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ABSTRACT
We consider the problem of designing auctions for spon-
sored search with revenue guarantees. We first analyze two
random-sampling auctions in this setting and derive high
competitive ratios against the optimal revenue from two
classes of omniscient auctions: single-price auctions, restricted
to charging a single price per click and weighted-price auc-
tions, restricted to charging prices inversely proportional to
the advertisement’s clickability. Either of these benchmark
revenues can be larger, and this cannot be determined with-
out knowing the private valuations of the bidders. We com-
bine these two asymptotically near-optimal auctions into a
single auction with the following properties: the auction has
a Nash equilibrium and every equilibrium has revenue at
least the larger of the revenues raised by running each of the
two auctions individually (assuming bidders bid truthfully
when doing so is a utility maximizing strategy). Simulations
indicate that our auctions outperform the VCG auction in
less competitive markets.

1. INTRODUCTION

1.1 Problem and motivation
The revenue from keyword auctions for search engine com-

panies including Google, Yahoo!, and MSN, is on the order
of millions of dollars every day. In a keyword auction, a
search engine user queries a particular keyword. Multiple
advertisers bid on the keyword, and the search engine then
displays the search results along with a subset of these ad-
vertisements. Given a set of advertisers that have placed
bids on the keyword, the search engine must determine, for
each ad, where (and if) it will be displayed, and the price
the advertiser will be charged if a user clicks on the ad. The
search engine’s revenue is the sum, over all slots, of the price
charged to the ad in a slot times the clickthrough rate for
that ad in that slot. (The clickthrough rate for an ad-slot
pair is the probability that the given ad will be clicked upon
when placed in the specific slot.)

The current mechanism in use for keyword auctions is the
generalized second price auction, analyzed in [6, 20]. It is
also well-known that the truthful VCG mechanism [21, 5,
10, 6, 16] applies to this setting, and produces an efficient
allocation of slots amongst bidders. However, there is no
provable guarantee on the revenue of the VCG mechanism
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(or that of GSP, of which the VCG outcome is an equilib-
rium [6]), compared to the revenue obtainable if the search
engine knew the true private value per click for each bidder.
Simulations indicate that the revenue from the VCG out-
come can be particularly small in less competitive markets,
where there are not many bidders with similar values for the
keyword. 1

In this paper, we address the question of designing auc-
tions with provable revenue guarantees that perform well,
even in markets with less competition. To achieve this end,
we employ competitive analysis, introduced in [9]. Here, the
metric used to gauge the performance of an auction is to
compare its revenue with the revenue that could be raised
by an optimal omniscient auction (the auction that raises
the optimal revenue if the auctioneer knows the true valua-
tions of all the bidders). The competitive ratio is the worst
case ratio, over all possible inputs, between the revenue of an
optimal omniscient auction and the revenue of the proposed
auction.

As in [6, 2], we model clickthrough rates as separable, i.e.,
the probability that a particular ad in a particular slot is
clicked can be broken down into an advertisement-dependent
clickability (ad-clickability) and a position-dependent click-
ability (slot-clickability). We describe our model formally in
§2.

1.2 Results
The contributions of this paper are the following:

• Bounds between various omniscient revenue benchmarks
for the keyword search setting.

Different omniscient revenue benchmarks can be de-
fined corresponding to different constraints on the set
of outcomes. The multiple price auction is the least
constrained, and allows for any combination of alloca-
tion and prices. The optimal omniscient single price
revenue is computed assuming that all advertisers are
charged the same price per click, while the optimal

1In fact, the revenue from VCG can be arbitrarily bad com-
pared to the optimal omniscient revenue, as the following
(extreme) example shows. Suppose there are k slots and
k + 1 bidders, where k of these bidders have value per click
1, and one bidder has a value per click of ε. Each of these ads
has a clickthrough rate of c in every slot. Under VCG, the k
bidders with the highest values are assigned slots, and every
bidder pays his negative externality, which in this case is εc.
So the revenue extracted by VCG is εck, which can be ar-
bitrarily small compared to the optimal omniscient revenue
which is ck.



weighted price revenue requires that the product of
the price and advertiser-dependent clickability for ev-
ery advertiser assigned to a slot is the same (i.e., prices
are weighted by advertiser clickabilities).2 The single
price and weighted price can be interpreted as reserve
prices per click for all slots.

We tightly bound these three benchmarks against each
other. Interestingly, either of the single price and weighted
price revenues can be larger, and this cannot be de-
termined without knowing the private values of each
bidder. This has interesting implications for pricing in
keyword auctions.

The analysis of these benchmarks is useful for two rea-
sons. First, the benchmarks are simple and easy to
analyze, providing a tool through which the proper-
ties of our auctions can be studied. We find that in
practice, they provide a foothold through which the
algorithm can maintain a reasonable portion of the
revenue in worst-case settings. Second, they are in-
teresting in their own right in relation to variable re-
serve pricing. We could consider that the optimal sin-
gle price solution is the optimal reserve price when all
current prices are zero. If bidders have prices other
than zero, much of our comparative analysis can be
easily adapted to give bounds for these cases as well.
Therefore, in terms of design choices related to reserve
pricing, these benchmark comparisons are informative.

• Improved analysis for random sampling auctions [9] in
our context, that leads to worst-case guarantees against
the optimal omniscient single price and weighted price
revenues.

The truthful random sampling profit-extraction auc-
tion from [9, 11] can be extended to apply to our prob-
lem. Using previous analysis gives us a competitive
ratio that approaches 2 against the optimum weighted
price revenue and 4 against the optimum single price
revenue.

First we improve upon the analysis in [1] to obtain a
competitive ratio that also approaches 2 against the
optimum single price revenue. Next, we incorporate
decreasing slot-clickabilities into our analysis to further
improve our guarantees: the ratio we obtain for both
auctions tends to 1 as the steepness in slot-clickabilities
increases, and the bidder dominance tends to 0.

• A new auction with Nash equilibrium that raise at least
the larger of the two revenues from the above auctions.

Despite the random sampling auction’s applicability to
the single price and weighted price benchmarks indi-
vidually, there is no straightforward application of the
random sampling auction that simultaneously provides
a guarantee against both benchmarks. Since the differ-
ence between the two benchmarks can be as bad as a
logarithmic factor, applying either variant of random
sampling alone can lead to a significant loss in revenue.
To overcome this potential loss, we move from truthful
auctions to a Nash equilibrium solution concept. To

2This proportional weighting is a natural extension of the
generalized second price auction [6], VCG, and the laddered
auction [2], where price discounts are given to highly click-
able advertisements.

the best of our knowledge, we are the first to explore
competitive analysis in an equilibrium setting. We de-
sign a new auction that builds upon the above two
auctions and has the following property: there exist
Nash equilibria that raise revenue at least the larger of
the revenues raised by the two random sampling auc-
tion variants run separately. Further, if bidders bid
their true value whenever bidding truthfully belongs
to the set of utility maximizing strategies, every Nash
equilibrium of the auction has this property.

