
Network Properties of Folksonomies

Christoph Schmitz3 Miranda Grahl3

Andreas Hotho3 Gerd Stumme3

3Knowledge & Data Engineering Group, Dept. of Mathematics and Computer Science
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ABSTRACT
Social resource sharing systems like YouTube and del.icio.us
have acquired a large number of users within the last few
years. They provide rich resources for data analysis, infor-
mation retrieval, and knowledge discovery applications. A
first step towards this end is to gain better insights into
content and structure of these systems. In this paper, we
will analyse the main network characteristics of two of the
systems. We consider their underlying data structures – so-
called folksonomies – as tri-partite hypergraphs, and adapt
classical network measures like characteristic path length
and clustering coefficient to them.

Subsequently, we introduce a network of tag co-occurrence
and investigate some of its statistical properties, focusing on
correlations in node connectivity and pointing out features
that reflect emergent semantics within the folksonomy. We
show that simple statistical indicators unambiguously spot
non-social behavior such as spam.

Categories and Subject Descriptors
H.3.4 [Information Systems]: Systems and Software; H.3.1
[Information Storage and Retrieval]: Content Analy-
sis and Indexing; G.2.2 [Mathematics of Computing]:
Graph Theory
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folksonomies, semiotics, semiotic dynamics, small worlds

1. INTRODUCTION
A new family of so-called “Web 2.0” applications is cur-
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rently emerging on the Web. These include user-centric
publishing and knowledge management platforms like Wi-
kis, Blogs, and social resource sharing systems. In this pa-
per, we focus on resource sharing systems, which all use the
same kind of lightweight knowledge representation, called
folksonomy. The word ‘folksonomy’ is a blend of the words
‘taxonomy’ and ‘folk’, and stands for conceptual structures
created by the people.

Resource sharing systems, such as YouTube1 or del.icio.us,2

have acquired large numbers of users (from discussions on
the del.icio.us mailing list, one can approximate the number
of users on del.icio.us to be several hundreds of thousands)
within less than three years. The reason for their immedi-
ate success is the fact that no specific skills are needed for
participating, and that these tools yield immediate benefit
for each individual user (e.g. organizing ones bookmarks
in a browser-independent, persistent fashion) without too
much overhead. Large numbers of users have created huge
amounts of information within a very short period of time.

In this paper, we will investigate the growing network
structure of folksonomies over time from different viewpoints,
using two datasets from running systems as examples.

Firstly, we investigate the network structure of folksono-
mies much on the same line as the developments in an area of
research called “the new science of networks”. To that end,
we will adapt measures for so-called “small world networks”
which have been used on a wide variety of graphs in recent
years, to the particular tripartite structure of folksonomies
and show that folksonomies do indeed exhibit a small world
structure.

Secondly, beyond the analysis of the whole hypergraph,
we also consider specific projections of it by narrowing the

1http://www.youtube.com/
2http://del.icio.us



scope and focusing on particular features of the structure.
We analyze in particular the tag co-occurrence network and
study its properties. This is a weighted network where each
tag is a node and links are drawn between a pair of tags
whenever the two tags co-occur in the same post and the
weight is given by the number of different posts where that
pair appears.

This tag co-occurrence network can be used to get insights
into the tagging behaviour of users and to detect anomalies,
e. g. those inflicted by spammers.

The remainder of the paper is structured as follows: In
Section 2, we discuss related work. Section 3 introduces two
large scale folksonomy datasets which our analyses will be
based on. Section 4 introduces quantitative measures for
the network properties for the tripartite structure of a folk-
sonomies. Section 5 examines a projection of the tripartite
graph by studying the structure of the tag co-occurrence
network. Finally in Section 6 we draw some conclusions and
highlight open issues.

2. RELATED WORK

2.1 Folksonomies and Folksonomy Mining
As the field of folksonomies is a young one, there are rela-

tively few scientific publications about this topic. Refs. [14,
8] provide a general overview of folksonomies, their struc-
ture, and provide some insights into their dynamics.

More recently, particular aspects of folksonomies have been
elaborated in more detail, e.g. ranking of contents [10], dis-
covering trends in the tagging behaviour of users [7, 11], or
learning taxonomic relations from tags [9, 20, 19, 15].

2.2 Complex Networks
The graph-theoretic notions of Section 4 are derived from

those developed in an emerging area of research which has
been called “the new science of networks”, using concepts
from social network analysis, graph theory, as well as statis-
tical physics; see [18] for an overview.

