, //_ *[year="2003"], b_y scanning the hash value bef_or_e scan-
we use a single bit 0 to represent an open parenthesis angla sin ning the actual dgta to significantly reduce the lookup tiiece
bit 1 to represent a close parenthesis. texts are treated_ independently from the topology and_rmmﬂ;,

they can be optionally compressed by any compression scheme
Definition: An excess is the difference between the number of open!nstead of employing more sophisticated compression tques
and close parentheses occurring in a given section of thelogyy. such as BWT [8] that are relatively slow on mobile devicesaas
For instance, in Figure 3, the excess between the open pgagsist ~ dard LZW compression method (e.qg., zip) is used in this pape
of dblp and the close parenthesis @indate is 3. The excess be-

tween the close parenthesis of the text noRIg03” and booktitle Algorithm 1 Node Navigation Operators
is -1. The depth of a nodein the XML document tree can be cal-  ParenT(node) _
culated by finding the excess between the open parenthesénalf FllRSngL“IfL'E)FAC;")"ARDEXCESS(”OCI& [tier0], 2)
. . noae
the beginning of the document. 1 if (tierO[NEXT(node] is open parenthesigen
. . 2 return NEXT(node)
3.2 Representation of Elements, Attributes and Texts 3 else

return NOT- FOUND

We avoid any pointer based approach to link a parenthesis t0 i \cyrgaLinG (node)
label, as it would increase the space usage feanto a less desir- 1 if (tier0O[NEXT(FINDCLOSE(node))] is an open parenthesilgn
able®©(nlgn). As our representation of the topology also does not 2 retun NEXT(FINDCLOSE(node))

. . . . . . : else
include aO(lg n) bit persistent object identifier for each node in return NOT- ECUND

the document, we must find a way to link the open parenthesis of previousSiBLING (node)
z in tier O to the actual label itself. To address this, we adiaph 1 if (PREV(node) is a close parenthesit)en
Munro’s work [20] although they do not use balanced paresgbe 2 return FINDOPEN(PREV(node))
encoding. Instead, they control the topology size by usiodipie
layers of variable-sized pointers, and may require manglseof
indirection. In addition, we make the element structure xace prec —PREV(node) .

while (prec is an open parenthesidp prec < PREV(prec)

3 else

4

N

1

: : L ! 2
mirror of the topology structure instead of mirroring to {ha&nt- 3 prec —PREV(prec)

4

5

N

1

2

3

return NOT- FOUND
EXTPRECEDINGnode)

ers. This allows us to find the appropriate label for a nodeitoy s while (prec is a close parenthesigp prec «PREV(prec)
ply finding the entry in the corresponding position at therelat EXT?S&“O\IZ/TIS(E( i)
structure. As mentioned earlier, a pointer based approautidw Follow < NEXT(FIND CLOSE(node)
require space usage 6f(nlgn), which is undesirable. The next while (follow is a close parenthesig follow —NEXT(follow)
issue is to handle the variable length of XML element lab&\e return follow
adopt the approach taken in previous work [22, 23], and raairat
symbol table, using a hash table to map the labels into a doofai
fixed size. |3 the wc;lrst cfa;se, this does Tokt) rzledluce th? spageus 4, QUERYING AND UPDATE
as every node can have its own unique label. In practice, Venve
XML documents tend to have a very small number of unique &abel MA.| NTENANCE ]
Therefore, we can assume that the number of unique labalsiuise In addition to efficiently storing large volumes of data, aklix
the internal nodesK) is very small, and essentially constant. This database system should also have the following featuredireigt
approach allows us to have fixed size records in the interm@kn ~ node navigation operators; 2) XPath query processingfauer
layer.

Note that each element in the XML document actually has two

$ of"
A SN S Y
Topology Layer I(gt:;l;;\l Node Layer (L_It_a:;tN[;)adtz)Layer §i§°;°i§ ﬁ §$ £?§ {96;)93
Tier Cm ] Symbol Table,
e, | P CCONONDMOM
Tier [O) (O D@ || Text Data Signatur | I
Figure 2: Overview of the data structure Figure 3: Balanced parentheses encoding of Figure 1
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and 3) efficient node insertion/deletion mechanism. Fordiseof
this section, we present algorithms and other auxiliana datuc-
tures satisfying the above features, utilising the ISX togg layer.
Furthermore, we provide a detailed cost analysis of our gseg
approach for the database operators.

