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ABSTRACT
Combining data and code from third-party sources has en-
abled a new wave of web mashups that add creativity and
functionality to web applications. However, browsers are
poorly designed to pass data between domains, often forc-
ing web developers to abandon security in the name of func-
tionality. To address this deficiency, we developed Subspace,
a cross-domain communication mechanism that allows effi-
cient communication across domains without sacrificing se-
curity. Our prototype requires only a small JavaScript li-
brary, and works across all major browsers. We believe Sub-
space can serve as a new secure communication primitive for
web mashups.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Unauthorized Access

General Terms
Design, Security, Performance

Keywords
access control, trust, web services, same origin policy

1. INTRODUCTION
A mashup is a website or web application that seamlessly

combines content from more than one source into an inte-
grated experience. Recently these websites have been on the
rise. For example, www.housingmaps.com combines Google
Maps data with Craigslist’s housing data and presents an in-
tegrated view of the prices of the houses at various locations
on the Google map. Gadget aggregators, such as Microsoft
Windows Live and Google Personalized Homepage, aggre-
gate third-party JavaScript code, the gadgets, into one page
to provide a desirable, single-stop information presentation
to their users.

Because mashups bring together content from multiple
sources, they must somehow circumvent the traditional same-
origin web security model to obtain third-party data. Often
web developers are forced to chose between security and
functionality. Current practices include giving uncontrolled
cross domain execution through the use of <script> tags
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Figure 1: Example warning message from Google
personalized homepage. This third-party “todo” list
gadget requires inlining so that it can request ad-
ditional height from its parent as more items are
added to the list. Unfortunately, inlining also al-
lows the gadget author to access the user’s Google
account.

and extending the browser with plugins for cross domain
interactions. The former incurs high security risks because
one site gets complete control over the other, while the latter
is inconvenient for users whose browsers are not supported
by the plugin or who are unwilling to install new software.

Efficient cross-domain communication is particularly im-
portant fo gadget aggregators, such as Google Personal-
ized Homepage and Microsoft Windows Live. These gad-
get aggregators typically are presented with only two secu-
rity choices: run gadgets inline in the same domain as the
gadget aggregator, or sandbox them in frames with differ-
ent domains to ensure that they cannot read or write the
aggregator page. An example “todo list” gadget [1] that
requires inlining is shown in Figure 1. Sandboxed cross-
domain frames cannot engage in client-side communication
with the parent frame, so this gadget must be inlined to
communicate efficiently with its parent.

New proposals for cross-domain communication mecha-
nisms [3, 6, 12] could deliver these much-needed cross-domain
communication features directly into browsers, but these
technologies are still years away and cannot be relied upon
by websites until available in all the most common browsers.
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In this paper, we present Subspace,1 a communication
primitive that enables cross-domain network requests and
client-side communication, while protecting the aggregator
from malicious web services or gadgets. Our mechanism is
practical as it combines existing browser features and re-
quires no client-side changes. Like existing gadget aggrega-
tors, we sandbox gadgets or web services using cross-domain
frames. We then enable cross-domain communication across
frames by setting up a Subspace communication channel be-
tween the aggregator and each gadget. To establish the
channel, we pass JavaScript objects across the frames by
manipulating the document domain property of the frames.
Peer cross-domain gadget communication is mediated by the
aggregator and carried out using these channels.

We have developed prototype mashups using Subspace
that work on all major browsers (Internet Explorer 6, In-
ternet Explorer 7, Mozilla Firefox, Safari, and Opera). Our
timing measurements show that Subspace takes longer for
the initial setup than existing practices, but provides fast
and safe communication once the Subspace communication
channels are in place.

Section 2 surveys existing practices for cross-domain com-
munication, and Section 3 describes the key browser features
that Subspace relies on. Section 4 describes the process for
cross-domain communication with a single untrusted web
service, while Section 5 extends this technique for multiple
untrusted web services. Results of our timing measurements
are presented in Section 6. We provide further discussion in
Section 7 and survey related work in Section 8.

2. CURRENT PRACTICE
In this section, we explain how mashups currently com-

municate across domains. We begin by describing the same
origin policies that are designed to prevent such communi-
cation.