In particular, the notions of clustering coefficient and char-
acteristic path length as indicators for small world networks
have been introduced by Watts and Strogatz [24]; for partic-
ular kinds of networks, such as bipartite [13] or weighted [2]
graphs, variants of those measures have been devised. To
the best of our knowledge, no versions of these measures for
tripartite hypergraphs such as folksonomies, or hypergraphs
in general, have been proposed previously.

Networks related to folksonomy, in line with other dif-
ferent human based social or technological networks, pos-
sess lot of other peculiar characteristics. Probably the most
striking is the observation that the degree of nodes, i.e. the
number of links connected to a node, follows a fat tailed
distribution index of a complex interaction between human
agents [22]. Work has been done also on the complex net-
work of WikiPedia [5] where links also posses a specific di-
rection.

3. FOLKSONOMY DATA SETS
In this section, we will introduce the formal notation used

in the remainder of the paper, as well as the two large scale
data sets that we will discuss in the following sections.

3.1 Folksonomy Notation
In the following, we briefly recapitulate the formal nota-

tion for folksonomies introduced in [10], which we will use
in the remainder of the paper.3

A folksonomy is a tuple F := (U, T, R, Y ) where

• U , T , and R are finite sets, whose elements are called
users, tags and resources, resp., and

• Y is a ternary relation between them, i. e. Y ⊆ U ×
T ×R, called tag assignments (TAS for short).

Another view on this kind of data is that of a 3-regular,
tripartite hypergraph, in which the node set is partitioned
into three disjoint sets: V = T ∪ U ∪ R, and every hyper-
edge {t, u, r} consists of exactly one tag, one user, and one
resource.

Sometimes it is convenient to consider all tag assignments
of a given user to a given resource. We call this aggrega-
tion of TAS of a user u to a resource r a post P (u, r) :=
{(t, u, r) ∈ Y | t ∈ T}.

3.2 del.icio.us Dataset
For our experiments, we collected data from the del.ico.us

system in the following way. Initially we used wget start-
ing from the start page of del.ico.us to obtain nearly 6,900
users and 700 tags as a starting set. Out of this dataset
we extracted all users and resources (i. e. del.icio.us’ MD5-
hashed URLs). From July 27 to 30, 2005, we downloaded
in a recursive manner user pages to get new resources, and
resource pages to get new users. Furthermore we monitored
the del.icio.us start page to gather additional users and re-
sources. This way we collected a list of several thousand
usernames which we used for accessing the first 10,000 re-
sources each user had tagged. From the collected data we
finally took the user files to extract resources, tags, dates,
descriptions, extended descriptions, and the corresponding
username.

We obtained a folksonomy with |U | = 75, 242 users, |T | =
533, 191 tags and |R| = 3, 158, 297 resources, related by in
total |Y | = 17, 362, 212 tag assignments. In addition, we
generated montly dumps from the timestamps associated
with posts, so that 14 snapshots in monthly intervals from
June 15th, 2004 through July 15th, 2005 are available.

3.3 BibSonomy Dataset
As some of the authors are involved in the folksonomy

site BibSonomy4, a second dataset from that system could
be obtained directly from a database dump.

As with the del.icio.us dataset, we created monthly dumps
from the timestamps, resulting in 20 datasets. The most re-
cent one, from July 31st, 2006, contains data from |U | = 428
users, |T | = 13, 108 tags, |R| = 47, 538 resources, connected
by |Y | = 161, 438 tag assignments.

4. SMALL WORLDS IN THREE-MODE-
NETWORKS

The notion of a small world has been introduced in a
seminal paper by Milgram [16]. Milgram tried to verify in a
practical experiment that, with a high probability, any two

3We use the simplified version without personomies or hier-
archical relations between tags here.
4http://www.bibsonomy.org



given persons within the United States would be connected
through a relatively short chain of mutual acquaintances.
Recently, the term “small world” has been defined more pre-
cisely as a network having a small characteristic path length
comparable to that of a (regular or Erdős) random graph,
while at the same time exhibiting a large degree of cluster-
ing [23] (which a random graph does not). These networks
show some interesting properties: while nodes are typically
located in densely-knit clusters, there are still long-range
connections to other parts of the network, so that informa-
tion can spread quickly. At the same time, the networks
are robust against random node failures. Since the coining
of the term “small world”, many networks, including social
and biological as well as man-made, engineered ones, have
been shown to exhibit small-world properties.