4.1 Node Navigation with Topology Layer Primitives

Given an arbitrary node of a large XML document, a naviga-
tion operator should be able to traverse back and forth thieeen
document via various step axes of nadeSome frequently used
step axes for an XML document tree grarent first-child, next-
sibling, previous-siblingnext-followingandnext-precedingThese
step axes can then be used to provide programming interfsues
as the DOM API, for external access to the XML database.

Node navigation operators are described by the pseudoinode
Algorithm 1, which shows a tight coupling between the 1SXdbp
ogy layer primitives and the navigation operators. Eachgadion
operator in Algorithm 1 is mapped to a sequence of calls to the
topology layer primitives described in Algorithm 2.

4.2 Auxiliary Tiers

Tier 2 ‘ T2,79,604,-1,33 72,=3,6,-3,1,-4,0,1 ‘
b2,
Tier 1‘Tl =410,4,-131T1=22,-1,1,-1,11T1=3,3-11-1, 1} ‘Tl =32,-1,1,02,1 TL=04, 40—400‘

Figure 4: Example of Tiers of Topology Part

Node navigation operators are highly dependent on topology
layer primitives such as GRWARDEXCESSand BACKWARDEX-
CESS In the worst case, node navigation operators could take lin
ear time. However, we can significantly improve the perfarosa
of the topology layer primitives by adding auxiliary dateustures
(tier 1 and tier 2 blocks) on top of the tier O layer describe&éc-
tion 3.1.

Figure 4 presents the auxiliary tiers TY) and 2 ("?), where
each tier contains contiguous arrays of tuples, with eggle tuold-
ing summary information of one block in the lower tier. Thertd

Algorithm 2 Primitive Operators for Topology Layer Access

FORWARDEXCESYstart, end, k)
for each current from start to end do
if (tierO[current] is an open parenthesi)en
k—k-—1
else
k—k+1
if (k = 0) then
return current
return NOT- FOUND
CKWARDEXCESYstart, end, k)
for each current from start to end step—1 do
if (tierO[current] is an open parenthesi)en
k+—k—1
else
k—k+1
if (k = 0) then
return current
return NOT- FOUND
PREV(node)
1 if (node > 0) then return node — 1 else return NOT- FOUND
NEXT(node)
1 if (node < |tier0|) then return node + 1 else return NOT- FOUND
FINDCLOSE(node)
1 return FORWARDEXCESYnode, |tier0], 0)
FINDOPEN(node)
1 return BACKWARDEXCESYnode, |tier0|, 0)

ooxlmm.l:.wmr—\goo\lmm.bwmr—\
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in the figure corresponds to thalanced parenthesesncoding of
the topology of the XML document, which was described in Sec-
tion 3. For tiers 1 and 2, each tier 1 block stores an arrayeofQti
tuplesT?, T2, ..., T2, wheren is the maximum number of tuples
allowed per tier 1 block. Eactiy for 0 < i < n is defined as
(L°, R°,m° M° v°, B° D) and the density of each tier O block

can be calculated by using the formulansity = LU‘E‘RU. For

each tier O tupleL° is the total number of left parentheses of a
block; R? is the total number of right parentheses of a bloeK:is
the minimum excess within a single block by traversing thepa
theses array forward from the beginning of the blogk’ is the
maximum excess within a single block by traversing the pheen
ses array forward from the beginning of the bloék;is the mini-
mum excess within a single block by traversing the pareethas
ray backward from the last parenthesis of the bldgR;is the max-
imum excess within a single block by traversing the paresgber-
ray backward from the last parenthesis of the block; Bfds total
number of character data nodes. In tier 2, each block staragay
of tier 1 tuplesTi, T3, ..., T}, wheren is the maximum number
of tuples allowed per tier 2 block, Each tugig for 0 < i < n
is then defined agL*, R*, m', M*,b", B', D), where:L' is the
sum of allL® for all tier 1 tuplesI™ (Z‘B‘/‘TO‘ LY); R* is the sum

of all R° for all tier 1 tuplesT® (°\21/17"! RO); m! is the local
forward minimum excess across all of its tier 1 tupIM1 is the
local forward maximum excess across all of its tier 1 tupltésis

the local backward minimum excess across all of its tier lesip
B! is the local backward maximum excess across all of its tier 1
tuples; andD’ is the total number of character data nodes for all
tier 1 tuples F2121/17°1 DY),