2.1 Same-origin policies
Web browsers allow users to view interactive content with-

out completely trusting the owner of that content. An un-
trusted web page cannot observe or corrupt the user’s ac-
tions at other sites, nor can it issue unwanted transactions on
behalf of the user. This sandbox model is designed around
the idea of the same-origin principle, which states that “only
the site that stores some information in the browser may
read or modify that information.” [8]

Because the web relies on interconnections between sites,
this principle is not interpreted literally but rather applied
loosely as a collection of same-origin policies on individual
browser features, such as cookies, JavaScript access to docu-
ments, and plugins (Flash, Adobe Reader, and Java). These
policies are designed to allow some exceptions that are con-
sidered beneficial, voluntary cooperation between sites.

Although distinct same-origin policies exist for many web
features such as cookies, the restrictions that are of greatest
interest to web mashups are the JavaScript restrictions that
regulate access to inline frames (IFRAMEs) and the XML-
HttpRequest object. Inline frames can be used to download
rich HTML documents from outside sources, but if the con-
tent comes from a different domain, the browser will not

1We borrowed this name from Star Trek, where “subspace
communications” are used to establish instantaneous con-
tact with people and places that are light-years away.

Figure 2: Mashups can reduce bandwidth and la-
tency by switching from a proxy approach (top) to a
unsafe cross-domain <script> tags (bottom). Sub-
space provides a safer alternative to cross-domain
<script> tags.

allow the JavaScript in the containing page to read or ma-
nipulate the document inside the frame, and vice versa. The
XMLHttpRequest can be used to download arbitrary XML
documents without rendering them in a browser pane, but
it cannot be used to download files that are not from the
same domain as the page making the request.

By enforcing these restrictions, the JavaScript same-origin
policy protects the secrecy of HTML documents that the
user has access to, and also protects the integrity of a page
against unauthorized modifications by other pages.

2.2 Proxies
The website hosting the mashup can host a URL which

relays data between the client and the source of the data.
These proxies (sometimes known as bridges) make the data
appear to the client to be “same-origin” data, so the browser
allows this data to be read back out of an IFRAME, or more
commonly, an XMLHttpRequest.

As shown in Figure 2, a disadvantage of this approach
is that it adds the latency of connecting through mashup’s
proxy server, which generally takes longer than connecting
directly to the server hosting the data. Bandwidth costs for
the mashup author are also increased by the proxy approach,
particularly if the size of the mashup’s code is small relative
to the amount of cross-domain data being proxied.
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Although these proxies only go to one place, because they
are left open for anyone to use, they provide another layer
for hackers to hide behind for denial of service or exploit-
ing input validation vulnerabilities on the server hosting the
data source.

2.3 Cross-domain<script> tags
The same-origin policy on JavaScript protects HTML doc-

uments loaded from other domains, but it does not apply to
scripts, which can be loaded from other domains and exe-
cuted with the privileges of the page that included them.
These remote scripts can be added to the page dynamically,
allowing new data to be loaded into part of a page without
forcing the entire page to be loaded. Unlike an XMLHttpRe-
quest, which provides full read access to the content being
requested, a script can only be accessed by executing it.
This restriction is important because it ensures that only
valid JavaScript files can be accessed across domain bound-
aries; all other files such as HTML documents will cause a
syntax error.

Execute-only access requires that the page including the
script fully trusts the source of the script. The page includ-
ing the script has no way of performing input validation to
ensure that the script being retrieved is not misusing its ac-
cess to the parent page. The site hosting the script could
change the content of the script at any time, and could even
serve different scripts to different users.

Other cross-domain tags that can transmit information
include stylesheets, which have the same security issues as
scripts, and images, which can transmit limited information
through height and width.

2.4 Browser plugins
Macromedia’s Flash browser plugin includes its own script-

ing language based on JavaScript, called ActionScript. Macro-
media’s Flash plugin can support communications between
domains via the use of a special crossdomain.xml file. This
file is placed on the server that wishes to open up some or
all of its files to cross-domain reading. Before allowing a
cross-domain data request with ActionScript, Flash checks
to ensure that the file exists and that the policy allows ac-
cess. For example, the following file allows open access to
files in its directory and all subdirectories:

<cross-domain-policy>

<allow-access-from domain="*"/>

</cross-domain-policy>

Although browser plugins can provide many of the cross-
domain network communication capabilities that are needed
by mashups, some users choose not to install them for secu-
rity, privacy, or compatibility reasons.

