
Crawling Multiple UDDI Business Registries
Eyhab Al-Masri and Qusay H. Mahmoud

Department of Computing and Information Science
University of Guelph, Guelph, ON, Canada N1G 2W1

{ealmasri, qmahmoud}@uoguelph.ca

ABSTRACT
As Web services proliferate, size and magnitude of UDDI
Business Registries (UBRs) are likely to increase. The ability to
discover Web services of interest then across multiple UBRs
becomes a major challenge specially when using primitive search
methods provided by existing UDDI APIs. Clients do not have the
time to endlessly search accessible UBRs for finding appropriate
services particularly when operating via mobile devices. Finding
services of interest should be time effective and highly
productive. This paper addresses issues relating to the efficient
access and discovery of Web services across multiple UBRs and
introduces a novel exploration engine, the Web Service Crawler
Engine (WSCE). WSCE is capable of crawling multiple UBRs,
and enables for the establishment of a centralized Web services
repository that can be used for discovering Web services much
more efficiently. The paper presents experimental validation,
results, and analysis of the proposed ideas.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability – data mapping,
distributed objects, interface definition languages; H.3.5
[Information Storage and Retrieval]: Online Information
Services – data sharing, Web-based services

General Terms: Design, Management, Measurement,
Performance, Reliability, Verification

Keywords: UDDI, UDDI Business Registries, Crawler, Web
Services, Discovery

1. INTRODUCTION
Web Services are Internet-based, modular applications that are
becoming an emerging technology of choice for building
understandable applications and are of an immense interest to
governments, businesses, as well as individuals. As Web services
proliferate, the same dilemma perceived in the discovery of Web
pages will become tangible and the ability to search for a specific
business or service will be time consuming particularly as the
number of UDDI Business Registries (UBRs) begins to multiply.

In addition to that, having decentralized UBRs adds to the already
existing complexity of how to effectively discover Web services.
This is evident as new operating systems, applications, and APIs
are equipped with built-in functionalities or tools for allowing
businesses or organizations to create their own internal UBRs for
intranet or extranet use such as Enterprise UDDI Services in
Windows Server 2003, WebSphere Application Server, Systinet
Business Service Registry, jUDDI, and among many others.

Enabling organizations to self-operate and manage their own
UBRs will maximize the likelihood of having a significant
increase in the number of business registries and therefore, clients
will soon face the challenge of finding relevant Web services
across hundreds, if not thousands, of UBRs.

Although there have been numerous efforts that attempted to
enhance the discovery of Web services [1,2], many of them failed
to address the issue of handling discovery operations across
multiple UBRs. To address the above issues, this work introduces
a framework that extends our Web Service Repository Builder
(WSRB) architecture [4] by enhancing the discovery of Web
services without having any modifications to existing standards.
In this paper, we propose the Web Service Crawler Engine
(WSCE) which actively crawls accessible UBRs. Our solution has
been tested and results show high performance rate when
compared with other existing models.

2. MOTIVATIONS FOR WSCE
The crucial design of WSCE is motivated by several factors
including: (1) the inability to periodically keep track of business
and Web service life-cycle using existing UDDI design, which
can provide extremely helpful information serving as the basis for
documenting Web services across stages; (2) the inherent search
criterion offered by UDDI inquiry API which would not be
beneficial for finding services of interest; (3) the apparent
disconnection between UBRs and the existing Web; and (4)
performance issues with real-time search queries across multiple
UBRs which will eventually become very time consuming as the
number of UBRs increase while UDDI clients may not have the
potential of searching every accessible UBR. Other factors of
motivation will become apparent as we introduce WSCE.

3. WEB SERVICE CRAWLER ENGINE
WSCE is part of the Web Service Repository Builder (WSRB) in
which it actively crawls accessible UBRs, and collects
information in a centralized repository called the Web Service
Storage (WSS). A Query Engine (QE) within WSRB provides
clients with an interface to perform advanced search and
discovery operations. The proposed discovery model that contains
WSCE is shown on Figure 1.

Our approach in implementing the conceptual discovery model
shown on Figure 1 is a process-per-service design in which
WSRB runs each Web service crawl as a process that is managed
and handled by the WSCE’s Event and Load Manager (ELM).
The crawling process starts with dispensing Web services into the
WsToCrawl queue. The WSCE Ws Seed List contains hundreds
or thousands of business keys, service keys, and corresponding
UBR inquiry locations.

WSCE begins with a collection of Web services and loops
through taking a Web service from WsToCrawl queue. WSCE

Copyright is held by the author/owner(s).
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

WWW 2007 / Poster Paper Topic: Services

1255

then starts analyzing Web service information located within the
registry, tModels, and any associated WSDL information through
the Analysis Module. WSCE stores this information in the Web
Service Storage (WSS) after processing it through the Indexing
Module. After completion, WSCE adds an entry of the Web
service (using serviceKey) into VisitedWs queue.