• Simulations that suggest random sampling auctions are
an attractive alternative to VCG in less competitive
markets.

In crowded markets with a large amount of compe-
tition, both auctions achieve a large fraction of the
optimal revenue, and the VCG auction obtains more
revenue than the random sampling auctions. However,
as the market becomes less competitive and both auc-
tions achieve a smaller fraction of the optimal revenue,
random sampling auctions overtake the VCG auction.
Our findings that the random sampling auctions pro-
duce more revenue than the VCG alternative in more
challenging situations (i.e., less competitive markets)
is in keeping with our analytical framework, as the ran-
dom sampling auctions are designed to perform well in
worst case settings.

1.3 Related work
Incentive compatible auctions for allocation and pricing in

the keyword search setting have been considered previously.
In [6], the authors show that an application of VCG [21,
5, 10] to this problem provides an auction with maximum
efficiency. Furthermore, they show that any equilibrium us-
ing generalized second pricing (i.e., where an advertiser is
charged the next highest bid), has revenue at least that of
the VCG auction. Another approach [2], gives a truthful
pricing mechanism when the allocation of slots is externally
specified.

There has also been previous work on auctions that max-
imize revenue. The classical work of Myerson [18, 16] on
optimal auction design shows how to design an auction that
maximizes the expected revenue of the seller when the bid-
der values are drawn from a (known) continuous distribu-
tion. The expectation of revenue is over this known distri-
bution. In contrast, we are interested in maximizing revenue
in the worst case scenario, i.e., for every possible vector of
bid values.

In terms of competitive analysis for auctions, the random
sampling approach was first proposed in [9], and has since
been used in several problems and contexts, see for exam-
ple [14, 4, 11]. Finally, there are several papers that combine
multiple auctions into a single auction [3, 17, 1]. In [3], the
generalized auction uses two successive auctions to create an
auction that is truthful while maintaining the competitive
ratio. Unfortunately, this composition does not apply in our
context.

2. MODEL
Our model is the following. There are n bidders compet-

ing for k slots. Each bidder has a private valuation for a
click, vi. We order bidders by value, i.e., v1 ≥ . . . ≥ vn.
Every slot-bidder pair has a clickthrough rate cij associated



with it, which is the probability with which the advertise-
ment of bidder i in slot j is clicked. We assume that this
clickthrough rate is separable, i.e.,

cij = µiθj ,

where we refer to µi as the ad-clickability of bidder i, and
θj as the slot-clickability of slot j. The separability assump-
tion is equivalent to saying that the events of clicking on a
particular ad (regardless of which slot it is displayed in) and
a particular slot (regardless of which ad is displayed in it)
are independent. Although this assumption is not always
entirely accurate, analysis shows it is often reasonable [22],
and it has been widely adopted in the literature [2, 6, 15,
19, 13]. We assume that the ad-clickabilities µi and slot-
clickabilities θi are public knowledge. For our results in §4,
we only need µi and θi to be known to the seller (in fact,
this is true for all auctions where truthfulness is a dominant
strategy), which is a realistic assumption.

We assume that the clickabilities of the slots decrease with
position, i.e., θ1 ≥ θ2 ≥ . . . ≥ θk. We define

Θi =

iX
j=1

θj , (1)

i.e., Θi is the sum of the clickabilities of the top i slots.
We denote by bi the bid of bidder i, and the price charged

to bidder i in an allocation by pi. The auction mechanism
takes the bids bi, and computes an allocation x and pricing
p, where xi = j if the bidder is assigned to slot j, and is
0 if bidder i is not assigned a slot, and pi is the price that
bidder i pays per click he receives in his slot.

For a bidder i, we define

wi = viµi,

which is the expected value to the bidder from a slot with
clickability θj = 1. By the separability assumption, the
expected value to bidder i in a slot with clickability θj is
wiθj .

3. OPTIMUM PRICING SOLUTIONS
The previous work on digital goods auctions uses as a

benchmark the optimal multi-price and optimal single price
revenues [11, 9, 1]. In this section, we extend these con-
cepts to our problem, introducing a new benchmark, opti-
mal weighted price revenue, and bound these benchmarks
against each other. While current auctions do not sell clicks
in different slots at the same price, a single price (or single
weighted price) per click is still meaningful when interpreted
as a common reserve price for all slots (note that an adver-
tiser’s net payment still depends on the clickthrough rate in
the assigned slot even if the price-per-click is the same in all
slots).

Definition 1. Multi-price optimal (OPTMP ): The multi-
price optimal revenue, OPTMP , is the maximum possible
revenue that can be extracted with k slots, when the true
values of all bidders are known. Let wi(j) denote the jth
largest value in w, then

OPTMP =

min(n,k)X
j=1

wi(j)θj . (2)

We denote by OM the set of bidders that are assigned slots
in this allocation.

Definition 2. Single price optimal (OPTSP ): The sin-
gle price optimal revenue OPTSP is the maximum revenue
that can be extracted with k slots, when the true values of all
bidders are known, and every bidder assigned to a slot must
be charged the same price per click. Here p ≤ k items are
sold at a single price vp, where the single price is chosen to
maximize revenue. Let µp

i(j) be the jth largest µi of bidders

with values vi ≥ vp. Then, OPTSP is computed as

OPTSP = max
p=1,...,min(n,k)

vp

pX
j=1

µp
i(j)θj . (3)

We denote the set of bidders contributing positive revenue
to OPTSP as OS.

Unlike in settings without ad-clickabilities, the optimal
single price here is not necessarily limited to one of the values
v1, . . . , vk – the optimal single price can be any of the values
v1, . . . , vn. (If vi ≥ vj implies µi ≥ µj , however, vp is clearly
greater equal vk).

Definition 3. Weighted price optimal (OPTWP ): The
weighted price optimal revenue OPTWP is the maximum rev-
enue that can be extracted with k slots, when the true values
of all bidders are known, and every bidder assigned to a slot
is charged a price inversely proportional to his clickability,
i.e., such that piµi is constant. OPTWP is computed as fol-
lows: sort the w in decreasing order, and choose an index
r ≤ k that maximizes the revenue when every bidder with
wi ≥ wr contributes wr to the revenue, i.e.,

OPTWP = wrΘr = max
j=1,...,min(k,n)

wi(j)Θj . (4)

Every bidder who is allocated a slot pays a price

pi =
wr

µi
≤ wi

µi
= vi.

