
A Password Stretching Method using User Specific Salts
Changhee Lee

TSLab
INITECH

Seoul, Korea

changhee.lee@initech.com

Heejo Lee
Dept. of Computer Science and Engineering

Korea University
Seoul, Korea

heejo@korea.ac.kr

ABSTRACT
In this paper, we present a password stretching method using user
specific salts. Our scheme takes similar time to stretch a password
as recent password stretching algorithms, but the complexity of a
pre-computation attack increases by 108 times and the storage
required to store the pre-computation result increases by 108 times.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Authentication

General Terms
Security

Keywords
Phishing, Password stretching, user-specific salting.

1. INTRODUCTION
Generally, people use the same password on many web sites
because of the difficultly in remembering different passwords. As
a result, once an attacker obtains a password from one faked site
or site with weak security, he can use it to enter other sites. This
type of attack is known as phishing. The password stretching
method is a way to create a strong password from a weak
password. It can be used to create a strong site-specific password
from a weak password, using a site-specific salt (e.g. domain
name).

2. RELATED WORKS
2.1 PASSWORD STRETCHING METHOD
The password stretching algorithm is defined as

Klong = F(Kshort, Salt),

where Kshort is a weak password, Klong is a strong password, Salt is
a variable, and F is a password stretching function [1]. Salt can be
a system-specific, time-specific or message-specific variable and
F() can be a hash based or block cipher based function.

Ross et al. proposed an algorithm that uses a domain name as a
salt and HMAC as F() [2]. Their algorithm is defined as

Klong = HMAC(Kshort, dom), where dom is the domain name.

Halderman et al. proposed a method, which needs more time to
generate a strong password than Ross et al. [4], defined as

V = fk1(salt1, Kshort), Klong = fk2(Kshort, salt2, V),

where fk() is to repeat k times f(), salt1 is user name, and salt2 is
domain name.

2.2 PRE-COMPUTATION ATTACK
The traditional attack method of password stretching algorithm is
the brute force attack, which attempts all possible weak passwords
one by one. As a result, it is a very time consuming way to
retrieve a password. In [3], Oechslin proposed a way of pre-
computation attack which is able to crack all possible MS-
windows password hashes in 13.6s.

3. PROBLEM AND GOAL
In previous password stretching methods, username and domain
name are known variables, therefore unknown variable is only a
weak password. An attacker can obtain Klong from a faked site or a
site with weak security and get a weak password from Klong using
a rainbow table, pre-computation results of all possible weak
passwords.

In many sites, the user uses a 6-8 alphanumeric character
password. If a user stretches the password using Ross’s method,
an attacker can obtain the original password within 13.6s, via a
pre-computation attack. In the case of Halderman’s method, the
password stretching time takes (k1+k2) times longer than Ross’s,
and consequently an attacker needs more time to generate a
rainbow table. However, after generating rainbow table, an
attacker can retrieve the original weak password within a similar
time period as Ross’s.

Of course, we can change the parameter, (k1+k2), so that it has a
very long computation time, but password stretching also takes a
very long time. This makes the algorithm unusable. We need to
find an algorithm which has a similar computation time as
Halderman’s, but has strong resistance to pre-computation attacks.
This is the goal of this paper.

4. PROPOSED METHOD
In this paper, we propose a method to stretch a password using a
user-specific salt, to prevent pre-computation attacks using a
rainbow table. It has two steps as shown in Figure 1, the first step
is to generate a user-specific salt via challenge-response with the
user, and the second step is to stretch the password using a user-
specific salt. A user-specific salt can be secret numeric data from
a user, such as a credit card number or debit card number.

We changed the k1 parameter of Halderman’s algorithm into a
user-specific salt, which enabled the proposed algorithm to be
executed differently for each user. It is defined as

V = fsalt(Kshort, username), Klong = fk(Kshort, dom, V).