In this section, we will define the notions of characteristic
path length and clustering coefficient in tripartite hyper-
graphs such as folksonomies, and apply these to the data
sets introduced in Section 3 in order to demonstrate that
these graphs do indeed exhibit small world properties.

4.1 Characteristic Path Length
The characteristic path length of a graph [23] describes the

average length of a shortest path between two random nodes
in the graph. If the characteristic path length is small, few
hops will be neccessary, on average, to get from a particular
node in the graph to any other node.

As folksonomies are triadic structures of (tag, user, re-
source) assignments, the user interface of such a folksonomy
system will typically allow the user to jump from a given tag
to (a) any resource associated with that tag, or (b) any user
who uses that tag, and vice versa for users and resources.
Thus, the effort of getting from one node in the folksonomy
to another can be measured by counting the hyperedges in
shortest paths between the two.

More precisely, let v1, v2 ∈ T ∪U ∪R be nodes in the folk-
sonomy, and (t0, u0, r0), . . . , (tn, un, rn) a minimal sequence
of TAS such that (tk = tk+1) ∨ (uk = uk+1) ∨ (rk = rk+1)
for 0 ≤ k < n and v1 ∈ {t0, u0, r0}, v2 ∈ {tn, un, rn}. Then
we call d(v1, v2) := k the distance of v1 and v2.

Following Watts [23], we define d̄v as the mean of d(v, u)
over all u ∈ (T ∪ U ∪ R) − {v}, and call the median of the
d̄v over all v ∈ T ∪U ∪R the characteristic path length L of
the folksonomy.

In Section 4.3, we will analyse the characteristic path
length on our datasets.

4.2 Clustering Coefficients
Clustering or transitivity in a network means that two

neighbors of a given node are likely to be directly connected
as well, thus indicating that the network is locally dense
around each node. To measure the amount of clustering
around a given node v, Watts [23] has defined a clustering
coefficient γv (for normal, non-hyper-graphs). The cluster-
ing coefficient of a graph is γv averaged over all nodes v.

Watts [23, p. 33] defines the clustering coefficient γv as
follows (Γv = Γ(v) denotes the neighborhood of v):

Hence γv is simply the net fraction of those pos-
sible edges that actually occur in the real Γv.
In terms of a social-network analogy, γv is the
degree to which a person’s acquaintances are ac-
quainted with each other and so measures the

cliquishness of v’s friendship network. Equiva-
lently, γv is the probability that two vertices in
Γ(v) will be connected.

Note that Watts combines two aspects which are not equiv-
alent in the case of three-mode data. The first one is: how
many of the possible edges around a node do actually oc-
cur, i. e. does the neighborhood of the given vertex approach
a clique? On the other hand, the second aspect is that of
neighbors of a given node being connected themselves.

Following the two motivations of Watts, we thus define
two different clustering coefficients for three-mode data:

Cliquishness: From this point of view, the clustering coef-
ficient of a node is high iff many of the possible edges
in its neighborhood are present.

More formally: Consider a resource r. Then the follow-
ing tags Tr and users Ur are connected to r: Tr = {t ∈
T | ∃u : (t, u, r) ∈ Y }, Ur = {u ∈ U | ∃t : (t, u, r) ∈
Y }. Furthermore, let tur := {(t, u) ∈ T×U | (t, u, r) ∈
Y } the (tag, user) pairs occurring with r.

If the neighborhood of r was maximally cliquish, all
of the pairs from Tr × Ur would occur in tur. So we
define the clustering coefficient γcl(r) as:

γcl(r) =
|tur|

|Tr| · |Ur|
(1)

i.e. the fraction of possible pairs present in the neigh-
borhood. A high γcl(r) would indicate, for example,
that many of the users related to a resource r assign
overlapping sets of tags to it.

The same definition of γcl stated here for resources can
be made symmetrically for tags and users.

Connectedness (Transitivity): The other point of view
follows the notion that the clustering around a node is
high iff many nodes in the neighborhood of the node
were connected even if that node was not present.

In the case of folksonomies: consider a resource r. Letftur := {(t, u) ∈ T × U | (t, u, r) ∈ Y ∧ ∃r̃ 6= r :
(t, u, r̃) ∈ Y } be the pairs of (tag, user) from that set
that also occur with some other resource than r. Then
we define:

γco(r) :=
|ftur|
|tur|

(2)

i.e. the fraction of r’s neighbor pairs that would re-
main connected if r were deleted. γco indicates to what
extent the surroundings of the resource r contain “sin-
gleton” combinations (user, tag) that only occur once.