We denote the set of bidders contributing positive revenue
to OPTWP as OW .

Note that when all ad-clickabilities µi are equal, the weighted
price and single price revenues are exactly the same.

We will sometimes use OPTWP (S) and OPTSP (S) to de-
note the optimal weighted price and single price revenues
for a set of bidders S.

The OPTMWP benchmark, that weights prices propor-
tional to ad-clickabilities, is attractive for several reasons.
It seems natural to give a discount to bidders that bring the
auction most value; this is the prominent framework in both
theory (VCG, GSP, and the laddered auction) and in prac-
tice (Google and soon Yahoo! charge bidders proportional
to ad-clickabilities). In addition, Theorems 1 and 2 show
that OPTMP is at most Hk times as large as OPTWP , as
opposed to k times as large as OPTSP . We also point out
that when |OS | = |OW |, then the competitive ratio against
OPTSP is worse than the competitive ratio against OPTWP .

But a further examination of Theorem 6 indicates that,
in fact, weighted prices are not clearly superior to charging
a single price. As we would anticipate, in practice it is often
the case that value and ad-clickability are correlated, since
the ultimate goal is to match the searcher with a relevant
advertisement. We can think of the ad-clickability and the
value as both being increasing functions of the quality of the
searcher-advertisement match. Since in this case we always
have OPTSP ≥ OPTWP , it is quite common for single prices
to provide better revenue than weighted prices.



3.1 Bounding Against OPTMP

Here, we bound the revenue benchmarks defined above
against each other. First we relate OPTWP and OPTSP to
OPTMP . Note that while the worst case bounds for both
benchmarks are large, the results in Theorem 3 and 4 show
that when the top k bidders values for slots is not very widely
different, these benchmarks are quite close to OPTMP .

Theorem 1. OPTMP ≤ kOPTSP , and this bound is tight.

Proof. From (2) and (3),

OPTSP ≥ wi(1)θ1 ≥
1

k

kX
j=1

wi(j)θj ,

since the θjs are decreasing. To show that this bound is
tight, consider the following example. Suppose there are
n = k bidders, with vj = 1/cj−1, and µj = 1/vj = cj−1,
where c is a large positive constant. All slots have equal
clickability θj = 1. Then OPTMP = k.

For any choice vi of single price, the revenue is

OPTSP = max
i

1

ci−1

iX
j=1

cj−1 =
ci − 1

ci−1(c− 1)
,

which approaches 1 for large c.

However, when clickthrough rates are bidder independent
(i.e., µi = 1), the optimal single-price revenue can be no
smaller than a factor O(log k) of the optimal multi-price
revenue. This follows directly from the next result since in
this case OPTWP = OPTSP .

Theorem 2. OPTMP ≤ HkOPTWP , where Hk = 1 +
1
2

+ . . . + 1
k
. This bound is tight.

Proof. Let r = |OW | be the number of slots sold by
OPTWP . From (4) and (1), for j = 1, . . . , k,

wi(j) ≤ wr
Θr

Θj
.

So the optimal multi-price revenue, OPTMP , is

kX
j=1

wi(j)θj ≤
kX

j=1

θjwr
Θr

Θj

= wrΘr

kX
j=1

θj

Θj

≤ OPTWP

kX
j=1

1

j
,

where the last inequality follows from the fact that jθj ≤Pj
i=1 θi, since the θs are decreasing. When all θ and all µ

are equal to 1 and vi = 1
i
, all inequalities are tight, so this

bound is tight as well.

While these theorems show that OPTSP and OPTWP can
be quite small compared to the multiprice optimal, when
bidders’ valuations are more consistent, OPTSP and OPTWP

are quite close to OPTMP , as shown in the following theo-
rems.

Theorem 3. Let vmax be the largest, and vmin be the
smallest value of the bidders contributing to OPTMP . Then
OPTMP ≤ (vmax/vmin) OPTSP .

Proof. We have, with wi(j) = vi(j)µi(j),

OPTMP =

kX
j=1

wi(j)θj

=
1

vmin

kX
j=1

vminvi(j)µi(j)θj

≤ vmax

vmin

 
vmin

kX
j=1

µi(j)θj

!
≤ vmax

vmin
OPTSP ,

where the last inequality follows from the definition of OPTSP ,
since every bidder in OM has value greater equal vmin.

Note here that vmax and vmin are values from OPTMP , and
need not be the largest and smallest values from the entire
set of bidders (i.e., not necessarily v1 and vn).

A nearly identical argument can be used to show

Theorem 4. Let wmax be the largest, and wmin be the
smallest revenues of the bidders contributing to OPTMP .
Then OPTMP ≤ (wmax/wmin) OPTWP .

3.2 Relating OPTSP and OPTWP

At first glance, it might appear that optimal weighted
pricing is a better benchmark for revenue than optimal sin-
gle pricing, since its worst case performance is closer to
OPTMP . However, either OPTSP or OPTWP can be larger,
depending on the values of (v, µ) and θ, as the following ex-
ample shows.

Suppose θi = 1 for all slots, and bidders clickabilities are
µ1 = 12, µ2 = 6, µ3 = 4, mu4 = 3. If the bidders valuations
are v = (1, 1, 1, 1), then OPTSP = 25, and OPTWP = 12.
However if the values are v = (1/12, 1/6, 1/4, 1/3), then
OPTSP = 13/6 which is less than OPTWP = 4. Notice
that which of OPTSP and OPTWP has larger revenue can-
not be determined without knowing the true valuations of
the bidders.

We now show some theoretical results about how OPTSP

and OPTWP are related.

Theorem 5. The optimal single price and weighted price
revenue are related as follows:

1

k
OPTWP ≤ OPTSP ≤ HkOPTWP .

Proof. The first inequality is easy:

OPTSP ≥ vrµrθ1 ≥
1

k
OPTWP ,

where r is the index chosen by OPTWP as before. The
same example that shows that OPTMP can be as large as k
times OPTSP also shows that this inequality is tight, since
OPTWP = OPTMP for that example.

To show the second inequality, consider the set of bidders
in OS each of whom pays the optimal single price vp. Con-
sider a modified set of bidders ÕS obtained by changing the
values of bidders in OS to evi = vp. The value of OPTSP

for this set of bidders is unchanged. Now consider the op-

timal weighted price revenue that we can obtain from eOW ,
which is certainly less than or equal to OPTWP : first, sinceevi ≤ vi, ewi is less equal wi, so the optimal weighted price



revenue for the bidders in eOW is less equal that for the bid-
ders in OS . Next, we are considering a subset of the set of
all bidders used to compute OPTWP , so the revenue cannot
increase.