Although both tier 1 and tier 2 tuples look similar, the valo#
m!, M!, b! and B! in tier 2 are calculated differently to that of in
tier 1. Fortier 2, the function ER2LOCALEXCESSin Algorithm 3
is used to calculate the local minimum/maximum excess aigl it
not as trivial as the calculation for tier 1 blocks.

Let X = (L,R,m,M,b, B, D) be a tier 2 tuple holding the
summary information for the tier 1 tuplési, ..., Yn. To calcu-
late the local forward minimum excess.m, we know the local
minimum excess from the beginning of the first parentheséslof
until the end ofY'1 is equal toY'1.m, we then assign this value
to X.m. We know the excess at the end¥8l isY1.L — Y1.R,
so the minimum o'1.m and(Y'1.L — Y1.R + Y 2.m) gives the
forward minimum excess from beginning parenthesi¥ fto the
end parenthesis &f 2. Similarly, the minimum ofY1.m,Y1.L —
YI.R+Y2m,Y1.L-Y1.R+Y2L—-Y2R+Y3.m)gives
the minimum excess between the beginning parenthesisiab
the end parenthesis af3. Therefore, X.m can be calculated by
scanning its tier 1 tuples, updating the excess along the Rath
maximum and minimum forward excesses can be calculatee at th
same time. For backward excesses, the algorithm is idéntica
cept for the direction of traversal of the tier 1 tuples.

Algorithm 3 Calculate Local Excess in a Tier 2 Block

TIER2LOCALEXCESYt2)
{tlstart7 tlend} — { T %ﬁ - 1}
{tier2[t2].m, tier2(t2]. M} — {tierl[tlsiare].m, tierl[tlsiqre]. M}
excess « tierl[tlstart].L — tierl[tlstart].R
foreachtl from t1s¢q,¢t + 1t0tle,q do
if (excess + tierl[tl].m < tier2[t2].M)then
tierl[tl].m «— excess + tierl[tl].m
if (excess + tierl[t1].M > tier2[t2].M) then
tierl[tl].M « excess + tierl[t1].M
excess «— excess + tierl[tl].L — tierl[tl].R

2| T2

OCoOoO~NoOUDWN -

1076




WWW 2007 / Track: XML and Web Data

Example In Figure 4, if we need to calculate the minimum for-
ward excess for the tier 2 tuplE2,, we first assign it tad'2;.m =
T1sz.m —1. Now the excess at the end ®fl3 is T'15.L —
T13.R=1andl +T14,m =1+ (—4) = —3. As—3is smaller
than—1, T2;.m is assigned-3.

In the ISX system, the fixed block size for each tier is 4 kil@sy
in size. Therefore, each tier 0 block can hold up to 32768asits
each tier 1 block can holé;% tier O blocks. Similarly, each tier

2 block can hold up tq‘?—oﬁ tier 1 blocks, which is equivalent to

(f7o7)? tier O blocks. For a 32-bit word machine, there are only
2 tier 2 blocks and in theory, there a8(n/1g®n) tier 2 blocks.
Therefore, the worst case for navigational accesse%ig/ 1z n),
which is not much of an improvement @i(n). Fortunately, it is
relatively simple to fix this limitation: instead of havirgtiers,
we generalize the above structure in a straightforwardidasto
useO(lgn/lglgn) tiers. This means that the top-most tier has
O(n/lg'e™/'81e™ ) = ©(1) blocks, reducing the worst case nav-
igational access time 0 (Ign/1glgn).

