
Dynamic Integration of Medical Ontologies in Large Scale

Vı́t Nováček
Digital Enterprise Research

Institute
National University of Ireland,

Galway
IDA Business Park, Lower
Dangan, Galway, Ireland

vit.novacek@deri.org

Loredana Laera
Department of Computer

Science
University of Liverpool, UK

lori@csc.liv.ac.uk

Siegfried Handschuh
Digital Enterprise Research

Institute
National University of Ireland,

Galway
IDA Business Park, Lower
Dangan, Galway, Ireland

siegfried.handschuh@deri.org

ABSTRACT
The paper presents a novel ontology lifecycle scenario that
explicitly takes the dynamics and data-intensiveness of the
medical application domains into account. Changing and
growing knowledge is handled by semi-automatic incorpora-
tion of ontology learning results into a collaborative onto-
logy development framework. This integration bases mainly
on automatic negotiation of agreed alignments, inconsisten-
cy resolution, ontology versioning system and support of
natural language generation tools, which alleviate the end-
user effort in the incorporation of new knowledge.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods; I.2.6 [Artificial Intelligence]:
Learning—Concept learning

General Terms
dynamic ontology integration; ontology alignment and ne-
gotiation; ontology learning; medical ontologies; ontology-
based data integration

Keywords
knowledge acquisition; life cycle; information filtering

1. INTRODUCTION
Ontologies on the Semantic Web, and especially in case

of real world applications, are very likely subject to change
given the dynamic nature of domain knowledge. Knowledge
changes and evolves over time as experience accumulates –
it is revised and augmented in the light of deeper understan-
ding; new facts are getting known while some of the old ones
need to be revised and/or retracted at the same time.

This holds especially for scientific domains – we have to
incorporate newly discovered facts and possibly change the
inappropriate old ones in the respective ontology as the
scientific research evolves further. However, even virtually
any industrial domain is dynamic – changes typically occur
in product portfolios, personnel structure or industrial pro-
cesses, which can all be reflected by an ontology in a know-
ledge management policy.

Copyright is held by the author/owner(s).
WWW2007, May 8–12, 2007, Banff, Canada.
.

The domain of medicine is both scientific (bio-medical
research) and industrial (clinical practice, pharmaceutics).
The need for ontologies in bio-medicine knowledge and data
management has already been reflected in the community.
They can serve as structured repositories giving a shared
meaning to data and thus allowing to process and query
them in more efficient and expressive manner. The shared
meaning also results in facilitation of integration between
different medical data formats once they are bound to an
ontology. Moreover, the state of the art ontology-based tech-
niques (like alignment or reasoning) can help to integrate the
data even if they adhere to different ontologies.

In the medicine domain, ontology construction is usually
the result of collaboration (which involves cooperation a-
mong ontology engineers and domain experts) through a
manual process of the extraction of the knowledge. How-
ever, it is not always feasible to process all the relevant da-
ta and extract the knowledge from them manually, since
we might not have a sufficiently large committee of onto-
logy engineers and/or dedicated experts at hand in order
to process new data anytime it occurs. This implies a need
for (partial) automation of ontology extraction and manage-
ment processes in dynamic and data-intensive medical en-
vironments. This can only be achieved by ontology lear-
ning [19]. Therefore, a lifecycle of an ontology development
process apt for universal application in the medicine domain
should also support appropriate mechanisms for dealing with
the large amounts of knowledge that are dynamic in nature.

1.1 Motivation
While there has been a great deal of work on ontology lear-

ning for ontology construction, e.g. [2], as well as on collabo-
rative ontology development [24], relatively little attention
has been paid to the integration of both approaches within
an ontology lifecycle scenario. In this paper, we introduce
our framework for practical handling of dynamic and large
data-sets in an ontology lifecycle, focusing particularly on
dynamic integration of learned knowledge into collaborative-
ly developed ontologies. However, the introduced integration
mechanism is not restricted only to learned ontologies –
arbitrary “external” ontology can be integrated into the col-
laboratively designed ontology in question by the very same
process.

One of the key elements supporting our integration is
the ability to reach an agreement on the semantics of the
terms used in these ontologies. Since the medical ontolo-



gies are very often created under different circumstances and
conditions and thus might represent different perspectives
over similar knowledge, the process by which to come to an
agreement will necessarily only come through a (partially
automated) negotiation process.