Let er be the number of bidders in the optimal weighted
price solution for this modified subset of bidders, and let

ÕPT WP = wr̃Θr̃ denote this revenue. Then, for all bidders

in eOP ,

Θerwer ≥ Θiw̃i,

that is,

µi ≤
Θr̃

Θi
µr̃.

So

OPTSP = vp

X
i(j)∈OS

µi(j)θj

≤ vp

X
i(j)∈OS

µr̃
Θr̃

Θj
θj

≤ Hp ÕPT WP

≤ Hk OPTWP ,

where the third line uses the same argument as in Theorem
2, and Hk is the harmonic sum as before.

This bound is tight, as shown by the following exam-
ple. Let there be n = k bidders each with value vi = 1,
clickabity µi = kµ/i for 1 ≤ i ≤ k − 1, and µk = µ + ε.
Then OPTMP ≈ kµ log k = OPTSP . However, OPTWP =
max iwj(i) = k(µ + ε).

This theorem showed that either of OPTSP or OPTWP

can be larger than the other; OPTSP can be smaller by a
factor k, while it can only be larger by a factor O(log k)
than OPTWP . While it might still be tempting to choose
the weighted price revenue as our benchmark, the next result
shows that in the important case when bidders’ clickabilities
decrease with their values, OPTSP is always greater equal
OPTWP .

Theorem 6. Suppose clickabilities decrease with values,
i.e., vi ≥ vj implies µi ≥ µj. Then, the optimal single price
revenue is greater equal the optimal weighted price revenue.

Proof. Let p be the optimal index in the single price
auction; then, since the µ are decreasing with v (i.e., µi(j) =
µj), the revenue is

OPTSP = vp(

pX
i=1

µiθi).

In the weighted price auction, we order the bidders by
wi = viµi, which, by assumption, is the same as the ordering
of the v’s. Let r be the optimal index picked by the weighted
price auction. Then, we extract revenue wrθj = vrµrθj from
the bidder assigned to slot j. So the revenue is

OPTWP = vrµr(

rX
j=1

θj)

≤ vr(
rX

j=1

µjθj)

≤ OPTSP ,

where the first inequality follows since µi ≥ µr for i ≤ r,
and the second follows from the definition of single price
optimum.

Note that it cannot be argued that if v1 ≥ . . . ≥ vn and
µ1 ≤ . . . ≤ µn, then OPTWP is always larger than OPTSP ,
since the ordering of bidders according to w and the ordering
according to v can be unrelated.

Finally we show that OPTSP and OPTWP are close to
each other when the clickbilities of winning bidders are not
very different.

Theorem 7. Let µmax and µmin be the largest and small-
est clickabilities of bidders in OS ∪OW .Then

µmin

µmax
OPTWP ≤ OPTSP ≤ µmax

µmin
OPTWP .

Proof. To show the first inequality, consider the set of
bidders in OW , i.e., the bidders who contribute positive rev-
enue to

OPTWP = wr

rX
i=1

θi.

The smallest value of bidders in OW is at least wr
µmax

.
Therefore, by definition of OPTSP ,

OPTSP ≥ wr

µmax

X
i∈OW

µi(j)θi

≥ wr

µmax

X
i∈OW

µminθi

=
µmin

µmax
(
X

i∈OW

wrθi),

≥ µmin

µmax
OPTWP .

Next we show the second inequality.

OPTSP = vp

X
i∈OS

µi(j)θj ≤ µmax

µmin
(vpµmin

pX
i=1

θi)

≤ µmax

µmin
OPTWP ,

where the last inequality uses the fact that for every bidder
in OS ,

wi = viµi ≥ vpµmin,

since by defintion, vp is the smallest value of bidders in
OS ,and µmin is less equal the smallest clickability of these
bidders.

4. MECHANISM
In this section, we describe a mechanism with high rev-

enue guarantees against both the single price and weighted
price benchmarks. To do this, we start with two (appropri-
ately modified) random-sampling auctions that have high
competitive ratio against OPTSP and OPTWP respectively.
Then we combine these two auctions to derive a single auc-
tion with a Nash equilibrium that raises revenue at least that
raised by each of the individual random-sampling auctions.

4.1 Competitive Random Sampling Auctions
First we describe truthful auctions that are competitive

against the optimal single price and weighted price revenues.



The auctions in this section are based on the random sam-
pling auction from [9]. However, extending previous analy-
ses gives us a competitive ratio that approaches 2 against the
optimum weighted price revenue and 4 against the optimum
single price revenue. First we improve upon the analysis in
[1] by a factor 2, to obtain a competitive ratio that also ap-
proaches 2 against the optimum single price revenue. Next,
we incorporate decreasing slot-clickabilities into our analysis
to further improve our guarantees to approach near optimal,
as the steepness in clickthrough rates increases.

The two competitive auctions use versions of ProfitExtract
from [9] that are described in the Appendix. Given a set
of bidders S and a revenue R, ProfitExtractR

WP is an in-
centive compatible auction that extracts revenue R using
weighted pricing, if OPTWP (S) ≥ R. Given a set of bidders
S and a revenue R, ProfitExtractR

SP is an incentive com-
patible auction that extracts revenue R using single pricing,
when possible. Unlike ProfitExtractWP , this auction as-
signs higher slots to bidders whose ads have higher clicka-
bilities.

4.1.1 Mechanism competitive with OPTWP

Now we give an auction mechanism MWP which has high
competitive ratio (less equal 4 and asymptotically optimal as
a function of bidder dominance and slot clickabilities) with
respect to OPTWP .

Mechanism MWP

1. Partition bidders independently and uniformly at ran-
dom into two subsets S1 and S2.

2. Compute R1 = OPTWP (S1)−ε, and R2 = OPTWP (S2)+
ε.

3. Run ProfitExtractR1
WP on the bidders in S2, and

ProfitExtractR2
WP with the bidders in S1.

We assume that revenues are calculated to some finite
precision, and we choose ε > 0 to be small compared with
this precision.

A straightforward application of the analysis from [9] pro-
vides at most a guarantee of two, because the revenue ex-
tracted is the lesser of the random division of contributions
to the optimum. Our setting has a unique structure which
allows us to improve upon this guarantee: clickthrough rates
are decreasing with respect to rank. The performance of
MWP depends on the bidder dominance with respect to par-
ticipants (i.e., the inverse of the number of participants),
and the drop-off rate of the slot-clickabilities. We show that
the revenue from MWP is at least a factor 1/4 of OPTWP ,
and approaches optimal as the bidder dominance decreases
and the drop-off in slot-clickabilities becomes steep:

Theorem 8. MWP is truthful, and has competitive ratio

βWP =
θ̄r

g(αWP )θ̄br/2c

with respect to OPT 2
WP (the optimal weighted price auc-

tion selling at least two items), where g(αWP ) ≥ 1/4, and
g(αWP ) → 1/2 as αWP → 0.