Again, the definition works the same for tags and users,
and the clustering coefficients for the whole folksonomy
are defined as the arithmetic mean over the nodes.

Refer to the appendix for an example demonstrating that
the clustering coefficients γcl and γco do indeed capture dif-
ferent characteristics of the graph and are not intrinsically
related.



4.3 Experiments

4.3.1 Setup
In order to check whether our observed folksonomy graphs

exhibit small world characteristics, we compared the charac-
teristic path lengths and clustering coefficients with random
graphs of a size equal in all dimensions T , U , and R as well
as Y to the respective folksonomy under consideration.

Two kinds of random graphs are used for comparison:

Binomial: These graphs are generated similar to an Erdős
random graph G(n, M) [3]. T, U, R are taken from the
observed folksonomies. |Y | many hyperedges are then
created by picking the three endpoints of each edge
from uniform distributions over T , U , and R, resp.

Permuted: These graphs are created by using T, U, R from
the observed folksonomy. The tagging relation Y is
created by taking the TAS from the original graph and
permuting each dimension of Y independently (using a
Knuth Shuffle [12]), thus creating a random graph with
the same degree sequence as the observed folksonomy.

As computing the characteristic path length is prohibi-
tively expensive for graphs of the size encountered here, we
sampled 200 nodes randomly from each graph and computed
the path lengths from each of those nodes to all others in
the folksonomy using breadth-first search.

For all experiments involving randomness (i. e. those on
the random graphs as well as the sampling for characteris-
tic path lengths), 20 runs were performed to ensure consis-
tency. The presented values are the arithmetic means over
the runs; the deviations across the runs were negligible in
all experiments.

4.3.2 Observations
Figures 1– 3 show the results for the clustering coefficients

and the characteristic path lengths for both datasets, plotted
against the number |Y | of tag assignments for the respective
monthly snapshots.

Both folksonomy datasets under consideration exhibit the
small world characteristics as defined at the beginning of
this section. Their clustering coefficients are extremely high,
while the characteristic path lengths are comparable to (Bib-
Sonomy) or even considerably lower (del.icio.us) than those
of the binomial random graphs.

4.3.2.1 Del.icio.us.
In the del.icio.us dataset (Figures 2 and 3, right hand

sides), it can be seen that both clustering coefficients are
extremely high at about 0.86, much higher than those for
the permuted and binomial random graphs. This could be
an indication of coherence in the tagging behaviour: if, for
example, a given set of tags is attached to a certain kind of
resources, users do so consistently.

On the other hand, the characteristic path lengths (Fig-
ure 1, right) are considerably smaller than for the random
binomial graphs, though not as small as for the permuted
setting. Interestingly, the path length has remained almost
constant at about 3.5 while the number of nodes has grown
about twentyfold in the observation period.

As explained in Section 4.1, in practice this means that
on average, every user, tag, or resource within del.ici.us can
be reached within 3.5 mouse clicks from any given del.icio.us

page. This might help to explain why the concept of serendip-
itous discovery [14] of contents plays such a large role in the
folksonomy community – even if the folksonomy grows to
millions of nodes, everything in it is still reachable within
few hyperlinks.

4.3.2.2 BibSonomy.
As the BibSonomy system is rather young, it contains

roughly two orders of magnitude fewer tags, users, resources,
and TAS than the del.icio.us dataset.

On the other hand, the values show the same tendencies
as in the del.icio.us experiments.

Figures 2 and 3 (left) show that clustering is extremely
high at γcl ≈ 0.96 and γco ≈ 0.93 – even more so than in
the del.icio.us data.

At the same time, Figure 1 shows that the characteristic
path lengths are somewhat larger, but at least comparable
to those of the binomial graph.

There is considerably more fluctuation in the values mea-
sured for BibSonomy due to the fact that the system started
only briefly before our observation period. Thus, in that
smaller folksonomy, small changes, such as the appearance
of a new user with a somewhat different behaviour, had more
impact on the values measured in our experiments.

Furthermore, many BibSonomy users are early adopters of
the system, many of which know each other personally, work
in the same field of interest, and have previous experience
with folksonomy systems. This might also account for the
very high amount of clustering.