The dynamic nature of knowledge is one of the most chal-
lenging problems not only in medicine, but in the whole
current Semantic Web research. Here we provide a solution
for dealing with dynamics in large scale, based on properly
developed connection of ontology learning and dynamic col-
laborative development. We do not concentrate on formal
specification of respective ontology integration operators, we
focus rather on implementation of them, following certain
practical requirements:

1. the ability to process new knowledge (resources) auto-
matically whenever it appears and when it is inappro-
priate for humans to incorporate it;

2. the ability to automatically compare the new know-
ledge with a “master” ontology that is manually and
collaboratively designed and select the new knowledge
accordingly;

3. the ability to resolve possible major inconsistencies be-
tween the new and current knowledge, possibly favour-
ing the assertions from presumably more complex and
precise master ontology against the learned ones;

4. the ability to automatically sort the new knowledge
according to user-defined preferences and present it to
them in a very simple way, thus further alleviating
human efforts in the task of final incorporation of the
knowledge.

On one hand, using the automatic methods, we are able to
deal with large amounts of changing data. On the other
hand, the final incorporation of new knowledge is to be
decided by the expert human users, repairing possible errors
and inappropriate findings of the automatic techniques. The
key to success and applicability is to let machines do most
of the tedious and time-consuming work and provide people
with concise and simple suggestions on ontology integration.

1.2 Structure of the Paper
The rest of the paper is organized as follows: Section 2

presents a brief discussion of related work. Section 3 gives
an overview of our ontology lifecycle scenario and frame-
work, whereas Section 4 presents the integration of manually
designed and learned ontologies in more detail. In Section 5,
we describe the current state of the work and give a simple
illustrative example of concrete usage of the our integration
approach. Section 6 discusses realistic medicine application
domains in which our lifecycle framework can help. Section 7
concludes the paper and sums up our future work.

2. RELATED WORK
Recent overviews of the state-of-the-art in ontologies and

related methodologies can be found in [23] and [13]. How-
ever, none of them offers a direct solution to the previously
mentioned problems.

Methontology [10] is a methodology developed in the Es-
peronto project for designing ontologies to serve as a base for
extending it towards evolving ontologies. It is provided with

an ontology lifecycle based on evolving prototypes [11] and
defines stages from specification and knowledge acquisition
to configuration management. The particular stages and
their requirements are characterised, but rather generally.
The automatic ontology acquisition and evaluation methods
are considered in Methontology, however, no distinction is
made in their placement within the lifecycle. The ODESeW
and WebODE suite [4] projects provide an infrastructure
and tools for semantic application development/management,
which is in the process of being extended for networked and
evolving ontologies. However, they focus rather on the appli-
cation development part of the problem than on the ontology
evolution parts.

The above projects have all focused on either a single part
of ontology evolution, or on a rather abstract study of the
knowledge management cycle. However, mechanisms that
would provide a clue on how to incorporate the dynamics
into the lifecycle are typically put off only by introduction of
the version management, which we find insufficient. More-
over, the need for automatic methods of ontology acquisition
in data-intensive environments is acknowledged, but the pla-
ce of the automatic techniques is usually not distinguished
in the dynamic lifecycle settings. Our approach [21] offers
a complex picture of how to deal with the dynamics in the
general lifecycle scenario. Here we pay attention and deve-
lop in more detail the combination of ontology learning and
manual (collaborative) development in dynamic settings.

There are more specific approaches similar to the one
presented by our lifecycle framework. [6] incorporates auto-
matic ontology extraction from a medical database and its
consequent population by linguistic processing of corpus da-
ta. However, the mechanism is rather task-specific – the
ontology is represented in RDF(S) format that is less expres-
sive than the OWL language, which we use. The extraction
is oriented primarily at taxonomies and does not take the
dynamics directly into account. Therefore the approach can
hardly be applied in universal settings, which is one of our
aims.

Protége [12] and related PROMPT [22] tools are designed
for manual ontology development and semi-automatic onto-
logy merging, respectively. PROMPT provides heuristic me-
thods for identification of similarities between ontologies.
The similarities are offered to the users for further proces-
sing. However, the direct connection to ontology learning,
which we find important for dynamic and data-intensive do-
mains like medicine, is missing. Moreover, the support of
collaborative ontology development and integration is also
unclear.

3. DINO – A DYNAMIC ONTOLOGY LIFE-
CYCLE SCENARIO

DINO is an abbreviation of three key elements of our onto-
logy lifecycle scenario and framework – Dynamics, INte-
gration and Ontology. However, the first two can also be
Data and INtensive. All these features express the primary
aim of our efforts – to make the knowledge efficiently and
reasonably manageable in data-intensive and dynamic do-
mains.