Here θ̄m = Θm
m

is the average clickability for the top m slots.

(Since the θs are decreasing, θ̄m decreases as m increases,

i.e., as we average over more slots.) The bidder dominance,
αWP , is defined as

αWP =
1

r
,

where r = |OW | is the number of slots sold in OPTWP . The
function g(x) is defined in the Appendix, and lies between
1/4 and 1 for x ≤ 1/2.

4.1.2 Mechanism competitive with OPTSP

Next we describe and analyze a mechanism which is com-
petitive with respect to OPTSP . An application of previous
results [1, 9] gives an auction that approaches a competi-
tive ratio of 4 as the bidder dominance decreases. We give
a new proof that tightens previous analysis and allows us
to achieve a competitive ratio of 2 (this also improves on
the results in [1]). We define bidder dominance in the con-
text of single price, to be the largest advertiser clickability
in the optimum solution divided by the sum of advertiser
clickabilities in the optimum solution. Then, we provide an
analysis showing that as the CTRs become more steep, and
the bidder dominance approaches 0, the competitive ratio
approaches 1.

Recall that OS is the set of bidders contributing positive
revenue to OPTSP , p = |OS | and the optimal single price is
vp.

Define the average clickability of bidders in OS as

µ̄ =

P
i∈OS

µi

p
,

and the bidder dominance

αSP =
µmaxP
i∈OS

µi
,

where µmax is the largest clickability of bidders in OS . The
smallest value of αSP with p bidders in the optimal single
price solution is 1/p, when all bidders have the same click-
ability. (Note that this bidder dominance depends both on
bidders’ values (which are implicitly present in αSP through
p), and the clickabilities of the bidders in OS .)

Define a second bidder dominance parameter

α′
SP =

θ1µmaxP
i∈OS

θjµi(j)

.

Observe that since the θ are decreasing, αSP ≤ α′
SP , with

equality when all the θi are equal.
We prove that the mechanism below achieves near opti-

mal revenue as αSP → 0, and the slot clickabilities decrease
steeply enough. The competitive ratio also shows that the
revenue is always greater than 1

4
when at least two items are

sold.

Mechanism MSP

1. Partition bidders independently and uniformly at ran-
dom into two subsets S1 and S2.

2. Compute R1 = OPTSP (S1)−ε and R2 = OPTSP (S2)+
ε.

3. Run ProfitExtractR1
SP on the bidders in S2, and

ProfitExtractR2
SP with the bidders in S1.

We prove the following theorem about this mechanism
(the proof is included in the Appendix):



Theorem 9. MSP is truthful, and has competitive ratio

βSP = max

0@ pθ̄pαSP

g(αSP )θ̄p− 1
2αSP

,
1

g(α′
SP )

1A ,

against OPTSP when αSP ≤ 1/2, where 1
2
≤ 1

2αSP
≤ p

2
,

and g(x) is as in (5).

To understand why decreasing clickabilities is advanta-
geous, consider a weighted price solution with two bidders.
Each is capable of contributing the same amount to the op-
timum solution. We could place them in arbitrary positions
and still obtain the same optimal revenue. However, in the
optimum solution the one placed in the highest position con-
tributes more. Now suppose they have been divided into two
bins, (a.k.a. the first step of the random sampling auction).
Each bidder can now potentially contribute as much as the
highest contributor to revenue, even though its true contri-
bution in the optimum is actually much less. This is the
intuition behind our improved analysis.

4.2 Combining the mechanisms
As we saw in §3, for a particular set of values and click-

abilities (vi, µi), either the optimum weighted price revenue
OPTWP or optimum single price revenue OPTSP could be
larger. However, which of the two is actually larger can-
not be determined without knowing the true values of the
bidders.

Here, we describe a mechanism to combine the two auc-
tions in §4 to raise a larger revenue. Of course, we can
combine the two auctions using randomization into a single
truthful auction that raises expected revenue 1

2
(OPTSP /βSP +

OPTWP /βWP ). To achieve a revenue that is the better of
the two auctions, we break from truthful mechanism de-
sign and instead design an auction with equilibria (which
we show always exist) such that the revenue raised is at
least the larger of the revenues that would be raised by the
auctions MWP and MSP . The resulting equilibrium analysis
framework for the random sampling approach is more robust
and malleable. Our hope is that this additional flexibility
will have implications for other contexts and applications as
well.

Mechanism MC

1. Partition the bidders randomly into two sets A and
B, announce the partition, and collect bids from all
bidders.

2. Compute RA = max(OPT A
SP , OPT A

WP ), and
RB = max(OPT B

SP , OPT B
WP ) using the reported bids.

3. Run ProfitExtractRB

SP on the bidders in A; if the auc-

tion fails to raise revenue RB , run ProfitExtractRB

WP .
Do the same for the bidders in B.

4. If RA = RB , then items are only assigned to bidders
in partition A.

In what follows, we will use RA∗
to denote the value of

RA when every bidder bids his true value (similarly for RB ,
OPT A

SP , OPT A
WP , OPT B

SP , and OPT B
WP ).

We show the following result for the combined auction for
every instance of the random partition of bidders:

Theorem 10. There always exists an equilibrium solu-
tion with revenue at least

R = min(max(OPT A∗
SP , OPT A∗

WP ), max(OPT B∗
SP , OPT B∗

WP )).

Further, if bidders bid their true value whenever bidding
truthfully belongs to the set of utility maximizing strategies,
every Nash equilibrium of MC has this property.

Proof. Assume wlog that RA∗
≥ RB∗

. First we will
show existence. We consider the following cases:

• Case I: RB∗
> min(OPT A∗

SP , OPT A∗
WP ), i.e., only one

of the two auctions can raise the revenue RB∗
from

bidders in A. Then bi = vi is a Nash equilibrium for
the combined auction: every bidder who does not win
an item has no incentive to deviate from bi = vi, since
his utility is 0 for all bi ≤ vi, and can only be non-
positive if he reports a bid bi > vi. Every bidder who
wins an item has no incentive to deviate: if he reports
bi ≤ vi, his utility cannot increase, since he either fails
to win an item, or wins an item but still pays a price
independent of his bid. This Nash equilibrium raises
revenue RB∗

, since every bidder in B reports his true
value.

• Case II: RB∗
≤ min(OPT A∗

SP , OPT A∗
WP ), i.e., the rev-

enue RB∗
can be extracted using both single price and

weighted price mechanisms from bidders in A. We will
show that there is a Nash equilibrium in which B is
the losing partition, and bids are as specified below.