2.5 Fragment identifier messaging
Each browser has certain objects in the browser that can

be accessed despite that object belonging to another do-
main. [9] One important example is the window.location

object, which can be set (but not read) by frames of an-
other origin. If a frame from Site A can access a frame of
a page from Site B, it can pass a message to Site B by set-
ting the location of Site B’s page to be equal to Site B’s
current location plus a fragment identifier, starting with #.
Because browsers do not reload the page when navigating to

a fragment, the Site B page is not interrupted, but can re-
ceive the message without any network requests being sent.
This technique is known as Fragment Identifier Messaging
and has been used by some mashups to pass information on
the client side between frames. Unfortunately, it requires
careful synchronization between the communicating pages,
and can be easily disrupted if the user presses the browser’s
back button.

3. BUILDING BLOCKS OF SUBSPACE
In this section, we provide background information on the

building blocks of Subspace.

3.1 Cross-subdomain communication
One fuzzy aspect of the same-origin principle is the no-

tion of a “site.” For purposes of JavaScript security, a site is
defined as the triple (protocol, hostname, port) [11]. For ex-
ample, http://a.example.com and http://b.example.com are
considered to be different sites, while http://www.example.com/a
and http://www.example.com/b are considered to be the
same site.

However, if two domains that want to communicate share
a common suffix, they can use the JavaScript document.domain
property to give each other full access to one another. This
variable defaults to the host name of the server that the
document was retrieved from, but can be changed to a suf-
fix (and only a suffix) of this name. For example, pages on
a.example.com and b.example.com can change the value of
document.domain to example.com, allowing them to pass
JavaScript data and code between each other at runtime.

Once a page has changed its domain using this mecha-
nism, it is no longer permitted to access other frames that
do not match its new domain. Further changes to docu-
ment.domain can only shorten it, not lengthen it. Changing
document.domain to top level domain names (e.g. “com”)
is not allowed, preventing this technique from being used
for communication with arbitrary domains. However, the
technique described in Section 4 allows sites to work around
this restriction.

3.2 Cross-domain code authorization
Normally, the same-origin policy prevents code from pass-

ing between domains. A function defined in one domain will
not be called by code in another domain, so there is no ambi-
guity about which domain is performing an action when the
same-origin security checks are applied. However, using the
data-passing technique described in Section 3.1, functions
can be passed between domains.

A closure is a function that refers to free variables in its
lexical context. It is associated with an environment that
binds those variables. Typically, a closure is defined within
the body of another function, referencing variables that were
in scope when it was created, but are not in scope when it
is called [2].

An example of a closure is this function, which returns the
height of the current document in the user’s web browser:

function h() { return document.body.clientHeight; }

This closure would provide a useful service if provided by
a child frame to its parent, because it would allow the parent
frame to find out the height of the child frame, ensuring that
all of its contents are visible and no scrolling is necessary.
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By setting the document.domain variable, a web page
could pass a closure to a frame in another domain. The EC-
MAScript specification [7] does not provide an authorization
policy for such closures, so browser vendors have arbitrarily
picked their own behavior for this situation. There are two
reasonable solutions, each of which has some adoption:

• Dynamic authorization. The closure inherits the
security privileges of the page that is calling it. This
approach corresponds to following the control links of
the call stack, in a manner similar to stack inspec-
tion [5]. For example, if Site A calls a closure that
was obtained from Site B, the closure would be able to
access any browser state (DOM objects, cookies) as-
sociated with Site A, but not Site B. Our testing has
determined that this approach is adopted in Opera and
Safari.

• Static authorization. The closure inherits the se-
curity permissions of the page where the closure was
created. This approach can be implemented by fol-
lowing the function’s access link instead of the control
link. For example, if Site A calls a closure that was
obtained from Site B, the closure would be able to ac-
cess any browser state associated with Site B, but not
Site A. Our testing has determined that this approach
is adopted in Internet Explorer and Firefox.

Static authorization allows for greater flexibility in del-
egation and asynchronous event-driven communication. It
allows one domain to provide another with callbacks, elim-
inating the need for polling, as we show in Section 4.2. By
contrast, invoking a closure passed from an untrusted do-
main is unsafe in dynamic authorization browsers, because
the closure might abuse the caller’s privileges.

Dynamic authorization can be simulated in a static autho-
rization browser by calling eval on string data received from
another site, but the reverse is not true: static authoriza-
tion cannot be easily simulated in a dynamic authorization
browser.