Figure 1 below depicts the scheme of the proposed dyna-
mic and application-oriented ontology lifecycle that deals
with the problems mentioned in the previous sections.

Our ontology lifecycle builds on four basic phases of an



Figure 1: Dynamics in the ontology lifecycle

ontology lifecycle: creation (comprises both manual and
automatic ontology development and update approaches),
versioning, evaluation and negotiation (comprises ontology
alignment and merging as well as negotiation among dif-
ferent possible alignments). The four main phases are indi-
cated by the boxes annotated by respective names. Onto-
logies or their instances in time are represented by circles,
with arrows expressing various kinds of information flow.
The A boxes present actors (institutions, companies, resea-
rch teams etc.) involved in ontology development, where A1

is zoomed-in in order to show the lifecycle’s components in
detail.

The general dynamics of the lifecycle goes as follows. The
community experts (or dedicated ontology engineers) deve-
lop a (relatively precise and complex) domain ontology (the
Community part of the Creation component). They use
means for continuous ontology evaluation and versioning
to maintain high quality and manage changes during the
development process. If the amount of data suitable for
knowledge extraction is too large to be managed by the
community, ontology learning takes its place. Its results are
evaluated and partially (we take only the results with quality
above a certain threshold into account) integrated into the
more precise (but typically relatively small) reference com-
munity ontology. The integration is based on alignment and
merging covered by the negotiation component. Its proposal
and implementation principles form the key contribution of
this paper (see Section 4 for details). The negotiation com-
ponent takes its place also when interchanging or sharing the
knowledge with other independent actors in the field. All the
phases support ontologies in the standard OWL format [1],
namely in its OWL DL flavour. In the following we will
concentrate on the integration component. More informa-
tion on other parts of the lifecycle can be found in [21].

4. DYNAMIC INTEGRATION OF THE NEW
LEARNED KNOWLEDGE IN THE DINO
FRAMEWORK

The key novelty of the presented lifecycle scenario is its
support for incorporation of changing knowledge in data-
intensive domains. This is achieved by implementation of
a specific integration mechanism introduced in this section.
The scheme of the integration process is depicted in Figure 2.

The integration scheme details the usage of generic life-
cycle’s components – mainly the negotiation and versioning
– in the process of incorporation of learned ontologies into
the collaboratively developed ones. However, the generic
components serve only as a base for specific wrappers. Each
of the phases of integration and their connections are descri-
bed in the following sections.

4.1 Ontology Learning Wrapper
In this phase, machine learning and NLP methods are

used for the processing of relevant resources and extracting
knowledge from them (ontology learning). The ontology
learning is realised using the Text2Onto framework [3]. We
interface the toolbox indirectly within the collaborative onto-
logy development portal based on MarcOnt Portal archi-
tecture (see Section 4.2). Configuration of the learning al-
gorithms is set using a special user interface in the por-
tal. The settings is used for batch processing of the new re-
sources fed to the ontology learning component. The results
of one round of ontology learning – the OL circle in Figure 2
– are optionally evaluated or refined using the Text2Onto
confidence values and passed to the alignment/negotiation
wrapper (see Section 4.3).

Note that although we aim at integration of learned onto-
logies, any other “external” ontology can be provided as OL

here and passed further in the integration process, follow-
ing the very same principles. Thus we can integrate e.g.
different ontologies from the same medicine subdomain or
specialised/general ontologies, and not strictly automatical-



Figure 2: Dynamic integration scheme

ly learned ones.

4.2 Ontology Collaborative Development Por-
tal

The whole integration as well as the DINO framework is
based on the MarcOnt Portal architecture [15] for collabora-
tive ontology development. It is a part of a broader initiative
aimed mainly at facilitation of various digital library de-
velopment and maintenance efforts1.

MarcOnt Portal offers domain-independent means for effi-
cient distributed and collaborative ontology development. It
supports features like ontology editing, ontology versioning
(supported by the SemVersion system [27]), voting on onto-
logy changes and evaluation of these votes. The elements
of DINO realising various parts of the lifecycle are being
implemented into the portal’s core, with access provided
by respective new parts of portal’s user and administrative
interfaces.

The ontology being developed using the portal’s collabora-
tive interfaces is the master reference ontology in the whole
lifecycle. It is also the source for deployment of official ver-
sion of ontology. The OM circle in Figure 2 represents its
dump that serves as a reference to be integrated with the
OL ontology resulting from the learning process. The final
suggestions (see Section 4.7) form a base for a next version
of the OM ontology submitted after the integration.

