
Construction by Linking: The Linkbase Method
Johannes Meinecke
University of Karlsruhe

Engesserstr. 4
76128 Karlsruhe, Germany

+49 (721) 608-8072

meinecke@tm.uka.de

Frederic Majer
University of Karlsruhe

Engesserstr. 4
76128 Karlsruhe, Germany

+49 (721) 608-7393

majer@tm.uka.de

Martin Gaedke
Chemnitz University of Technology

Straße der Nationen 62
09111 Chemnitz, Germany

+49 (371) 531-25530

gaedke@cs.tu-chemnitz.de

ABSTRACT
The success of many innovative Web applications is not based on
the content they produce – but on how they combine and link
existing content. Older Web Engineering methods lack flexibility
in a sense that they rely strongly on a-priori knowledge of
existing content structures and do not take into account initially
unknown content sources. We propose the adoption of principles
that are also found in Component-based Software Engineering, to
assemble highly extensible solutions from reusable artifacts. The
main contribution of our work is a support system, consisting of a
central service that manages n:m relationships between arbitrary
Web resources, and of Web application components that realize
navigation, presentation, and interaction for the linked content.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software – reusable
libraries. H.5.4 [Information Interfaces and Presentation]:
Hypertext / Hypermedia – Architectures

General Terms
Management, Design

Keywords
Web Engineering, Content Linking, Web Services, Triple Stores

1. INTRODUCTION
During recent years, the Web has experienced several paradigm
shifts. Seen originally as a means for publishing documents
worldwide, it has later also been used as a platform for
applications. Now, once again, we observe another fundamental
change, as sites no longer form isolated applications, but instead
combine their functionality with external services and the content
contributed by large communities of participating Web users. The
achieved added value is especially high, when content is not just
integrated as separate sets of resources, but when resources from
different sources are linked to each other. Within this work, we
speak of links as items referencing two resources that somehow
belong together, as e.g. a photo and an XML document describing
the person who took the photo. The systematic construction of
such Web applications is challenged with the need for continuous
extensions with new content sources. Unlike in situations where
everything is under the control of the application provider, the set
of sources that are potentially relevant changes frequently, as old
services become obsolete and new services become popular.

Consequently, the development process must account for
originally unknown sources to be integrated and linked to the
existing content later. Related to that, there is a repetitive
implementation effort for content source linking that is
independent of the application domain. Complexity results e.g.
from issues of distribution, caching, support for multiple service
interfaces, or the realization of navigation across the linked
content. Hence, this raises the question of how we can abstract
from specific applications and package generic functionality in
reusable components. Additionally, we have to deal with content
sources that are unprepared to be linked. Belonging to different
organizations, they were most likely developed without
knowledge from each other. Therefore, the linking structure has to
be imposed retrospectively, without the means to make any
changes to the external sources.

2. THE LINKBASE METHOD
To address the mentioned challenges, the Linkbase method aims
at building applications by linking autonomous content sources
with the help of a support system. Figure 1 outlines the general
architecture and the steps to be performed.

Figure 1: Architectural Overview of the Linkbase Method

Inspired by older Open Hypertext approaches as e.g. [3], links
between arbitrary resources are managed separately, with the help
of a central Web service (the Linkbase service) in a uniform way.
The Web application itself is assembled from generic, domain-
independent components that work with the links from the
Linkbase and the content from the different sources to provide
navigation, presentation, and interaction to the user. In the
following, we give a brief overview of the three groups of
activities that are necessary to apply the idea of the Linkbase for
building applications.

Copyright is held by the author/owner(s).
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

WWW 2007 / Poster Paper Topic: Systems

1293

2.1 Providing the Content Sources
Before the content sources can be linked to each other, they need
to be accessible in a uniform way. In the case of conventional
Web resources, the URI already enable such a uniform access, as
e.g. addressing images via URLs over HTTP. If the content
originates from Web services, there is a wider choice of access
methods and interfaces. To overcome diversity, we propose the
introduction of a generic, uniform interface that abstracts from the
particular type of content. As one alternative, the CRUDS
interface allows the querying and manipulation of arbitrary sets of
content objects through the operations Create, Read, Update,
Delete and Search. The interface can either be implemented at
directly controlled services, or at wrapping services that delegate
the content requests to third-party services. In order to address the
resources uniformly, CRUDS uses a naming scheme based on
Uniform Resource Nominators (URN) that contain, in addition to
the local object identifiers of the resource, also an identifier of the
service supplying the resource.