4.3

Improved Topology Layer Primitives

Algorithm 4 Topology Primitives using Auxiliary Structures

NEXT( node)

L if (T3 ae < LYoge + Rioqe) then
2 return Z° 4. + 1
3 else
4 if (B,,. is the last tier 0 block) then
5 return NOT- FOUND
6 else
7 return B2 .+ |B]

FASTFORWARDEXCESTLS(Déiart, end, k)
1 current «—FORWARDEXCESY(start, BS 4 |B| — 1, k)
2 if current # NOT- FOUND then
3 return current
foreachT? ¢ Biu”em where T > Tfmmm
if (current + m < k < current + M ) then
return FORWARDEXCEss(Ti0 Boo + \B| —1,k)
current < current + L? RU ‘
foreach T} € Bcu”mt where T} > T}, ..

if ( current + m] <k< current —+ MO) then

4
5
6
7
8

9

10 foreach Ty € B} whereT0 > Ty

11 if (current + m <k< current + ]\10) then
12 return FORWARDEXCESS(T“ By + |B] —1,k)
13 current < current + L? — R? ‘

14 current < current + L; — R;

FASTBACKWARDEXCESY start, end, k)
// I'nmplenented in the same way as FASTFORWARDEXCESS
// but in backward direction.

FORWARDEXCESS and BACKWARDEXCESS return the posi-
tion of the first parenthesis matching the given exdessgthin a
given range[start, end] (in forward and backward direction re-
spectively).

Using the auxiliary structures (tiers 1 and 2), instead of
linear scan of tier O layer, we can use tier 1 to test whether th
position of the parenthesis, matchihgxcess, lies within théth
tier 0 block, i.e., checking whethém? + e;) < k < (M + ¢;),
wheree; is the excess betweeitart and the beginning of theth
tier O block (excluding the first bit). However, 88| = ©(lgn),
there are potentially,/|B| tier 1 tuples to scan. Hence, we use tier
2 find the appropriate tier 1 block within whiclhzcess lies, thus
reducing the cost to a near constant in practice.

Using the above approach, we can replace primitivex
FORWARDEXCESSsand BACKWARDEXCESsin Algorithm 2 with
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improved primitives in Algorithm 4. Furthermore, since ttepths
of real-world XML documents are generally less th&h(even the
depth of the highly nested Tree Bank dataset [18] is muclthess
100), most matching parentheses lie within the same bloakoa-
casionally are found in neighboring blocks. Therefore, nhesT-
FORWARDEXCESSis called from navigation operations, we rarely
need to access additional blocks in either the auxiliarg détuc-
ture or the topology bit array. In the worst case, when thechiat
parentheses lie within different blocks, we only need talreeo
tier 1 blocks and two tier 2 blocks for a 32-bit word size maehi
which is very small in size.

4.4  Update Operators

In ISX system, we also facilitate efficient update operatsush
as node insertion. So far for tier 0 layer, we have appeared to
treat the balanced parentheses encoding as a contiguaysHnis
scheme is not suitable for frequent updates as any insexttidele-
tion of data would require shifting of the entire bit array.

4.4.1 Updating Tier 0

In this section, we present the modification to our storage
scheme, that changes the space usage roto 2¢n, wheree > 1,
so that we can efficiently accommodate frequent updates.

Density Depth
Threshold d =37. 5%
[0.50,0.75] 0 IR hasete S
dg 625°/<L_—~ - 0= 1 B
[0.42,0.83] 1 V2
d —56250// 0=t ‘\‘, d,=68.75%
[0.33,0.92] 2 /\VU/\\ ,\v A
[0.25,1.00] 3
m-w»(l\oml\»»-
=62.5% =50% d;=75% d,=62.5% d;=50%

d: density within a range of blocks  height of virtual binary trie: 3

Figure 5: Densities of the parentheses array and the corre-
sponding virtual balanced trie with block size |B] = 8 and
height = 3.

In our approach, we first divide the array into blockg Bf bits
each, and store the blocks contiguously. Within each bleak,
leave some empty space by storing them at the rightmosbopaofi
each block. Now, we only need to shilt(|5|) entries per insertion
or deletion. We can control the cost of shifting by adjustihg
block size.