3.3 Cross-domain frame access
Another security feature that differs across browsers is the

access policy for the frames property of each window. In a
web page that includes nested frames from various domains,
sometimes two frames that are not in a direct parent-child
would like to communicate with each other. Code running
in one frame needs to navigate the frame hierarchy of the
page in order to reach the other frame. We have observed
several different browser policies enforced on this behavior:

• Permissive. Firefox and Safari will allow the frame
structure of the page to be navigated so that the cross-
domain frame can find another frame in the same do-
main.

• Restrictive. Opera does not allow access to the frames
object of a cross-domain frame, preventing the frame
structure of the page from being navigated.

• Configurable. Internet Explorer provides an advanced
security setting called “Navigate sub-frames across dif-
ferent domains,” which can be enabled, disabled, or
set to prompt on every access. In Internet Explorer 6,
this setting is enabled by default. When enabled, the

browser behaves like Firefox and Safari; when disabled,
it behaves like Opera.

• Permissive, but restrict location. Internet Ex-
plorer 7 also provides the “Navigate sub-frames across
different domains,” which is disabled by default. Un-
like IE6, this setting does allow or prevent accessing
the hierarchy of cross-domain frames in order to find
a same-domain frame. Instead, it controls the browser
behavior when Site A frame sets the location prop-
erty of a Site B frame. When enabled, the location
property may be set normally; when disabled, setting
the location property causes a new window to open at
that location. The change in Internet Explorer 7 has
restricted some types of fragment identifier messaging.
In any case, regardless of whether the setting is en-
abled or disabled, IE7 will allow the frame structure
of the page to be navigated so that the cross-domain
frame can find another frame in the same domain.

4. SINGLE WEB SERVICE
Our technique for passing data from the untrusted web

service (e.g. www.webservice.com) to the mashup site (e.g.
www.mashup.com) is to introduce a “throwaway” subdo-
main (e.g. webservice.mashup.com) that is used only to re-
trieve information from that web service. The user never
sees this domain in the browser address bar, because it is
used only by IFRAMEs. These frames are structured such that
data can be safely downloaded from www.webservice.com
using a <script> tag, and none of the browser state asso-
ciated with www.mashup.com (such as the user’s authenti-
cation cookie, or the contents of a page) are ever accessible
to www.webservice.com.

4.1 Setup phase
In order to create a Subspace channel between two sites,

www.mashup.com and webservice.mashup.com, we perform
a setup protocol that gives pages in both domains access to
the same Subspace JavaScript object. This setup protocol
(shown in Figure 3) is performed only once when the page is
first loaded, and does not need to be restarted when further
data requests are required.

1. Create mediator frame. Assume that the browser
is at a location on www.mashup.com (the top frame).
We create a hidden IFRAME (the mediator frame) point-
ing to a tiny page on www.mashup.com.

2. Create untrusted frame. Inside the mediator frame
we create the untrusted frame pointing to a tiny page
on webservice.mashup.com.

3. Pass JavaScript communication object. A Sub-
space JavaScript object is created in the top frame
and passed to the mediator frame. Then the mediator
frame and the untrusted frame change their domain to
mashup.com by setting their document.domain vari-
able. At this point, the mediator frame and the un-
trusted frame can communicate directly, because they
both have the same document domain. The top frame
and the mediator frame cannot directly communicate,
because their document domains do not match. The
mediator frame still has access to the Subspace object
it obtained from the top frame, and passes this object
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Figure 3: Retrieving data from a single untrusted third-party domain. The first step (left) passes the
communication object from the top frame to the mediator frame. The second step (right) can only occur
after the mediator and untrusted frames change their document.domain to the suffix mashup.com.

to the untrusted frame. Now the top frame and the
untrusted frame have access to the same Subspace ob-
ject, and can use it to pass arbitrary JavaScript data.

4.2 Data exchange
If the user’s browser is Internet Explorer or Firefox, then it

supports a static authorization model for closures described
in Section 3.2. In this model, closures provide an easy com-
munication mechanism between the top frame and the un-
trusted frame.

The untrusted frame adds a “data request” closure to the
JavaScript object. This function takes a “data response”
callback as an argument and is called when the mashup
needs to request information from the web service. The top
frame creates the data response callback, which takes the
data as an argument and will perform whatever operations
are necessary to respond to the completed request.