2.2 Linking the Content
Based on the unified information space, the second step of the
Linkbase method deals with the actual linking of the resources.
The Linkbase approach treats links as triples of URIs, each
consisting of a subject, a predicate, and an object. In our case, the
subject and object URIs refer to resources provided by the
autonomous data sources, and the predicate URI serves as a label
for the type of relationship. For storing and managing triples,
there already exists a wide variety of triple stores [1]. In
correspondence to the loosely coupled architecture of the overall
solution to be built, the triple store is connected to the application
as a Web service, called Linkbase service. The built-in reasoning
support provided by many triple stores can be applied to relieve
the application from the burden of computing links by itself, as
e.g. in the case of transitive relationships. In addition to
referencing external content, it may also be necessary to retrieve
the information about which resource is linked to which from the
outside. To account for this, we propose an extension of the triple
store concept to provide triples extracted from external sources at
runtime (i.e. the triples do not originate from information stored at
the Linkbase, but from queries to external services).

2.3 Using Linked Content in the Application
The aim of the third step is to allow developers to construct the
actual Web application without having to program it. Instead, they
assemble the application from ready-built, reusable components.
To achieve this, the Linkbase method builds on previous work,
the WebComposition Service Linking System (WSLS) approach
[2]. In WSLS, separation of concerns is realized by developing
components as fine-grained implementation artifacts that can be
combined with each other by following the Decorator software
design pattern. For example, a component providing a list of
content objects might be combined with a component for
presenting the individual items and a component realizing an
index navigation pattern. In this work, we supplemented the
WSLS approach with a catalogue of components specialized on
dealing with linked content. Since both content sources and links
are accessible in a uniform way, we can restrict the number of
components to be implemented by focusing on generic
functionality. This includes particularly a component that
retrieves and caches the content objects from the Web services
and that supports the Web service interface chosen for unification
(e.g. the CRUDS interface). As a Linkbase-specific navigation

component, the Fisheye allows users to navigate through the
graph formed by the Linkbase, along selected types of links. This
is realized by decorating the presentation of a currently active and
visible content object with smaller navigatable preview
presentations of related objects around it (cf. Figure 2). An
example for a component that is concerned with presentation
aspects is the Timeline, which visualizes objects related to a
given context in time. The Content Connector supports the
interaction between the user and the linked content by allowing
the user to insert new links with a single mouse click. The
complete component catalogue covers the general functionality of
the components, the way they can be configured to suit different
applications, and concrete examples.

Figure 2: Example of a Fisheye Component

3. THE LINKBASE APPLIED
In order to gain practical experience, we implemented a Linkbase
support system, including an extended triple store service as well
as several tools to speed up development. This system has been
used within the context of the project “Software Engineering for
Information Appliances at Home”, whose outcome included a
Web portal targeted at families at home. The content sources
included a number of new services (e.g. for personal profiles of
family members) and wrappers for existing non-Web systems
(e.g. a calendar service that provides access to a Microsoft
Exchange server). Moreover, we developed a part of the
components from our catalogue. For example, the Fisheye
component supports the user in navigating through a family tree,
as well as realizes a presentation slide browser, where users can
skim through the sections and subsections of a structured lecture
with up to 800 slides. The experiments demonstrated the
reusability of the identified components for a wide range of
purposes.

4. REFERENCES
[1] Beckett, D., Scalability and Storage: Survey of Free

Software/Open Source RDF storage systems - 2002), W3C:
http://www.w3.org/2001/sw/Europe/reports/rdf_scalable_storage
_report/ (12.10.2006).

[2] Gaedke, M., Nussbaumer, M., and Meinecke, J., WSLS: An
Agile System Facilitating the Production of Service-Oriented
Web Applications, in Engineering Advanced Web Applications,
S.C. M. Matera, Editor. 2005, Rinton Press. p. 26-37.

[3] Pearl, A. Sun's Link Service: A Protocol for Open Linking. in
2nd Annual ACM Conference on Hypertext. 1989. Pittsburgh,
USA: ACM Press. p. 137-146.

WWW 2007 / Poster Paper Topic: Systems

1294