4.3 Alignment/Negotiation (A/N) Wrapper
Once the learned ontology OL and the master ontology

OM have been created, they need to be reconciled since they
cover the same domain, but might be structured differently.
The reconciliation of these ontologies depends on the ability
to reach an agreement on the semantics of the terms used.
The agreement takes the form of an alignment between the
ontologies, that is, a set of correspondences (or mappings)

1See http://www.marcont.org for details on the whole
MarcOnt Initiative.

between the concepts, properties, and relationships in the
ontologies. However, the ontologies are developed in dif-
ferent contexts and under different conditions and thus they
might represent different perspectives over similar know-
ledge, so the process by which to come to an agreement
will necessarily only come through a negotiation process.
The negotiation process is performed using argumentation-
based negotiation that uses preferences over the types of
correspondences in order to choose the mappings that will
be used to finally merge the ontologies (see Section 4.4). The
preferences depend on the context and situation. A major
feature of this context is the ontology, and the structural
features thereof, such as the depth of the subclass hierarchy
and branching factor, ratio of properties to concepts, etc.
The analysis of the components of the ontology is aligned
with the approach to ontology evaluation, demonstrated in
[5], and can be formalized in terms of feature metrics. Thus
the preferences can be determined on the characteristics of
the ontology. For example, we can select a preference for
terminological mapping if the ontology is lacking in structure,
or prefer extensional mapping if the ontology is rich in in-
stances.

Thus, the alignment/negotiation wrapper interfaces two
tools – one for the ontology alignment discovery and one for
negotiation of agreed alignment. We call these tools AKit
and NKit, respectively, within this section. For the former,
we use the ontology alignment API [8] developed by INRIA
Rhone-Alpes2. For the negotiation we use the framework
described in [17]. Both tools are used by the wrapper in
order to produce OA – an ontology consisting of axioms3

merging classes, individuals and properties in the OL and
OM ontologies. It is used in consequent factual merging

2See http://alignapi.gforge.inria.fr/ for up-to-date
information on the API.
3Using constructs like owl:equivalentClass,
owl:sameAs, owl:equivalentProperty, rdfs:subClassOf or
rdfs:subPropertyOf.



and refinement in the ontology reasoning and management
wrapper (see Section 4.4 for details).

The wrapper itself works according to the meta-code in
Algorithm 1. The ontology alignment API offers several

Algorithm 1 Meta-algorithm of the alignment and negotia-
tion
Require: OL, OM — ontologies in OWL format
Require: AKit, NKit — ontology alignment and alignment negotia-

tion tools, respectively
Require: ALMSET — a set of the alignment methods to be used
Require: PREFSET — a set of alignment formal preferences

corresponding to the OL, OM ontologies (to be used in N-kit)

1: SA ← ∅
2: for method ∈ ALMSET do

3: SA ← SA ∪ AKit.getAlignment(OL , OM , method)
4: end for

5: Aagreed ← NKit.negotiateAlignment(SA , PREFSET )
6: OA ← AKit.produceBridgeAxioms(Aagreed)
7: return OA

possibilities of actual alignment methods, which range from
trivial lexical equality detection through more sophisticated
string and edit-distance based algorithms to an iterative
structural alignment by the OLA algorithm [9]. The onto-
logy alignment API has recently been extended by a method
for the calculation of a similarity metric between ontology
entities, an adaptation of the SRMetric used in [26]. We
also consider a set of justifications, that explain why the
mappings have been generated. This information forms the
basis for the negotiation framework that dynamically ge-
nerates arguments, supplies the reasons for the mapping
choices and negotiates an agreed alignment for both ontolo-
gies OL and OM .

4.4 Reasoning/Management (R/M) Wrapper
This wrapper is used for merging of the OL and OM onto-

logies. It uses Jena 2 Ontology API4. It merges the OL and
OM ontologies according to the statements in OA, preferring
the lexical labels from the master OM ontology. More-
over, the wrapper resolves possible inconsistencies caused
by the merging – favouring the assertions in the OM onto-
logy, which are supposed to be more relevant, again. The
resulting ontology OI is passed to the ontology diff wrapper.
As the Jena ontology model is internally based on a gra-
ph/triple (RDF) structure, it allows to easily export or trans-
form an ontology in a triple format needed for the consequent
wrapper (see Section 4.5 for details).