The data request function will dynamically insert a <script>
tag into the untrusted frame, pointing to some data in JavaScript
format that is hosted on www.webservice.com. When the
<script> tag is done loading data from the remote web
service, it invokes the data response callback to return that
data to the top frame.

Unfortunately, Opera and Safari provide dynamic autho-
rization for closures, so they do not support this callback
system. The callback would run with the security privileges
of the page that is calling it, not the security privileges of the
page that created it. As a workaround for these browsers, we
catch the security exception that is thrown when an unau-
thorized access occurs, and fall back on polling a property
of the JavaScript object using the setInterval JavaScript
function. Once data is ready, it can be read by the other
party. This type of client-side polling does not involve any
network requests, and it can be performed efficiently with a
short waiting interval.

5. MULTIPLE WEB SERVICES
The scheme described in Section 4 is appropriate for the

case where the mashup is only interacting with a single un-
trusted web service. If the mashup wants to interact with
more than one web service or gadget, it not only needs to

protect the security of its own domain, it also needs to keep
these web services from compromising each other.

Unfortunately, because the untrusted frame for every web
service lives in the mashup.com domain, an attacker’s un-
trusted frame might be able to interfere with the untrusted
frame of another web service, corrupting the Subspace chan-
nel and the data passed through it. Whether or not this issue
is a problem is depends on the frame restrictions imposed
by the browser, as described in Section 3.3. Table 1 shows
the likely browser configurations and the server architectures
that they can safely support.

5.1 Restrictive frame access
If the browser restricts access to cross-domain frames when

navigating the frame hierarchy (Opera and some configura-
tions of IE6), then the scheme described in Section 4 can
be directly adapted to multiple untrusted web services. We
simply create a new nested frame structure for each web
service or gadget that needs to be included. The untrusted
web services are nested inside sibling frames that cannot be
accessed because the frames property of the main window
is in the www.mashup.com domain and the gadgets are not.

5.2 Permissive frame access
In order to work properly for the majority of browsers, the

mashup must also support the permissive frame access con-
figuration of Firefox, Safari, IE7, and some configurations
of IE6. This configuration makes separating gadgets much
more difficult, because any frame anywhere on the page can
be reached by any other frame, and if those frames are in the
same domain, they can each access each other and intercept
each other’s communications.

In order to keep these frames from interfering with each
other, we use a new throwaway domain for each web service
that the mashup needs to interact with. For example, if
the mashup needs to include two web services, it might use
webservice1.mashup.com and webservice2.mashup.com.

Our solution, illustrated in Figure 4, is similar but subtly
different from the frame structure described in Section 4.

1. Create mediator frame. Assume that the browser
is at a location on www.mashup.com (the top frame).
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Browser Configuration Supported Server Techniques

Browser
Cross-
domain

frame access

Closure
autho-
rization

TUA +
callback

TMU +
callback

TUA +
polling

TMU +
polling

IE6 (default) permissive static X X
IE6 (restrictive) restrictive static X X
IE7 permissive static X X
Firefox permissive static X X
Opera restrictive dynamic X
Safari permissive dynamic X

Table 1: Browsers configurations and the server communication techniques they can safely support.

Figure 4: Connecting to multiple web services. If the browser has a restrictive frame access policy, a top-
mediator-untrusted frame structure should be used, but if the browser has a permissive frame access policy,
a top-untrusted-access frame structure is required.

We create an IFRAME (the mediator frame) pointing
to a tiny page on www.mashup.com. As before, the
mediator frame retrieves a JavaScript object from the
top frame and changes its domain to mashup.com.

2. Create untrusted frame. As before, we create the
untrusted frame pointing to webservice1.mashup.com,
but rather than putting it inside inside the mediator
frame, we put it inside the top frame. Thus, the me-
diator frame and the untrusted frame are siblings.

3. Create access frame. Next, we add the access frame
inside the untrusted frame. The access frame obtains
a “container” JavaScript object from the untrusted
frame, and then it changes its domain to mashup.com.

4. Pass JavaScript communication object. Due to
the browser’s permissive frame access policy, the access
frame can get a handle on the mediator frame, and
because they are both in the mashup.com domain, the
access frame can obtain the Subspace object from the
mediator frame. The access frame puts this object into
the container it shares with the untrusted frame.