Conceptually, WSCE examines all Web services from accessible
UBRs through businessKeys and serviceKeys and checks whether
any new businessKeys or serviceKeys are extracted. If the
businessKey or serviceKey has already been fetched, it is
discarded; otherwise, it is added to the WsToCrawl queue. WSCE
contains a queue of VisitedWS which includes a list of crawled
Web services. In cases the crawler process fails or crashes,
information is lost, and therefore, ELM handles such scenarios
and updates the WsToCrawl through the Extract Ws component.

4. EXPERIMENTS AND RESULTS
Data used in this work are based on actual implementations of
existing UBRs including: Microsoft, Microsoft Test,
XMethods.net, and SAP. To compare performance of existing
UBRs to WSRB, we measured the average time when performing
search queries. The ratio has a direct effect on measurements
since each UBR contains different number of Web services
published. Therefore, the top 10% of the dataset matched is used.

Figure 2 presents all search times for existing UBRs and
demonstrates the fact that as the number of inquiries increases, the
time increases significantly. For example, an inquiry to SAP UBR
takes 9.7 seconds. Results presented on Figure 2 show the total

times for an average query and exclude time taken for sending
information over the network (network lag), time taken by
operating system (system time), and time taken by program
running the test (program time). Results from repeating the same
test with WSRB are shown on Table 1.

Table 1. Results from running WSRB

inquiries 1 5 10 15 20
WSRB Time (sec) 0.121 0.127 0.134 0.146 0.151

Table 1 results demonstrate significance and effectiveness of
having WSCE via WSRB when compared to results shown on
Figure 2. Based on these findings, querying multiple UBRs results
in significant performance degrades while having a centralized
framework such as WSCE via WSRB improves performance rates
tremendously. In order to measure the efficiency of our approach,
another test was conducted by performing a search query to all
UBRs concurrently and measuring the total time it takes to obtain
the top 10% of the matching dataset. Performance results from
this test are compared with WSRB on Table 2.

Table 2. Comparison of performance of WSRB vs. all UBRs

inquiries 1 5 10

All UBRs Time (sec) 16.920 64.140 97.100

WSRB Time (sec) 0.121 0.127 0.134

Inquiry Time Ratio 140 505 725

Table 2 demonstrates that conducting a single query to multiple
UBRs, for example, takes approximately 16.92 seconds to receive
a response which may not be practical particularly if clients are
searching for Web services via mobile devices. In addition, the
inquiry time ratio between WSRB and multiple UBRs increases
significantly as the number of concurrent queries increases

5. CONCLUSION
A Web Service Crawler Engine (WSCE) has been presented in
this paper for the purpose of effectively discovering Web
services. The proposed solution provides an efficient Web service
discovery model in which clients do not have to endlessly search
existing UBRs for finding services of interest. As the number of
Web services increase, the success of businesses will depend on
service discovery and performance time when searching multiple
UBRs. Our experiments demonstrate that building a crawler and a
centralized repository for Web services is inevitable. For future
work, we plan to extend our current framework to include a
ranking mechanism that outputs desired services of interest within
top results and therefore, rendering the discovery process to
become more efficient.

6. REFERENCES
[1] E. Maximilien and M. Singh. Conceptual Model of Web

Service Reputation. ACM SIGMOD Record, 31(4), 2002.

[2] K. Sivashanmugam, K. Verma, and A. Sheth, Discovery of
Web Services in a Federated Registry Environment,
Proceedings of IEEE ICWS, pp. 270-278, 2004.

[3] E. Al-Masri, and Q.H., Mahmoud, A Framework for
Efficient Discovery of Web Services across Heterogeneous
Registries, IEEE Consumer Communication and Networking
Conference (CCNC), 2007.

Figure 2. Evaluating Existing UBRs.

Evaluation of Existing UBRs

0
10
20
30
40
50
60
70
80

1 5 10 15 20
Number of Inquiries

Ti
m

e
(s

ec
)

Microsoft Microsoft Test XMethods SAP

Service
Providers

UBR2UBR1 UBRn-1

Clients

Web Service Crawler Engine

Q
uery Engine

Web Service Repository Builder (WSRB)

Request/Response

Register (Publish)

Seed WSsSeed WSs

Seed W
Ss

Search &
 D

iscover

WsToCrawl

Request Ws

Init

Get WsExtract Ws

Event and
Load M

anager

VisitedWs

W
eb Service
Storage

Find

UBRn

Indexing Module Analysis Module

Service
Providers

UBR2UBR1 UBRn-1

Clients

Web Service Crawler Engine

Q
uery Engine

Web Service Repository Builder (WSRB)

Request/Response

Register (Publish)

Seed WSsSeed WSs

Seed W
Ss

Search &
 D

iscover

WsToCrawl

Request Ws

Init

Get WsExtract Ws

Event and
Load M

anager

VisitedWs

W
eb Service
Storage

Find

UBRn

Indexing Module Analysis Module

Figure 1. An Enhanced Discovery Model using WSCE.

WWW 2007 / Poster Paper Topic: Services

1256