Algorithm 2 describes the meta-code of the process arran-
ged by the ontology merging and reasoning wrapper. The in-
consistency resolution is somewhat tricky. However, we can
apply a sort of “greedy” heuristic, considering the assertions
in the master OM ontology to be more valid. Therefore we
query the Rref structure (with the axioms of learned onto-
logy, possibly with replaced labels) in the resolution process.
We currently handle the following inconsistencies:

• sub-class hierarchy cycles: these are resolved by cut-
ting the cycle by removing an owl:subClassOf statement
present in Rref ;

• disjointness-subsumption conflicts: if classes are
said to be disjoint and a sub-class relationship holds

4See http://jena.sourceforge.net/ontology/index.
html.

Algorithm 2 Meta-algorithm of the merging and inconsis-
tency resolution
Require: OL, OM , OA — ontologies in OWL format
Require: getEq() — function selecting all assertions of type

owl:equivalentClass, owl:sameAs, owl:equivalentProperty
Require: getRM() — function returning wrapper combining a

generic ontology manager and (incomplete OWL Full) reasoner
bound to the given ontology

1: Otmp ← copy(OL)
2: OI ← copy(OM )
3: RM ← getRM(OM )
4: Rtmp ← getRM(Otmp)
5: RL ← getRM(OL)
6: RA ← getRM(OA)
7: RI ← getRM(OI )
8: equivalencies ← {owl : equivalentClass, owl : sameAs, owl :

equivalentProperty}
9: UNIFIED ← ∅
10: for id ∈ getEq(OA) do

11: Rtmp.replaceLabels(id.OL, id.OM )
12: UNIFIED ← UNIFIED ∪ id.OM

13: end for

14: Rref ← copy(Rtmp)
15: for eq ∈ Rtmp.getAxiomsWithLabels(UNIFIED) do

16: Rtmp.retractAxioms(eq)
17: RI .addAxioms(eq)
18: end for

19: RA.removeAxiomsOfType(equivalencies)
20: RI .addAxioms(Rtmp.getAllAxioms())
21: RI .addAxioms(RA.getAllAxioms())
22: RI .resolveInconsistencies(Rref )
23: RI .augmentStructure()
24: return OI

between them at the same time, the conflicting asser-
tion indicated by Rref is removed;

• disjointness-instantiation conflicts: if an individual
is said to be an instance of classes that are disjoint, the
assertion indicated by Rref is removed.

When there are several removal candidate axioms involved in
one inconsistency, we sort them according to the confidence
provided by the Text2Onto learning algorithms [3], which
is stored in the Rref reference structure. Similarly to [14],
we start removing the axioms with least overall confidence,
until we do not resolve the inconsistency (thus keeping the
more “relevant” discoveries intact). We keep the conflicting
assertions when they all originate from the OM master onto-
logy and let the users to cope with this fact. Note that the
sources of inconsistencies are provided by simple natural lan-
guage description and recorded for further examinations by
human users – they can eventually decide to favour the lear-
ned assertions if appropriate for the given task in the given
context.

The function augmentStructure() attempts to complete
the structure of learned axioms using the more precise and
complex knowledge in the OM master ontology. Currently,
augmentation of owl:subClassOf and instantiation relations
using rdfs:domain and rdfs:range assertions in property de-
finitions from OM ontology is taken into account (see Sec-
tion 5 for an example). More sophisticated extensions are
possible in the future.

If we want to include even the “equal” labels from the lear-
ned ontology, we can omit the renaming and subtractions
in lines 10-16 and 19 and include the respective equality
statements from OA into OI , together with respective axioms
from OL. The decision depends on users – whether they
want to prefer the labels from master ontology or not (e.g.



when looking for possible unknown synonyms of important
terms from OM in domain resources; this could be useful for
example in the medicine domain in task of identification of
different names for the same drugs and/or proteins).

4.5 Ontology Diff Wrapper
Possible extension of a master ontology OM by elements

contained in the merged and refined ontology OI naturally
corresponds to the differences between them. These are
discovered by means of the SemVersion library [27], which
is interfaced within this wrapper. In particular, the possible
extensions are equal to the additions OI brings into OM . We
compute the additions from the triple-based representation5

of OI and OM ontologies. The additions are passed to the
triple sorter then (see Section 4.6 for details).