5. Cleanup. At this point, the untrusted frame disposes
of the access frame, which is no longer needed. The

untrusted frame has the Subspace object it needs to
communicate with the top frame.

6. Repeat for every gadget. The process is repeated
for every other untrusted web service or gadget that
needs to be included. At the end, the mediator frame
is no longer needed and can be disposed.

7. Load untrusted content. At this point, all the gad-
gets have a Subspace communication channel to the
top frame, but none of them have access to each other.
Since the setup phase is complete, the top frame can
safely issues the command to load the untrusted con-
tent, such as cross-domain <script> tags, into each
of the frames.

5.3 Setup Integrity
The setup mechanism described in Section 5.2 relies on

the assumption that the untrusted code does not run until
all Subspace channels have been securely initialized. Setup
integrity is not necessary for protecting the user’s autho-
rization credentials at the gadget aggregator site, but it is
necessary for protecting each individual gadget’s communi-
cations with the parent page from interference or intercep-
tion by other gadgets.
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An example attack on setup integrity would be for webser-
vice1.mashup.com to open a popup window and stash some
malicious code there to retain control over the browser ses-
sion. The attacker would then restart the initialization pro-
cess in the original window by resetting its location, making
it appear to the mashup site that the user is arriving at the
site for the first time:

window.opener.location = "about:blank";

window.opener.location = "http://www.mashup.com/";

During the second initialization process, the popup could
try to find the mediator and access frames and maliciously
modify them, potentially corrupting the Subspace channel.

To prevent this class of attacks, a mashup could ensure
that the domain used to communicate is different from one
page load to the next. On the second visit, the main frame
would be located at a different domain, e.g. www.2.mashup.com
and the untrusted web services would be located at webser-
vice1.2.mashup.com and webservice2.2.mashup.com. The
number of visits would be tracked in a session cookie that
expires when the browser is closed. Also, the gadget ag-
gregator would need to reload the page to restart the setup
process if more web services or gadgets need to be added
beyond the ones that were created during the first setup
phase.

Another (more cumbersome) approach to solve this prob-
lem would be to use public key cryptography to protect com-
munications between gadgets over the Subspace channel.

To summarize, setup integrity enforcement is only neces-
sary for mashups with untrusted gadgets from more than
one source, where the browser has a permissive frame ar-
chitecture, and gadgets are communicating client-side infor-
mation with their parent that needs to be protected from
interception or interference by other gadgets. For gadgets
that only communicate non-sensitive information (e.g. de-
sired height) on the client side, setup integrity enforcement
is not required.

6. EVALUATION
In order to evaluate the performance impact of Subspace,

we performed some timing measurements using a simple
mashup and a prototype gadget aggregator.

6.1 Mashup Measurements
Our example mashup, called KittenMark, shows a list of

the 20 most recent kitten photos from the Flickr photo shar-
ing site [4] and allows the user to post them to the del.icio.us
bookmarks site.

We tested three site architectures for this mashup:

• Proxy. We built a proxy that connects to the Flickr
web service to get the list of kitten photos, and relays
this data back to the mashup. The mashup connects
to this proxy safely using an XMLHttpRequest and
uses the response data to populate the page.

• Unsafe. We built another version of the mashup that
downloads the data directly from the Flickr web ser-
vice using a cross-domain <script> tag. This ap-
proach is unsafe if the Flickr web service is not trusted,
because it allows Flickr to observe or hijack the user’s
KittenMark session.2

2Our choice of Flickr as an example untrusted web service
is not meant to disparage Flickr in any way.

Figure 5: For the mashup experiment, Subspace
took longer to set up, but its network requests were
faster than the proxy approach.

• Subspace. Finally, we built a mashup using the web
service architecture for Subspace described in Section 4.
This approach also makes network requests using a
cross-domain <script> tag, but the browser same-
origin policy prevents Flickr from accessing users’ Kit-
tenMark accounts.

In order to test the speed of these three approaches, we
built an automated timing framework in JavaScript that
measured the time to load the initial page and the time
to download the latest list of kittens from Flickr. The Flickr
web service is hosted in Sunnyvale, California, and our mashup
server was hosted in New Haven, Connecticut. To simulate
an initial page load, we bypassed caching by appending a
random unique identifier to the query parameter of all URLs.
Our client machine was located in Stanford, California, with
the IE7 browser and a broadband internet connection. We
performed 25 trials with each architecture.