First, note that for all bidders (in both partitions) who
do not win an item in either solution, there is no incen-
tive to deviate from bi = vi, using the same reasoning
as above. Since the bidders in B lose, the mechanism
tries to extract revenue RB∗

from the bidders in A.

For the same reason, every bidder who can win an item
in only one of OPTSP or OPTWP has no incentive to
deviate from bi = vi. This leaves us with bidders who
might win an item in both OPTSP and OPTWP . We
consider two sub-cases for bidders with such values,
based on the following condition:

Condition C: There is no bidder with higher utility in
OPTWP who can unilaterally decrease his bid enough
to ensure that ProfitExtractSP fails to extract RB∗

,
while still winning an item in OPTWP .

– Condition C holds: In this case, bi = vi is an
equilibrium vector of bids. A bidder winning an
item in both OPTWP and OPTSP has no incen-
tive to bid bi > vi; if he reports bi < vi, he might
fail to win an item in OPTSP , which still extracts
revenue RB∗

by assumption.

– Condition C does not hold (i.e., there is at least
one bidder with higher utility in OPTWP who
can unilaterally decrease his bid enough to ensure
that ProfitExtractSP fails to extract RB∗

while
still winning an item in OPTWP .)

Let w∗ be the single weighted price at which
ProfitExtractWP extracts revenue RB∗

from the
bidders in A. Let i be a bidder satisfying the
condition above. Then the vector of bids with
bi = w∗/µi for any one bidder satisfying this
condition, and bi = vi for all other bidders is



a Nash equilibrium: there is no incentive for i
to change his bid because bi is the lowest bid at
which i still can win an item in OPTWP ; by as-
sumption this bid is low enough to ensure that
ProfitExtractSP fails to raise RB∗

. Further,
bidder i cannot increase his utility by deviating
from this value, nor can any other bidder improve
its utility by deviation. Note that bidder i can be
any single bidder that causes the condition to be
violated.

Therefore, in either subcase, there is a Nash equilib-
rium in which B is the losing partition, and that ex-
tracts the specified revenue.

We now prove the second part of the theorem. If bidders
bid their true value whenever bidding truthfully belongs to
the set of utility maximizing strategies, bidders in the losing
partition always bid their true value. Therefore, the only
Nash equilibria are those where B is the losing partition, in
which case a revenue of RB∗

is extracted. So every Nash
equilibrium of MC extracts the specified revenue.

For a particular partition of the bidders into A and B, the
revenue extracted by MSP is

RSP = min(OPT A∗
SP , OPT B∗

SP ),

and the revenue extracted by MWP is

RWP = min(OPT A∗
WP , OPT B∗

WP ).

From Theorem 10, the revenue extracted by the auction
MC is min(max(OPT A∗

SP , OPT A∗
WP ), max(OPT B∗

SP , OPT B∗
WP )),

which is greater equal max(RWP , RSP ). Taking the expec-
tation over random partitions, we see that the expected rev-
enue from MC is max(βpOPTSP , βrOPTWP ). (Note that
MC is actually stronger, since we obtain the larger revenue
of MWP and MSP for every partition, not just in expecta-
tion over partitions.)

5. SIMULATION RESULTS
In this section we discuss our simulation results, shown

in Figures ??. We draw bidder valuations from a lognormal
distribution with increasing variance and unit mean. This
distribution has been used previously [7] and also fits the
distribution observed in practice. For our simulations, we
used n = 50 bidders, k = 12 slots, and ad-clickabilities µi

proportional to vi. Each point plotted in a figure is obtained
by averaging over 800 draws of bidder valuations from a log-
normal distribution of the corresponding variance and unit
mean. We use two sets of vectors for the slot clickabili-
ties θ. We call slot clickabilities with θi = 0.7i Geometric
Slot-clickabilities. This distribution for slot clickabilites is in
keeping with [8]. When several advertisements are shown
at the top of the page and others shown along the right hand
side, the slot clickabilities tend to be significantly larger for
advertisements shown along the top. To model this situ-
ation, we use a set of Sharp Geometric Slot-clickabilities,
where the first four slots (presumably shown along the top),
decrease by a factor of .85, starting from .85, and the re-
maining slots along the east, starting from .4, decrease by a
factor of .4. We also point out that because ad-clickabilities
have the same ordering as the bid values, due to Theorem 6,

Figure 1: Geometric Slot-clickabilities: Revenue
versus Variance of Bidder Valuations Drawn from
a Log-normal Distribution

Figure 2: Sharp Geometric Slot-clickabilities: Rev-
enue versus Variance Including OPTmp

the revenue of a Nash equlibria using Mechanism MC equals
the revenue extracted using Mechanism MSP .

The general shape of Figures 2 and 1 follow a similar pat-
tern. For σ = 0, there is no variance in the bids and both
algorithms achieve the revenue of the optimal multi-price
solution. Initially, the variance of the bids is small, and the
VCG auction outperforms the combined auction. As the
variance in the bid values begin to diverge more sharply,
the combined mechanism outperforms VCG.

VCG revenue decreases dramatically because as the bid
values become more varied and every individual’s bid value
more distinctive, the externalities a bidder imposes on others
decreases (because externalities measure, to some degree,
how ’replaceable’ a bidder is). We can also consider highly
varied bid values as a less competitive market. If a single
bidder’s value lies far away from others, it does not have to
fight other contenders off for his position: it is clear who the
winners should be and there is not much competition for the
clicks.

It is often difficult to design incentive compatible auctions
for markets with little competition. Truthful auctions rely
on bids other than bi to set values for bidder i. When there
is a lot of variance in the bids, choosing a reasonable price
is more challenging. This can be seen by observing Figure
3. The multiprice optimum shoots up, relative to both al-
gorithms, as the bidder variance increases. This suggests
that both algorithms have difficulty obtaining revenue in
these situations. The simulations corroborate the findings
in Theorem 3, which prove analytically that the tighter the
range of bidder vales, the higher the performance guarantee.

Since the combined mechanism is designed to do well in a
worst case setting, it is not surprising that its performance
improves relative to VCG exactly when maintaining a mini-



mal amount of revenue in the face of a challenging situation
(i.e.non-competitive market) is encountered.

Figures 1 and 2 highlight how the steepness of slot-clickaiblities
impacts the algorithms’ revenues. There is very little differ-
ence in the curve for the VCG mechanism when the slot
clickabilities are steeper. However, the improvement for
the combined mechanism is more noticeable, outperforming
VCG earlier and by a larger margin. This is consistent with
our analysis, which indicates that the auction will perform
better as the steepness in slot clickabilities increases.