4.6 Triple Sorter
The addition triples passed to this component form a

base to the eventual extension suggestions for the domain
experts. However, the number of additions can generally be
quite large, so an ordering that takes a relevance measure of
possible suggestions into account is needed. Thus we can for
example eliminate suggestions with low relevance level when
presenting the final set to the users (without overwhelming
them with a large number of possibly irrelevant suggestions).

As a possible solution to this task, we have proposed and
implemented a method based on string subsumption and
Levenshtein distance [18]. These two measures are used
within relevance computation by comparing the predicate,
subject and object lexical labels of a triple to two sets (Sp, Sn)
of words, provided by users. The Sp and Sn sets contain
preferred and unwanted words respectively, concerning the
lexical level of optimal extensions. The general structure of
the sorting function is given in Algorithm 3.

Algorithm 3 Meta-algorithm of relevance-based triple
sorting
Require: TRIPLES — list of triples
Require: PREF = {Sp, Sn} — user preferences

1: HASH = {}
2: for T ∈ TRIPLES do

3: HASH[getScore(T, Sp, Sn)]← T

4: end for

5: return sort(HASH)

The getScore() function is crucial in the sorting algo-
rithm. It is given by the formula:

getScore(T,Sp, Sn) = rel(T, Sp) − rel(T, Sn),

where rel(T, S) is a function measuring the relevance of the
triple T with respect to the words in the set S. The higher
the value, the more relevant the triple is. The function6

naturally measures the “closeness” of the P, S, O labels to
the set of terms in Sw. The value of 1 is achieved when
the label is a direct substring of or equal to any word in
Sw or vice versa. When the Levenshtein distance between

5Since SemVersion does not currently support full OWL
diff computations. The triple representation is provided by
the ontology R/M wrapper, as indicated by the TD (triple
dump) squares in Figure 2.
6We described the relevance function in more detail in [21,
20], together with complexity analysis (which is in feasible
class of O(m log(m)) with respect to the number of triples).

the label and a word in Sw is lower than or equal to the
defined threshold t, the relevance decreases from 1 by a value
proportional to the fraction of the distance and t. If this is
not the case (i.e. the label’s distance is greater than t for
each word in SW ), a similar principle is applied for pos-
sible word-parts of the label and the relevance is further
proportionally decreased (the minimal possible value being
0).

4.7 Mapping Triples to Natural Language Sug-
gestions

The DINO framework is supposed to be used primarily by
users who are not experts in ontology engineering. Although
the MarcOnt Portal [15] already offers a simple ontology
editing interface, we would like to further help the user in
ontology augmentation by the learned knowledge. Therefore
the suggestions are produced in the form of very simple
natural language statements. These are obtained directly
from the sorted triples passed to this component, using a
minor modification of the generation process in CLIE de-
scribed in [25]. Examples of this final form of suggestions
can be found in Section 5. The suggestions are still bound to
the underlying triples, therefore the user can very easily add
the respective OWL axioms into the new version of the OM

master ontology without actually dealing with the intricate
OWL syntax itself.

5. EVALUATION AND USAGE EXAMPLE
The DINO framework is still a work in progress7, and thus

no proper evaluation has been carried out as yet. However,
preliminary evaluation of two of the core parts – negotia-
tion and preference-based suggestion sorting techniques –
has been made. The implemented sorting algorithm placed
80.7% of triples from a test sample into an order intuitively
prepared by a human user. Details on the sorting eva-
luation are in [21, 20]. The negotiation component has
been evaluated using the Ontology Alignment Evaluation
Initiative test suite8 and experiments on the impact of the
argumentation approach over a set of mappings. A compa-
rison wrt. current alignment tools is presented in [16]. The
preliminary results of these experiments are promising and
suggest that the argumentation approach can be beneficial
and an effective solution to the problem of dynamically a-
ligning heterogeneous ontologies.

5.1 Current State of the Implementation
We have recently completed initial draft implementation

of the DINO integration technique in line with the archi-
tecture and algorithms described here. All but two presented
components are fully incorporated. The negotiation (see
Section 4.3) currently returns identity on input alignments
– full connection with the tool described in [17] is scheduled
for very near future. Implementation of function returning
natural language representation of suggestions and inconsis-
tencies is very näıve and hard-coded now, however, the wor-
king connection with general natural language generation
tools mentioned in [25] should also be ready very soon.