5. NETWORKS OF TAG CO-OCCURRENCE
In order to investigate the emergent semantic properties

of the folksonomy, we focus on the relations of co-occurrence
among tags. Since the process of tagging is inclusive [8], and
large overlap often exists among resources marked with dif-
ferent tags, the relations of co-occurrence among tags expose
the semantic aspects underling collaborative tagging, such
as homonymy, synonymy, hierarchical relations among tags
and so on.

The simplest way to study tag co-occurrence at the global
level is to define a network of tags, where two tags t1 and
t2 are linked if there exists a post where they have been
associated by a user with the same resource. A link weight
can be introduced by defining the weight of the link between
t1 and t2, t2 6= t1, as the number of posts where they appear
together. Formally, we define the set W (t1, t2) as

W (t1, t2) := {(u, r) ∈ U ×R | (t1, u, r) ∈ Y ∧ (t2, u, r) ∈ Y } ,
(3)

and define the link weight w(t1, t2) := |W (t1, t2)|. The
above link strength defines on T ×T a symmetric similarity
matrix which is analogous to the usual adjacency matrix in
graph theory. The strength st of a node t is defined as

st :=
X
t′ 6=t

w(t, t′) . (4)

A first statistical characterization of the network of tags
is afforded by the cumulative probability distribution P>(s),
defined as the probability of observing a strength in excess
of s. These distributions are displayed for del.icio.us and
BibSonomy in Figs. 4 and 5, respectively. This is a stan-
dard measure in complex network theory and plays the same
role of the degree distribution in unweighted networks. We
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Figure 1: Characteristic path length for the bibsonomy folksonomy (left) and the del.icio.us folksonomy
(right), compared with the corresponding random graphs: permuted and binomial (see text). The measure
is repeated following the network growth and shown as a function of the number of tagging events. Similar
graph have been obtained as a function of the number of nodes of the networks (not shown). Note how the
charateristic path length takes quite similar low values, typical of small world networks, for all graphs.
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Figure 2: Cliquishness of the BibSonomy folksonomy (left) and the del.icio.us folksonomy (right), compared
with the corresponding random graphs: permuted and binomial (see text). The measure is repeated fol-
lowing the network growth and shown as a function of the number of tagging events. Similar graphs have
been obtained as a function of the number of nodes of the networks (not shown). The cliquishness for the
folksonomy networks takes quite high values, higher than the corresponding random graph (permuted and
binomial).
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Figure 3: Connectedness/Transitivity of the BibSonomy folksonomy (left) and the del.icio.us folksonomy
(right), compared with the corresponding random graphs: permuted and binomial (see text). The measure
is repeated following the network growth and shown as a function of the number of tagging events. Similar
graphs have been obtained as a function of the number of nodes of the networks (not shown). As in the case
of cliquishness, the values of connectedness/transitivity are very high for the folksonomy networks, at odds
with the corresponding random graphs (permutated and binomial).

observe that P>(s) is a fat-tailed distribution for both folk-
sonomies: this is related to a lack of characteristic scale for
node strengths and is one of the typical fingerprints of an un-
derlying complex dynamics of interacting human agents [21,
22]. A coarse indicator such as P>(s), despite its simplicity,
is able to point out anomalous activity (i.e. spam) within
the investigated folksonomies, as discussed in the captions
of Figs. 4 and 5. Quite interestingly, on filtering out these
undesired (and probably automatically generated) contribu-
tions, the probability distributions for del.icio.us and Bib-
Sonomy become rather similar, even though the two systems
under study are dramatically different in terms of user base,
size and age.

Uncovering the detailed “microscopic” mechanism respon-
sible for the observed distribution is a daunting task. A sim-
ple way to identify the contribution of semantics – and in
general of human activity – to those distributions consists in
destroying semantics altogether by randomly shuffling tags
among TAS entries. In the tripartite graph view of the folk-
sonomy, this corresponds to introducing a random permu-
tation of the set of tags T , biunivocally mapping each tag
t ∈ T into a corresponding tag t′. Correspondingly, each hy-
peredge t, u, r is mapped into a new hyperedge t′, u, r. Each
post in the original folksonomy corresponds to a new post
with the same number of tags, but now the co-occurrence
relations are completely different.