After the initial loading of an XML document, the empty space
allocated to leaf nodes will eventually be used up as mora idat
inserted into the database. Therefore, we need to guaramieen
distribution of empty bits across the entire parenthesesyaso
that we can still maintain th@(|3|) bound for the number of shifts
needed for each data insertion. This can be achieved byidgcid
exactly when to redistribute empty space among the blockis an
which blocks are to be involved in the redistribution praces

To better understand our approach, we first visualize thies&d
as leaf nodes of airtual balanced binary trie with the position
of the block in the array corresponding to the path to thatlkblo
through the virtual binary trie. Figure 5 shows such a trieere
block 0 corresponds to the leaf node under the path 0 — 0,
and similarly block 3 corresponds to the péth> 1 — 1. For each
block, we define:

e [: the total number of left parentheses within a block.
e R: the total number of right parentheses within a block.

e DENSITY(D): the density of a block, defined asL‘T‘
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Algorithm 5 Node Insertion and Order Maintenance Operations

INSERT(z)
1 RightshifttierOz, L) + Ry]to [z + 2, L) + RY + 2]
tierO[z, x + 1] < {open parenthesis, close parenthesis}
IncrementZ.?, R?, L} andR.,
if (LY + RS > |B| — 2) then
MAINTAIN (x)
AINTAIN ()
{height, weight, 5} «— {lgn, height, 1}
{min, mam} — {B%,B% +|B|}
> 71na1' L0+RO
while (m >34
depth <« depth — 1
§ «— 26
min «— MAX(0, min — §)
max «— max + 0
Evenly distribute bits in blockgnin, max] and update
the corresponding tier 1 and tier 2 tuples.

2
3
4
5
M
1
2

e

) do

IN

h

3
4
5
6
7
8

Given the above definition of density for leaf nodes, the igns
of a virtual node is the average density of its descendahhtedes.
We then control the empty space within all nodes in the virtua
binary trie by setting a density threshdtdin, maz], within which
the block densities must lie. For a virtual node at heighnd depth
d in the virtual trie, we enforce a density threshold@f— 234

] For example, the densny threshold range for virtual nagle
|n Figure 5is[3 — 25,3 + 4X3] [0.33,0.92], since the depth
for vg is 2 and height of the trie is 3.

Why do we use the formula above for controlling the density
threshold? This is due to two factors: first, in order to guarantee
good space utilization, the maximum density of a leaf nodrikh
be 1, and the minimum density threshold of root node should be
1/2. Secondly, the density threshold should satisfy the fathow
invariant: the density threshold range of an ancestor nbdald
be tighter than the range for its descendant nodes. Thistisaso
space redistribution for an ancestor nadéhe density threshold of
all its descendants are also immediately satisfied.

In the worst case, we usgebits per node, since the root node can
be only half full. Thus, on &2-bit word machine, we can store
at most2®? /4 = 2%° nodes. However, by adjusting the minimum
root node density threshold, frogwto % it is possible to store more
than23® nodes by choosing a smaller In practice e should be2
and therefor@en bits is in effectdn. The factore should only be
less thar2 when the document is relatively static.

Notice that although we shift the parentheses within tiennd
update, we never need to shift the tuples in tier 1 becaussaihe
7° tuple always corresponds to the same tier 0 block, regardles
its density. Therefore unlike tier 0, we do not need to reitliste
tuples within tier 1 (similarly for tier 2) during the updaiperation.

4.4.2 Updating Auxiliary Tiers

From Section 4.2, the auxiliary tiers may first appear todase
the update costs 10(lg> n/1g1g n), since moving a node requires
updatingO(lgn/lglgn) tiers. However, this overhead can be

Algorithm 6 Offset calculation for block and indexes within the
block in all tiers

BY = L), 70 = |mod |B]]

BYs51g |B
Bl = |25 El), 7l = | (B951g|B]) mod Bl
2 Balcmg(rleB)\) 2 1 152
B2 = | =GR T2 = |(Bls e 1g‘g‘>>mod\8u
Tﬁ:(Lg,RI,mg,Mg,DO) (70,...,70 + 41g|B)|)
T, = (L,, Ryymy, My, D) = (11, -»-7I;+41g\3|)
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eliminated by updating the upper tiers once per redistobytin-
stead of once per node. A simple proof then demonstratestthat
overall update cost is unaffected, and remaiiig? n).

During the insertions and deletions in a tier 0 block, we $ymp
update the appropriate tuples in the corresponding blatkbe
higher tiers. Since the redistribution process we desdribesec-
tion 4.4.1 can be seen as a sequence of insertions and ds|dtie
corresponding updates to the auxiliary tiers do not affeettorst
case complexity for updates.