Figure 3: Revenue versus Variance Including
OPTMP

Our simulations use the algorithms described in §4 and
§4.2, but the auctioneer could alternatively implement a
variation of the combined auction where the partition splits
into two sets of equal size, chosen uniformly at random.
In practice, this algorithm maintains an equilibrium (and
truthfulness where appropriate). Although more cumber-
some to analyze, it is a more appropriate algorithm in to use
in practice and leads to a slight increase in performance.

6. FUTURE WORK
There are a number of interesting questions that remain

open. First, is whether it is possible to design truthful auc-
tions that achieve better guarantees (i.e., better competitive
ratios, an impossibility result, or the larger revenue of the
MSP and MWP ). Another question is whether it is possi-
ble to perform competitive analysis using random sampling
optimal price, along the lines of [9, 4].

One possible direction for future work is to compare the
performance of these auctions against other benchmarks.
Perhaps we can theoretically bound the revenue in our auc-
tion against VCG revenue, or against the best VCG revenue
obtained by artificially limiting the supply as in [12]. An-
other possible benchmark would be to compare against the
optimal revenue auction from Myerson[18] given noisy infor-
mation about bidder valuations.

A considerable obstacle in achieving good bounds for key-
word search problems is that the performance relies on hav-
ing a large scale problem where no individual bidder has
too much influence on the optimum solution. If there are
many auctions with similar properties, it is possible that
they could be used either to merge markets together so that
the competitive ratio approaches optimal more quickly, or
to use advertisers and bidders for one set of keywords to
determine solutions for other sets of keywords.

Finally, it would be interesting to set reserve prices using
the auctions presented here.

Acknowledgements: We are very grateful to Andrei
Broder, Ravi Kumar, Ofer Mendelevitch and Michael Schwarz
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APPENDIX
First we give the two extensions of ProfitExtract used in
MWP and MSP .

ProfitExtractR
WP - A Weighted Price Auction

Set K = min(k, |S|). While K > 0

1. Set w = RPK
i=1 θi

.

2. If there are at least K bidders with bid bi ≥ w/µi,
assign slot j to the bidder with clickability µi(j) for
j = 1, . . . , k, and return this allocation and w.

3. Set K = K − 1.

If K = 0, all bidders lose.

Lemma 1. ProfitExtractR
WP is truthful, and extracts rev-

enue R if R ≤ OPTWP (S), and 0 otherwise.

We note that arbitrarily allocating winning bidders to
slots can also be used for the same results; we use this for
consistency with the ProfitExtractSP .

ProfitExtractR
SP - A Single Price Auction

Set S̄ = S, the set of all bidders. While S̄ 6= ∅
1. Set K = min(k, |S̄|).
2. Set p = RPK

j=1 µi(j)θj
, where µi(j) denotes the jth

largest clickability of bidders in S̄.

3. If each of the k bidders contributing to the denom-
inator has bid bi(j) ≥ p, assign slot j to the bidder
with clickability µi(j) and return this allocation and
a single price of p.

4. Remove all bidders with bi < p from S̄.

If S̄ = ∅, all bidders lose.

Lemma 2. ProfitExtractR
SP is truthful, and extracts rev-

enue R if R ≤ OPTSP (S), and 0 otherwise.

A. COMPETITIVE RATIO OF MWP

Theorem 11. MWP is truthful, and has competitive ratio

βWP =
θ̄r

g(αWP )θ̄br/2c

with respect to OPT 2
WP , where g(αWP ) ≥ 1/4, and g(αWP ) →

1/2 as αWP → 0.

Proof. The revenues R1 (resp. R2) to be extracted and
the number of slots k are independent of the bids of bidders
in S2 (resp. S1). Since ProfitExtractWP with independent
parameters is truthful, MWP is truthful in this case. The
addition and subtraction of ε ensures R1 6= R2. Combined
with Lemma 1, the revenue from this auction is RWP =
min(R1, R2), exactly one side of the partition wins, and we
do not oversell advertisement slots. Since ε is chosen to
be very small compared to the precision of the revenue, we
ignore it in the analysis that follows.

Observe that R1 is greater equal the optimal weighted
price revenue from bidders in S1∩OW . So we need only con-
sider partitioning the bidders in OW to bound the revenue.
If |S1∩OW | = i, and |S2∩OW | = r−i, then R1 ≥ wriθ̄i, and
R2 ≥ wr(r − i)θ̄r−i, where wr = vrµr is the contribution of
each bidder in OPTWP . So we have

E[RWP ]

OPT 2
WP

≥ 1

rθ̄r

r−1X
i=1

min(Θi, Θr−i)

 
r

i

!
2−r

≥
θ̄br/2c

rθ̄r

b r
2 cX

i=1

i

 
r

i

!
2−r

≥
θ̄br/2c

θ̄r

(
1

2
−

 
r − 1

b r
2
c

!
2−r),

where the second line follows since iθ̄br/2c ≤ iθ̄i = Θi for all
i ≤ br/2c. Define, for x ≤ 1/2,

g(x) = xb 1

x
c

 
1

2
−

 
b 1

x
c − 1

b 1
2x
c

!
2−b

1
x
c

!
. (5)

Thus, the competitive ratio is θ̄r
g(αW P )θ̄br/2c

as stated.

B. COMPETITIVE RATIO OF MSP

Theorem 12. MSP is truthful, and has competitive ratio

βSP = max

0@ pθ̄pαSP

g(αSP )θ̄p− 1
2αSP

,
1

g(α′
SP )

1A ,

against OPTSP when αSP ≤ 1/2, where 1
2
≤ 1

2αSP
≤ p

2
,

and g(x) is as in (5).

Proof. Following the same reasoning as in the proof of
Theorem 11, MSP is truthful, and the revenue extracted
is min(R1, R2) (and exactly one side of the partition wins).
Again, we ignore ε in the analysis since it is negligibly small.

Let r = (r1, . . . , rn), where ri is the revenue contributed
by bidder i to OPTSP . Observe that R1 ≥

P
i∈S1∩OS

ri :
every bidder in S1 ∩ OS has value greater equal vp, and is
assigned to a slot with θj greater equal his assignment in
OPTSP (the same argument holds for R2). So it is enough
to consider bidders in OS , and bound

R(r) = E[min(
X

i∈S1∩OS

ri,
X

i∈S2∩OS

ri)]

against
P

i∈OS
ri.