Copyright is held by the author/owner(s).
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005

WWW 2007 / Poster Paper Topic: Security

1215

 Figure 1. Proposed password stretching method
Because the user-specific salt differs for each user, the algorithm
has a different parameter for each user. Therefore an attacker has
to generate a rainbow table for each possible salt, store it and use
it to look up values. In [3], we need 1.4GB to store the rainbow
table for a 7 characters password. If the salt is 8 numeric
characters (eg. the last 8 characters of a credit card number), the
possible number of salts is 108 and an attacker needs 108 ×
1.4GB, about 0.1 million TB, to store the rainbow table for all
possible salts. It takes about 108 × 10s, or 31 years, to find the
password from all rainbow tables. The greater the number of
characters of the salt, the greater the storage and table lookup time
required. We compare Ross’s algorithm, Halderman’s algorithm
and our proposed algorithm in Table1.

Table 1. Resistance to a pre-computation attack
(7 alphanumeric characters password and 8 numeric

characters salts)

Algorithm Stretching
Time

Rainbow Table
Size Attack Time

Ross 10-6s 1.4G ≤ 10s
Halderman 0.1s 1.4G ≤ 10s
ours 0.1s 108 × 1.4G 31 years

5. IMPLEMENTATION
We implemented our method as a Firefox extension by modifying
passwordMaker [5]. PasswordMaker is implemented in JavaScript,
to allow execution on any platform, and supports the multiple
password stretching algorithm and multiple user accounts. Our
program is available at:

http://www.gbtn.org/~chlee/research/passwdmaker-cr-1.6.xpi .

A user has to set a challenge and response for password stretching.
We use the response as the salt. Our program caches the value V
so that the user does not need to enter a salt each time. We set the
k value such that Klong generation takes about 0.1s. There are
three pre-defined challenges in our program, the last 8 numbers of
a credit card number, 8 numbers selected from an ID card, and 8
numbers selected from an item owned by the user.

After the user sets answers to the challenge, and master password,
the program generates a V and caches it to disk. Then, the
program stretches the master password using the domain name
from the address bar of the browser. From this point on, a user

needs to input only the master password, because the program
will use a cached V. In addition, if a user stores the master
password on disk in encrypted format, there is nothing required to
input to generate a strong password. Figure 2 shows a screenshot
of our program.

6. CONCLUSTION AND FUTURE WORK
In this paper, we discuss a password stretching algorithm that
creates a strong password from a weak password and provides
protection against a pre-computation attack. Using a pre-
computation attack, a password stretched using Ross’s or
Halderman’s algorithm can be revealed within about 10s.

We propose a novel password stretching algorithm that operates
with a user-specific salt. It takes similar time to stretch a
password as Halderman’s algorithm, but an attacker requires 108
times more rainbow tables than Halderman’s and 108 times longer
to obtain the original weak password using a rainbow table. This
result makes a pre-computation attack infeasible.

In the future, we will increase our scheme’s resistance against
malware and enable it to be used with Microsoft Internet Explorer
(MSIE).

Figure 2. Program Screenshot

7. REFERENCES
[1] J. Kelsey, B. Schneier, C. Hall, and D. Wagner. Secure

applications of low-entropy keys. Lecture Notes in Computer
Science, 1396:121–134, 1998.

[2] Blake Ross, Collin Jackson, Nicholas Miyake, Dan Boneh,
and John C. Mitchell. Stronger Password Authentication
Using Browser Extensions, Proeedings of the 14th Usenix
Security Symposium, 2005

[3] Philippe Oechslin. Making a Faster Cryptanalytic Time-
Memory Trade-Off, Proceedings of Crypto’03

[4] J.A.Halderman, B.Waters, and E.Felten. A Convenient
method for securely managing passwords. Proceedings of the
14th International World Wide Web Conference (WWW
2005), 2005

[5] LEAHSCAPE, Inc. passwordMaker,
http://passwordmaker.org/, 2006

WWW 2007 / Poster Paper Topic: Security

1216