In Figs. 4 and 5 we show that by performing this shuffling
operation (blue dots) the distribution is only marginally af-
fected. Far from being obvious, this shows that the global
frequencies of tags – and not their co-occurrence relations
– are the main factors shaping the distribution P>(s). In
other words, the fat-tailed nature of P>(s) is induced by the
distribution of tag frequencies, which has been known to be
fat-tailed [8, 6], in analogy to Zipf’s law (also observed in
human languages).

In order to probe deeper into the structure of the co-
occurrence network and recognize the contribution of se-
mantics, we need to compute observables more sensitive to
correlations and to the local structure of the network. To

this end, a useful quantity studied in complex networks is
the nearest neighbor connectivity. The sum of all weights
si =

P
j wij of links connected to a given node i is called

strength of node i. Given a node i with strength si, we
define its average nearest-neighbor strength as:

Snn(si) =
1

ki

kiX
j=1

sj , (5)

with ki corresponding to the number of links with non van-
ishing weight connected to node i. The concept of nearest
neighbor needs to be clarified here. In principle all nodes
are connected each other in a weighted graph, but in this
particular context we ignore the existence of those links that
have vanishing weight. Consequently, we consider two nodes
as nearest neighbors, if exists a link between them with non
vanishing weight.

The average nearest neighbor strength Snn(s), as a func-
tion of the node strength s, provides information on corre-
lations among the strength of nodes and therefore is also
known in literature as node nearest-neighbor strength cor-
relation Snn(s) [1]. When referred to unweighted networks,
i.e. where all existing links have unit strength, Snn is able to
discriminate between technological networks, where Snn(s)
is a decreasing function of the strength s, and social net-
works, where, on the contrary, Snn(s) displays an increas-
ing behavior. These two networks with opposite behaviors
are commonly referred to as disassortative and assortative
mixing networks, respectively [17, 4].

Figs. 6 and 7 display our results for del.icio.us and Bib-
Sonomy, respectively. In the figures, each dot correspond
to a node of the network (i.e. a tag), with its strength s as
the abscissa and the average strength of its neighbors Snn

as the ordinate. Both quantities span several orders of mag-
nitude, hence we use a logarithmic scale along both axes to
display the global features of the scatter plot. This is related
to the fat-tailed behavior observed for the strength distri-
bution P>(s), which is in fact recovered by projecting the
data points along the s-axis and computing the cumulative
distribution.



Figure 4: Cumulative strength distribution for the network of co-occurrence of tags in del.icio.us. P>(s) is the
probability of having a node with strength in excess of s. Red dots correspond to the whole co-occurrence
network. The two steps indicated by arrows correspond to an excess of link with a specific weight and can be
related to spamming activity. Excluding from the analysis all posts with more than 50 tags removes the steps
(green dots). Shuffling the tags contained in posts (blue dots) does not affect significantly the cumulated
weight distribution. This proves that such a distribution is uniquely determined by tag frequencies within
the folksonomy, and not by the semantics of co-occurrence.

Figure 5: Cumulative strength distribution P>(s) for the network of co-occurrence of tags in BibSonomy
(see also Fig. 4). Red dots correspond to the whole co-occurrence network. The irregular behavior for high
strengths can be linked to spamming activity: identified spam in BibSonomy consists of posts with a large
number of tags, as well as a large number of posts with exactly 10 tags, injected by a small group of spammers.
Both types of spam were identified by inspecting the distribution of the number of tags per post. Excluding
the above posts from the analysis (green dots), the distribution becomes smooth and similar to the filtered
one observed for del.icio.us. Similarly, shuffling the tags contained in posts (blue dots) has a small effect on
the cumulated weight distribution.



In the scatter plots, the anomalous activity such as spam
is more clearly detectable, and its contribution appears in
the form of foreign clusters (indicated by arrows) that clearly
stand out from the otherwise smooth cloud of data points, a
fact that reflects the anomalous nature of their connections
with the rest of the network. Excluding spam from the anal-
ysis, those clusters disappear altogether (green dots). The
general shape of the cloud of data points remains unchanged,
even though, in the case of BibSonomy, it shifts down to-
wards lower strengths. This happens because BibSonomy is
a smaller system and spam removal has a more significant
global impact on the network and the strengths of its nodes.