Besides the basic implementation of the two remaining
functionalities, we are currently in the phase of intensive

7The current state of the implementation is summed up in
Section 5.1 below.
8See http://oaei.ontologymatching.org/.



debugging and testing of the whole DINO integration proof-
of-concept implementation. The testing data we take into
account are mainly PubMed digital archive9 as ontology
learning resource pool and (fragments of) Galen ontology10

as a master knowledge base.
After delivering the working implementation of the DINO

integration mechanism, it will be incorporated as a library
with respective user interfaces into MarcOnt Portal (see Sec-
tion 4.2). This is scheduled for summer, 2007, in parallel
with MarcOnt Portal reorganisation into more flexible SOA
and thick-client architecture (currently being prepared by
the MarcOnt Portal development team). This is the final
step before deployment and evaluation of the whole DINO
framework (together with the collaborative ontology develop-
ment interface) in practical real-world application scenarios.

5.2 Usage Example
In the following we provide a simple illustrative example of

concrete usage of the DINO integration mechanism. Imagine
a medical institution that has developed an ontology OM

covering the basic concepts in clinical practice and resea-
rch, possibly with help of ontology engineering experts when
deploying the DINO framework. The ontology may need
to be extended by new information in research (e.g. when
new treatments or diagnosis methods are developed and
published). Related information can be found in respective
documents (research papers, industry white-papers, etc.).
Figure 3 presents a sample text fragment with the respec-
tive learned OWL OL ontology (we omit the namespace for
simplicity).

The ontologies OL and OM are aligned and negotiated (see
Figure 4). The preferences have been chosen on the basis of
the ontological information of OL and OM (see Section 4.3
for details.

The OM ontology and the ontology OA, consisting of
axioms produced from the negotiated mappings are shown
in Figure 5.2.

When trying to merge the OM and OL ontologies into OI

according to the technique described in Section 4.4, we find
out that there is one inconsistency – “disease” is said to be
a subclass of “dysfunction” and vice versa, which creates
a cycle in the taxonomy. Therefore we remove the respec-
tive “invalid” assertion that originated from the OL onto-
logy. On the other hand, we can extend the learned know-
ledge based on range and domain of the “DiscoveredUsing”
property. We can infer new assertions on the instantiation of
“cerebellar astrocytoma” (instance of “Manifestation”) and
“CT” (instance of “DiagnosisProcedure”).

Now we can produce the triples (with OL equivalent labels
replaced by those from OM ) from the OI merge, together
with respective suggestions based on the differences between
OI and OM . We present the sorted triples and their trans-
formations into natural language statements11 in Table 1.

Note that the above example may be also used if we
just need to align and possibly extend the ontology with
another institution’s knowledge base – the only difference

9See http://www.pubmedcentral.nih.gov/.
10Its OWL DL translation, see http://www.co-ode.org/
galen/.

11They are preceded by respective sample relevance
values, corresponding to {Scanning, discover, cytoma}
and {subclass, disease, dysfunction} sets of preferred
and unwanted terms, respectively.

is that we do not perform the ontology learning and also
omit retractions in the integration process, as noted in Sec-
tion 4.4. This can be applied in the critical task of inter-
mediation of medicine information, for example.

6. SELECTED APPLICATION DOMAINS
The application domains are discussed according to the

use case areas identified in [7] within the EU IST 6th Fra-
mework project RIDE. The areas are rather broad, however,
we can track the needs that can be at least partially covered
by an appropriate ontology lifecycle framework. We do this
for five selected domains in the following paragraphs. The
DINO ontology lifecycle framework can serve as a substantial
part of the respective semantics-enabled solutions in all of
the presented application domains, since it provides complete
framework for ontology creation, maintenance and mediation
in data-intensive dynamic environments.

6.1 Longitudinal Electronic Health Record
The main topic here is development of standards and

platforms supporting creation and management of long-term
electronic health records of particular patients. These should
be able to integrate various sources of data coming from dif-
ferent medical institutions a patient may have been treated
in during his whole life.

6.1.1 Needs
Need for integration of different data sources imposes need

for respective, possibly automatised, technologies able to fa-
cilitate this task. Common abstract conceptual structure of
the electronic health record needs to be populated and/or
extended by concrete data, present very often in unstruc-
tured natural language form. The electronic health record
should also be opened to efficient and expressive querying.

6.1.2 Solutions Provided by DINO
Ontologies bound to patient data resources in particular

institutions can very naturally support integration of respec-
tive data into longitudinal electronic health records. Once
there is an ontology describing the underlying data, we can
directly use the integration mechanism presented here in
order to manage the needed integration semi-automatically.
Moreover, the DINO framework can serve for easy and lay-
men-oriented ontology development already at the parti-
cular institutions’ side. Support for ontology learning di-
rectly facilitates the population/extension. Querying of on-
tology-enabled electronic health records is straightforward
in our framework, since it is possible using the state of the
art OWL reasoning tools.