To do this we will apply Lemma 3 to a vector r′ with
m = b1/α′

SP c non-zero entries of value rmax = θ1µmax each,



where r′ is obtained by repeatedly applying Redistribute
(see Lemma 3) to r. From the Lemma, bounding

R(r′) = E[min(
X

i∈S1∩OS

r′i,
X

i∈S2∩OS

r′i)]

gives us a bound on revenue. But this is easy since each of
the non-zero entries in r′ have the same value rmax:

R(r′) = rmax

m−1X
i=1

min(i, m− i)

 
m

i

!
2−m = mrmaxg(α′

SP ).

Therefore,

R(r)

OPTSP
≥ g(α′

SP ). (6)

However, this analysis does not account for the fact while
computing the optimum single price revenues on each side,
the winning bidders are associated with clickthrough rates
greater equal those in OPTSP . Next we obtain another
bound accounting for this; the final competitive ratio is the
better of the two bounds.

For any partition of the bidders, assume wlog that the
sum of clickabilities of bidders from OS is smaller in the
partition S1, and letX

i∈S1∩OS

µi = δ(
X

i∈OS

µi) = δpµ̄,

where 0 ≤ δ ≤ 1/2. Let X = |OS ∩ S1|. The optimal single
price revenue from this subset of the bidders is

R1 ≥ vp

X
i∈O∩S1

µi(j)θj

≥ vp
δpµ̄

X

XX
j=1

θj

= vpδpµ̄θ̄X ,

where the second line follows from
nX

i=1

aibi ≥
Pn

i=1 ai

n

nX
i=1

bi

if a1 ≥ . . . ≥ an, b1 ≥ . . . ≥ bn (recall that the mechanism
assigns bidders with highest clickabilities to the top slots).
Similarly,

R2 ≥ vp(1− δ)pµ̄θ̄p−X .

So the smaller of the two revenues is bounded by

min(R1, R2) ≥ (pvpµ̄)min(δ, 1− δ)min(θ̄X , θ̄p−X)

= pvpµ̄δθ̄max(X,p−X),

since we assumed 0 ≤ δ ≤ 1/2 and θ̄m decreases with in-
creasing m since the θs are decreasing.

Define γ = µmax
µ̄

= αp. We upper bound X as follows: the
number of bidders in the partition with the larger fraction
of µ̄p must be at least

(p−X) ≥ (1− δ)pµ̄

µmax
,

⇒ X ≤ (γ − 1 + δ)p

γ
≤

p(γ − 1
2
)

γ
,

since δ ≤ 1/2. Since γ ≥ 1, (γ − 1/2)/γ ≥ 1/2, and so

max(X, p−X) ≤
p(γ − 1

2
)

γ

as well.
So for a particular partition with ratio δ, we have

min(R1, R2) ≥ δpvpµ̄θ̄ p(γ− 1
2 )

γ

, (7)

where now the only term that depends on the random par-
tition is δ.

The single price optimal revenue is bounded as

OPTSP ≤ vpµmaxpθ̄p = γpvpµ̄θ̄p.

So the expected revenue from this mechanism is

min(R1, R2)

OPTSP
≥

E[δ]θ̄ p(γ− 1
2 )

γ

γθp
, (8)

where

E[δ] = (
X

i∈OS

µi)E[min(
X

i∈S1∩OS

µi,
X

i∈S2∩OS

µi)].

We bound E[δ] using Lemma 3 as we did above, to obtain

min(R1, R2)

OPTSP
≥ g(αp)

θ p(γ− 1
2 )

γ

γθp
. (9)

Combining the two results in (6) and (9), and using γ =
αp, we have the theorem.

Now we state and prove Lemma 3. Let b = (b1, . . . , bn) be
a vector of nonnegative numbers. For i, j with bi ≥ bj , and
any ∆ with 0 ≤ ∆ ≤ bj , define b′ = Redistribute(b, i, j, ∆)
to be the vector with b′i = bi +∆, b′j = bj −∆, and b′m = bm

for m 6= i, j. Define R(b) = E(min(
P

i∈S1
bi,
P

i∈S2
bi)),

where each bi is independently thrown into S1 or S2 with
probability 1/2 (i.e., R(b) is the expected value over random
partitions of the sum of entries in the smaller partition).

Lemma 3. For any nonnegative vector b, R(b) ≥ R(b′),
where b′ = Redistribute(b, i, j, ∆).

Proof. Let S0 = {1, . . . , n}. Consider the set Smin of
all subsets with the lesser sum for the given vector b, i.e.,
Smin = {S ⊂ S0|

P
j∈S bj ≤

P
j∈S0−S bj}. Given i and

j, the indices of the bids in the Redistribute operation,
partition the sets in Smin into four sets as Sbibj = {S ∈
Smin|bi, bj ∈ S}, Sb̄i b̄j

= {S ∈ Smin|bi, bj∈̄S}, Sbi b̄j
= {S ∈

Smin|bi ∈ S, bj∈̄S}; Sb̄ibj
= {S ∈ Smin|bi∈̄S, bj ∈ S}.

Let pS denote the probability of a particular set S ∈ Smin

being the subset in the random partition with the smaller
value (note that choosing S is the same as choosing the
partition of the bids bi). Let us write |S|b =

P
i∈S bi, and

|b| =
Pn

i=1 bi. Then,

R(b) =
X

S∈Sb̄ibj

pS |S|b +
X

S∈Sbib̄j

pS |S|b,

+
X

S∈Sbibj

pS |S|b +
X

S∈Sb̄ib̄j

pS |S|b (10)



and

R(b′) =
X

S∈Sb̄ibj

pS(|S|b −∆)

+
X

S∈Sbib̄j
,|S|b+∆≤ |b|

2

pS(|S|b + ∆)

+
X

S∈Sbib̄j
,|S|b+∆>

|b|
2

pS(|b| − |S|b −∆)

+
X

S∈Sbibj

pS |S|b +
X

S∈Sb̄ib̄j

pS |S|b. (11)

Note that for sets S with Sb + ∆ > |b|/2, |S|b − ((|b| −
|S|b − ∆) = 2|S|b − |b| + ∆ > −∆. Subtracting (11) from
(10) and using this, we see that

R(b)−R(b′) >
X

S∈Sb̄ibj

∆pS +
X

S∈bi b̄j ,|S|b+∆≤|b|/2

pS(−∆)

+
X

S∈Sbib̄j
,|S|b+∆>|b|/2

pS(−∆)

= ∆(
X

S∈Sb̄ibj

pS −
X

S∈Sbib̄j

pS).

But this difference is clearly positive: since bj ≤ bi, for
every set S ∈ Sbi b̄j

, there is a set S′ ∈ Sb̄ibj
obtained by

swapping bi with bj ; also pS′ = pS . So
P

S∈Sb̄ibj

pS >P
S∈Sbib̄j

pS , and the lemma is proved.