Overall, the plots for del.icio.us and BibSonomy look quite
similar, and this suggests that the features we report here are
generally representative of collaborative tagging systems.
An assortative region (Snn roughly increasing with s) is
observed for low values of the strength s, while disassor-
tative behavior (Snn decreasing with s) is visible for high
values of s. As we have already done for the probabil-
ity distribution P>(s), we can highlight the contribution of
semantics by randomly shuffling tags in TAS entries (blue
dots in Fig. 6 and 7). In this case, shuffling the tags (blue
points) affects dramatically the distribution of data points:
this happens because the average nearest-neighbor strength
of nodes is able to probe the local structure of the network
of co-occurrence beyond the pure frequency effects, and is
sensitive to patterns of co-occurrence induced by semantics.
Interestingly, the main effect seems to be the disappearance
of points in the assortative (low strengh) region of the plot,
possibly identifying this region as the one exposing seman-
tically relevant connections between tags. Notice, for ex-
ample, the disappearance of a whole cloud of points at the
top-left of Fig. 7: those points represent nodes (tags) with
low strength that are attached preferentially to nodes of high
strength. Similarly, in Fig. 6, the highly populated region
with s roughly ranging between 10 and a few thousands also
disappears when tag shuffling is applied. Those data points
also represent low-strength nodes (tags) preferentially con-
nected with higher-strength nodes (tags). Such properties
are commonly found in hierarchically organized networks,
and could be related to an underlying hierarchical organiza-
tion of tags [9].

6. SUMMARY AND OUTLOOK

6.1 Conclusion
In this paper, we have analyzed the network structure

of the folksonomies of two social resource sharing systems,
del.icio.us and BibSonomy. We observed that the tripartite
hypergraphs of their folksonomies are highly connected and
that the relative path lengths are relatively low, facilitating
thus the “serendipitous discovery” of interesting contents
and users.

We subsequently introduced a weighted network of tags
where link strengths are based on the frequencies of tag co-
occurrence, and studied the weight distributions and con-
nectivity correlations among nodes in this network. Our ev-
idence is compatible with the existance of complex, possibly
hierarchical structures in the network of tag co-occurrence.

Our experiments hint that spam – which becomes an in-
creasing nuisance in social resource sharing systems – sys-
tematically shows up in the connectivity correlation proper-
ties of the weighted tag co-occurrence network.

6.2 Future Work
(Semi-)automatic Spam Detection. At the moment, spam

handling in BibSonomy is mostly done by manual inspection
and removal of offending content.

In a follow-up paper, we will turn our observations about
spamming anomalies in the connectivity of tags into a spam
detection mechanism for folksonomies. Using the techniques
from Section 5, support for the administrators can be pro-
vided to detect spamming activities.

Identification of Communities. As the results from Sec-
tion 4 suggest that the folksonomy consists of densely-con-
nected communities, a second line of research that we are
currently pursuing and that will benefit from the observa-
tions in this paper is the detection of communities.

This can be used, for example, to make those communities
explicit which already exist intrinsically in a folksonomy,
e. g. to provide user recommendations and support new users
in browsing and exploring the system.
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Appendix
The two clustering coefficients from Section 4.2 were moti-
vated by two different views on the original definition for
one-mode graphs. Still, one might suspect that there is a
systematic connection between the two, such as γcl(r) <
γcl(s) ⇒ γco(r) < γco(s) for nodes r, s ∈ T ∪ U ∪ R, or
similarly, on the level of the whole folksonomy, γco(F) <

γco(G) ⇒ γcl(F) < γcl(G).
The following example demonstrates that this is not the

case: consider a folksonomy F with tag assignments Y1 =
{(t1, u2, r2), (t1, u1, r1), (t1, u1, r2), (t1, u2, r1), (t1, u3, r3),
(t2, u3, r3), (t2, u4, r4)}.

Here we have γcl(t1) ≈ 0.556 > γcl(t2) = 0.5, but γco(t1) =
0.2 < γco(t2) = 0.5.

Also, there is no monotonic connection when considering
the folksonomy as a whole. For the whole folksonomy F, we
have γcl(F) ≈ 0.906, γco(F) ≈ 0.470.

Considering a second folksonomy G with tag assignments
Y2 = {(t1, u1, r1), (t1, u1, r3), (t1, u2, r2), (t1, u3, r2), (t2, u1, r2),
(t2, u2, r1), (t2, u2, r2), (t2, u2, r3), (t3, u1, r2), (t3, u2, r2)}, we
see that γcl(G) = 0.642, γco(G) = 0.669, thus γcl(F) >
γcl(G) while γco(F) < γco(G).