Our results are summarized in Figure 5. We found that
Subspace took slightly longer during the initial setup pro-
cess, because of the time required to load the hidden IFRAMEs.
Once the setup process was complete, network requests were
faster than the proxy approach and comparable to the cross-
domain <script> tag approach.

6.2 Gadget Aggregator Measurements
Our second experiment involved building a simple gadget

aggregator that allows the user to customize the font color
of all his or her gadgets. We tested three gadget aggregator
architectures:

• Sandboxed. We used a third-party iframe approach
that reloaded the gadget whenever the user’s desired
font color changed.

• Unsafe. We built another version of the aggregator
that included the gadget’s source code inline with the
page. It used JavaScript to pass the desired font color
to the gadget region of the page. This approach is
unsafe if the gadget author is not trusted, because it
allows the gadget full access to the surrounding page.
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Figure 6: For the gadget aggregator experiment,
the initial page load took longer with Subspace than
with the sandboxed and inline configurations. How-
ever, Subspace allowed instantaneous communica-
tion without the security disadvantages of inlining.

• Subspace. Finally, we used Subspace to pass the de-
sired color information from the parent page to the
untrusted gadget frame, in JavaScript.

To measure the setup time and the time it took to change
the font color, we used the same browser and automated
timing methodology from Section 6.1. Our results are sum-
marized in Figure 6. We found that for the initial page load,
the sandboxed and unsafe approaches were faster than Sub-
space, because fewer frames were required. However, when
responding to a font color change request, the inline and
Subspace architectures made the change almost instanta-
neously, while the sandboxed approach required the user to
wait for the page to load.

Because IE7 has a static authorization mechanism as de-
scribed in Section 3.2, our gadget aggregator was able to use
callbacks for optimal client communication speed. With a
dynamic authorization browser such as Opera, polling would
add a small amount of delay to client communication, per-
haps 20 milliseconds or more depending on the polling in-
terval.

7. DISCUSSION

7.1 Subdomains
Subdomains are easy to acquire, and it is straightforward

to configure a DNS server to have an arbitrary number of
subdomains pointing at the same server. For websites with
restrictive hosting conditions, for example using Geocities,
setting up subdomains may prove to be difficult. For these
types of low-budget sites, other types of cross-domain data
exchange might be more appropriate.

Some sites may wish to remove the “www” from the be-
ginning of their name, for example mashup.com instead of
www.mashup.com. Although it might seem that decision
is incompatible with the subdomain communication scheme
presented here, in fact it poses no serious problems. Browsers
treat the fully qualified mashup.com domain differently from
the domain suffix mashup.com. Somewhat unintuitively, the

fully qualified domain page can switch into the untrusted
domain suffix mode by running this command:

document.domain = document.domain;

Although this command would seem to be a no-op, in fact
has a dramatic effect on the security of a frame, allowing it
to access and be accessed by any subdomain of mashup.com.
The top frame would need to avoid using this command.

7.2 Limitations
One limitation of Subspace (and existing gadget aggre-

gator sites, which rely on cross-domain frames) is that the
frames can launch a denial-of-service attack on the browser.
For example, a misbehaving web service might navigate the
browser away from the mashup site, or display an endless
chain of alert dialogs, preventing the user from using the site.
Because these behaviors are relatively easy to detect and do
not pose a privacy threat, we consider them to be merely an
annoyance. These behaviors may be preventable using some
of the emerging technologies discussed in Section 8.

Another possible concern is that the untrusted data source
or gadget would pop up a new window asking the user for
their authentication credentials. For this reason, it is im-
portant that the subdomain be named in such a way that a
user would be able to clearly identify the web service that
controls it. Most modern browsers display the source of the
popup at the top of the window regardless of whether the
site creating the popup requests that the information to be
displayed.

7.3 Input Validation
Many of the techniques described here have applications

for so-called “cross-site scripting attacks” that exploit a lack
of proper input validation in websites. These attacks should
not be confused with legitimate uses for transferring of data
between scripts of different sites. In a cross-site scripting
attacks, the attacker often needs to pass data across domain
boundaries in order to drive the user’s browser and retrieve
stolen information, but the root cause of the vulnerability
lies in poor input validation. Securing the site against these
attacks is a prerequisite for applying the security techniques
discussed in this paper.