4.5 Space Cost

Having 2en bits used per node including update, using 32-bits
word, we can store as much 2¥ nodes. In our implementation
we also chose to use four kilobytes sized block. Based orethes
values, we now discuss the space cost of each component of our
storage scheme. Of course, if larger documents need to ks sto
we can increase the word size that we use in the data striattdre
adjust the bit length used on tier 1 and tier 2.

Tier 0:. From above, Tier 0 can take up at mast/2c = 232 bits

space (oﬁgﬂ = 217 blocks).

Tier 1:. We need lg|B| 15 bits for each variable
(L%, R°, m°, MP°, 0% B D) within aT° tuple. EachT® tuple
requires a total of 1g |B| = 112 bits including bit alignments and
based on this calculation, each tier 1 block can then storoup
L%J = 292 T tuples, Since the maximum number of nodes
can be stored in tier 0 i8%°, then we only need%f = 27

T° tuples to represent all tier 0 blocks and they can be stored in

[2en /L“B‘ |1 = 218l — 449 tier 1 blocks.

70| |B]2
Tier 2:. We need a total of 24 bits for each variable
(L', R, m*, M*,b*, B, D) within aT* tuple. This is derived
2 .
from 1g |B| + lg(%) = lg(%‘m‘), where each variable holds
the size of a tier 1 tuple and total number of bits requirecefwre-
sent the total number of tuples per tier 1 block. So €Athuple

2en
18]

requires a total of 7| = 71g(7‘1§—“;) = 168 bits and each tier
2 block holds up tq“fl“j = 195 T* tuples. Thus, we will only

98 1g |B| 1g( B2y
g |B| g(m En
|B[3

need a total ofl“‘gB“g‘E”/ “fl“} -

blocks to store the 449 tier 1 tuples.

Since we only need a maximum of two tier 2 blocks, ever2fSr
nodes document, we can just keep them in main memory. In fact,
the entire tier 1 can also be kept in main memory, since itiregu
at mostd49 x4KB < 2MB. In summary, the space required by the
topology layer (in bits) is:

= 2tier2

141g |Blen 981g|8|1g(71g\8\) n

|B| B[?

and the space required by the internal node layer (in bits fhle
symbol table isenlg £ + O(FE)

We can use the above equations to estimate the space used by an
XML file, using as our example a 100 MB copy of DBLP, which
was roughly 5 million nodes. If we assume there are no updstes
ter the initial loading, we can set= 1. According to the equation,
we will have used roughlgen = 1MB for the topology layer, and
enlg E + O(E) = 8MB. This, of course, disregards the space
needed for the text data in the document.

Based on the block siz3|, we know the exact size of tuples

2en + = 2en + o(en)
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and tiers in our topology layer. Therefore, given a bit positr,
we can calculate which tier 0 block this bit belongs to andalvhi
tier 1 block contains summary information for the tier O loEor

a givenz ¢, Algorithm 6 lists all the calculations needed to find its
resident tier O to tier 2 blocks and the index within the btk get
the summary.

5. EXPERIMENTS

Features XMill | XGrind NoK TIMBER | ISX
Compression VA VA VA
Doc traversal VA VA v v v
Node nav.of all axes uncertain VA VA
Update operation Vv Vv
Support XPath quer v v v v

Table 1: Comparison of supported features

The ISX system is implemented in C++ using Expat XML
parset. In this section, we compare the performance of ISX with
other related implementations, namely, XMill [16], XGrifi22],
NoK [23] and TIMBER [12]. Experiments were setup to measure
various performances according to the feature matrix cfethim-
plementations as shown in Table 1.

We used an Apple G5 2.0 GHz machine with 2.5GB RAM and
160GB of 7,200 RPM IDE hard drive. The memory buffer pool of
ISX has been fixed to 64MB for all the experiments. Three XML
datasets were used, namely, DBLP [1], Protein Sequencéd&sda
(PSD) [3], TreeBank [18]. We found that the experiment rissul
from PSD are very similar to those from DBLP due to their reg-
ular, shallow tree structure. Therefore, PSD results aigpski
from some plots below for clarity. Large datasets (ie.LGB)
were generated by repeatedly duplicating and merging theeso
dataset, e.g., the 16GB DBLP document contains more than 770
million nodes.