8. RELATED WORK
Subspace is built on the existing features of the current

generation of web browsers. Several proposed web standards
hold the potential to deliver built-in cross-domain data ex-
change features to future web browsers. These standards
could make mashups even easier to build, but cannot be re-
lied upon until implemented by all major browser vendors
and installed by most users.

8.1 XML access-control instruction
A W3C working draft proposes a new processing instruc-

tion, <?access-control?>, for authorizing read access to XML
content [12]. For example, the National Oceanic and Atmo-
spheric Administration may declare that their XML weather
data can be accessed by any application, while a stock ticker
provider could allow access only to an individual partner site
mashup.com that has licensed that data:

<?access-control allow="*.mashup.com"?>
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This processing instruction would be placed in the docu-
ment’s XML prolog and specifies who can access the docu-
ment. In this example, the directive would be similar (al-
though not exactly equivalent) to stockticker.com setting its
document.domain to mashup.com, a command that is de-
nied by all current browsers for security reasons. Although
these restrictions prevent web developers from accidentally
building insecure websites, they also prevent cross-domain
access control policies from being expressed. The <?access-
control?> instruction could provide this expressive power,
but unfortunately it is not available in current browsers.

8.2 JSONRequest
An alternative to XML is JavaScript Object Notation

(JSON), a compact data representation that is designed to
parse as valid JavaScript. Data in JSON format can be in-
terpreted as script the browser’s JavaScript interpreter, but
this approach is not safe because the data may contain ma-
licious active code. The proposed JSONRequest browser
object [3] addresses this concern by parsing the JSON data
without interpreting it as code.

The JSONRequest browser object would be capable of
performing cross-domain data requests, unlike the XML-
HttpRequest object. It would accept only data with a mime
type application/json, ensuring that it cannot be used to
access web pages or web services that were not designed
specifically with JSON in mind. Unlike XMLHttpRequest,
the JSONRequest does not send cookies.

8.3 BrowserShield
Although JSONRequest and the access-control directive

can allow safe cross-domain network requests, they do not
provide the controlled cross-domain client-side communica-
tion necessary for gadget communication. One alternative
to cross-domain gadget IFRAMEs is to preprocess the gadget’s
JavaScript code to ensure that it can only perform actions
within a set of acceptable guidelines, then run it in the same
domain as the mashup site. The BrowserShield framework
has the potential to perform this code transformation, either
at runtime on the client side or as a one-time transformation
on the mashup server [10].

Developing a complete set of BrowserShield sandbox poli-
cies is a challenging problem, but it would only need to
be solved once by the maintainers of the BrowserShield li-
brary, rather than individually by each website. Further-
more, BrowserShield could prevent some denial-of-service
behaviors that are allowed by cross-domain frames, such as
navigating the parent frame to a new location or popping
up an endless sequence of alert dialogs.

8.4 Cross-document messages
Cross-document messages [6] are a proposed browser stan-

dard that would allow frames to send string messages to each
other regardless of their source domain. To send a message,
a frame could call the postMessage(data) method of the
cross-domain frame. To receive messages, a frame would
observe the “message” event:

document.addEventListener(’message’, handler, false)

The handler function would be able to check the domain of
the message before reading to message’s data to ensure that
the message is coming from an authorized source.

Although the current cross-document message proposal
does not support the passing of data types other than strings,

this limitation could be circumvented through the use of se-
rialization and deserialization library functions.

This primitive would be well-suited to providing the client-
side communication capabilities of Subspace without requir-
ing the use of additional subdomains. We hope that the
cross-document messages proposal, or a similar one with
richer data type support, will eventually be adopted by all
browsers.

9. CONCLUSION
Web mashups have created a new generation of wildly

popular and successful web services, marking a paradigm
shift in web service development. However, web mashups
also require a departure from same-origin policy enforced
by browsers. Current practices in achieving cross-domain
communications are either insecure, inefficient, or unreli-
able. In this paper, we have presented Subspace, a cross-
domain communication primitive that allows efficient com-
munication across domains while still sandboxing untrusted
code. Our primitive uses existing browser features as build-
ing blocks and is therefore is highly practical. Our prototype
implementation of Subspace is compatible with all major
browsers. We look forward to using the new mashups that
Subspace will enable.
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