5.1 storage Size Comparison

Table 2 and 3 show that XMill has the best compression ratio
for both DBLP and TreeBank datasets. Compared to XMill that
does not support any direct data navigation and queriesjndGr
does allow simple path expressions. Therefore, it has tivella
less attractive compression ratio. In fact, XGrind failecdin on
large datasets in our experiments. Both XMill and XGrind édnav
better space consumption as they are primarily designexbéat-
only data and do not support efficient updates. Furthernibey,
only support access to the compressed data in linear time.

Table 2 and 3 show again that ISX is relatively less sensitive
the structure of the data. Although the compression rati8Xffor
TreeBank is not as good as for DBLP, the reason is that TrdeBan
has the text content that are harder to compress (TreeBghnire
more random than the DBLP’s). XMill compression ratio onérre
Bank is relatively much worse than that on DBLP is due to bbéh t
random text content as well as the more complex tree streictur
the data.

5.2 Bulk Loading Performance

The performance comparison of bulk loading using ISX, NoK,
XGrind and XMill are shown in Figure 6. For the smaller datase
(up to 500MB DBLP), Figure 6(a) shows our ISX system signifi-
cantly outperforms NoK and TIMBER in loading. It also higitits
the scalability of ISX in loading large datasets.

9'http://www.sourceforge.net/projects/expat/
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To further test the scalability of loading even larger XMLcelo
uments, we compared the loading time of ISX and the other well
known systems such as XMill and XGrind on 1 to 16 GB of DBLP
documents. During the loading process, XGrind failed tadloa
XML documents greater than 100MB. Although Figure 6(b) show
that the loading time for ISX is slower than XMill's, it stix-
hibits a similar trend (similar scalability). The gap beemehe two
curves is contributed by the fact that ISX does not compriess t
XML data as much as XMill does. This results in a larger stor-
age layer than XMill, which will then uses higher number dldi
writes.

5.3 Query Performance

When consider using the proposed structure as a storagemsche
of a full-fledged database system, one must consider its/ quesr
formance. Figure 7 (with details listed in Tables 4) shovesgtery
performance of ISX against other schemes. Note that theyquer
times in Figure 7 are in logarithmic scale. From this expenin
we found that ISX outperforms other systems in either the ¢6X
ISX Stream (using the TurboXPath approach [13]) modes. The
performance of ISX is measured by using binary structuiial jo
perform XPath queries; while ISX Stream execute the samey/que
by scanning ISX topology layer linearly.

5.4 Navigation and Document Traversal

To test the performance and scalability of random node navi-
gation, we pre-loaded our XML datasets, and for each dagabas
we randomly picked a node and called the node traversalitursct
(e.g., HRSTCHILD, NEXTSIBLING) multiple times. The average
access time for these node traversal operations are piotteid-
ure 8(a). The graph shows that as the database size gets, bigge
the running time for these functions remains constant. Ehimt
surprising, since in general most nodes are located closigeto
siblings, and hence are likely to be in the same block. Fomexa
ple, it generally only takes a scan of a few bits on averagetess
either the first child node or the next sibling node. Some aper
tions are faster than the others, due to their different @manta-
tion complexity (listed in Algorithm 1) and the charactéigs of the
encoding itself. For instance, as Figure 8(a) showssFCHILD
performed slightly faster thani®kTSIBLING function, because the
first child is always adjacent to a node, whereas its nextngjbl
might be several nodes away.

With fast traversal operations, ISX can traversal XML datthie
proposed compact encoding significantly faster than othdi X
compression techniques such as XMill, as shown in Figurg. 8(b
We argue that this feature is important to examine the coraen
large XML databases or archives.

5.5 Update Performance

The worst case for Algorithm 5 happens when nodes are imserte
at the beginning of a completely packed database, i.e.,neitiaps
between blocks. The insertion experiment was set to medtsure
average worst case performance by inserting nodes at the-beg
ning of the database. For each experiment, we did multipts ru
(resetting the database after each run). The averageiamstnes
(per node) are shown in Figures 9. In Figure 9, we see anlinitia
spike in the execution time for the worst case insertion.s Tair-
responds to the initial packed state of the database, inhndase
the very first node insertion requires the redistributiorthef en-
tire leaf node layer. Clearly, in practice this is extremehjikely
to happen, but the remainder of the graph demonstrates\bat e
this contrived situation has little effect on the overalifpemance.
The graph also shows that the cost of all subsequent ingsiitie
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Source Data | ISX ISX XMill XGrind || Source Data| ISX ISX XMill XGrind
(MB) (MB) | Compressed (MB)| (MB) (MB) (MB) (MB) | Compressed (MB)| (MB) (MB)

1 1 0.4 0.1 0.3 256 182 82.7 31.5 75.0

2 1 0.7 0.3 0.6 500 363 163.7 62.6 Failed
5 3 1.5 0.5 1.3 750 549 249.7 94.0 Failed
8 5 25 0.9 2.1 1000 726 3275 125.3 Failed
16 10 5 1.8 4.3 2000 1452 654.9 250.5 Failed
32 21 10 3.7 8.6 4000 2903 1309.8 501.0 Failed
64 42 20 7.2 17.4 8000 5807 2619.6 978.48 Failed
128 87 40.2 14.9 35.8 16000 9411 4629.9 1952.81| Failed

Table 2: Storage size of ISX (with and without text compressin), XMill and XGrind on DBLP

Source Data | ISX ISX XMill Source Data ISX ISX XMill
(MB) (MB) | Compressed (MB)| (MB) (MB) (MB) Compressed (MB)| (MB)
1 0.51 0.41 0.30 256 131.08 104.53 73.38
2 1.02 0.81 0.58 500 243.72 192.79 146.74
4 2.04 1.63 1.16 750 365.50 289.21 220.10
8 4.09 3.26 2.30 1000 487.43 385.58 293.489
16 8.19 6.53 4.60 2000 974.69 770.98 586.969
32 16.39 13.07 9.19 4000 1949.39 1541.97 1173.93
64 32.77 44.49 18.35 || 8000 4052.58 3205.59 2347.85
128 65.54 52.26 36.69 16000 7797.56 6167.87 4695.7

Table 3: Storage size of ISX (with and without text compressin), XMill on TreeBank
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Figure 6: Loading Time Comparison

Query# | XPath Expression 1GB 2GB 4GB 8GB 16 GB
|[Final] | |Final] | |Final] | |Final] |Finall

Q1 //inproceedings 402667 981484 | 2012761 | 4160339| 8453066
Q2 //mastersthesis 74 156 315 627 1251
Q3 /dblp/article 442184 | 717449 | 1379945| 2630711 | 5135130
Q4 //inproceedings/title 402667 981484 | 2012761 | 4160339 | 8453066
Qs //article]./ /month/text() = July®]//title | 857309 | 1729184 | 3454708 | 6920136 | 13848372
Q6 //inproceedings|.//ee]//pages 796742 | 1607116 | 3210628 | 6430194 | 12868471

Table 4: Test Queries and Final Result Sizes

1080
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creases at a rate of approximatéllg? n). In fact, all subsequent

insertions up to 100,000 took no more than 0.5 milliseconds.

Updating the values of nodes will not cause extra procedsirg
apart from the retrieval time for locating the nodes to beated.
In case of deletion, the reverse sequence of steps for neddion
will be performed (freed space will be left as gaps to be fitbgd
subsequent insertions).

6. CONCLUSIONS

A compact and efficient XML repository is critical for a wide

range of applications such as mobile XML repositories rngran
devices with severe resource constraints. For a heavitlelbays-

tem, a compact storage scheme could be used as an indexestorag

that can be manipulated entirely in memory and hence sutiztgn

improve the overall performance. In this paper, we propasschl-

able and yet efficient, compact storage scheme for XML data.
Our data structure is shown to be exceptionally concisdyouit

sacrificing query and update performance. While having e b

efits of small data footprint, experiments have shown thatptto-
posed structure still out-performs other XML databaseesystand
scales significantly better for large datasets. In padic@ll navi-
gational primitives can run in near constant time. Furtrmenas
shown in the experiments, our proposed structure allovestitoc-
ument traversal and queries that are significantly fastdrraore
scalable than previous compression techniques.
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