6.2 Epidemiological Registries
Epidemiology is concerned with events occurring in popu-

lation – diseases, their reasons, statistical origins and their
relation to a selected population sample’s socioeconomic cha-
racteristic. Epidemiological registries should be able to rea-
sonably store and manage data related to population samples
and their medical attributes in order to support efficient
processing of the respective knowledge by the experts.

6.2.1 Needs
The needs of this application domain can be seen as an

extension of the needs in Section 6.1. Again, we have to
integrate various sources of patient data, however, this time



. . . while cerebellar astrocytoma is usually

discovered by means of CT. . . using a diagnostic

procedure of scanning. . .GVHD, an immune

dysfunction. . .GVHD, a disease being a type of
dysfunction. . .

...

<owl:ObjectProperty rdf:ID="discovered-by"/>
<owl:Thing rdf:ID="CT"/>

<owl:Thing rdf:ID="cerebellar-astrocytoma">
<discovered-by rdf:resource="#CT"/>

</owl:Thing>

<owl:Class rdf:ID="diagnostic-procedure"/>
<owl:Class rdf:ID="immune-dysfunction"/>

<owl:Class rdf:ID="dysfunction"/>
<owl:Class rdf:ID="scanning">

<rdfs:subClassOf rdf:resource="#diagnostic-procedure"/>
</owl:Class>
<immune-dysfunction rdf:ID="GVHD"/>

<owl:Class rdf:ID="disease">
<rdfs:subClassOf rdf:resource="#dysfunction"/>

</owl:Class>
...

Figure 3: A text sample and the learned ontology

Figure 4: Negotiated mappings

we would rather like to gather knowledge from the elec-
tronic health records to create population-wise repositories.
Furthermore, when studying relations between diseases and
population samples, global drug efficiency measures, etc., we
need efficient mechanisms of dealing with classes and their
attributes while querying the stored data.

6.2.2 Solutions Provided by DINO
Once there are ontology-enabled electronic health records

(as described in Section 6.1), we can easily integrate them
within another instance of “epidemiology” ontology develo-
ped in the DINO framework. The ontology representation
of data in an epidemiology repository can add additional
dimension to usual statistical processing of population da-
ta. Using DL-based reasoning on the data semantics ex-
pressed by the respective OWL ontologies, we could obtain
additional qualitatively different (symbolic) valuable results.

6.3 Public Health Surveillance
Public health surveillance presents ongoing collection, a-

nalysis, interpretation and dissemination of health-related
data in order to facilitate a public health action reducing
mortality and/or improving health [7]. It has several public
health functions, including estimating the impact of a disease,
determining the distribution and spread of illness, outbreak
detection or evaluating prevention and control measures.

6.3.1 Needs
The needs are similar to Section 6.2. However, there are

important differences, as the active public health functions
(e.g. outbreak detection) directly require efficient dynamic

processing of newly coming data. Moreover, the need for
tools able to automatically process free natural language
text is explicitly emphasised in this application domain con-
cerning the dynamic knowledge processing.

6.3.2 Solutions Provided by DINO
The basic design principles of DINO directly conform to

the needs here. Ontologies created and dynamically ex-
tended by or confronted with newly coming critical data
can efficiently support expert decisions in risk management
tasks. Continuous integration of less critical data from va-
rious sources can back the study of public health issues in
long term perspective at the same time.

6.4 Management of Clinical Trials
Briefly put, clinical trials are studies of the effects of newly

developed drugs on selected sample of real patients. They
are essential part of approval of new drugs for normal clini-
cal use and present an important bridge between medical
research and practice.

6.4.1 Needs
A need for electronic representation of clinical trials data

is emphasised. However, even if the data are electronically
represented, problems with their heterogeneity and inte-
gration occur as there are typically several different insti-
tutions involved in a single trial. Efficient querying is de-
manded, stating it can reduce the overall cost of clinical
trials significantly.

6.4.2 Solutions Provided by DINO



...

<owl:ObjectProperty rdf:ID="InstrumentalProperty"/>
<owl:ObjectProperty rdf:ID="DiscoveredUsing">

<rdfs:subPropertyOf rdf:resource="#InstrumentalProperty"/>
<rdfs:range rdf:resource="#Manifestation"/>
<rdfs:domain rdf:resource="#DiagnosisProcedure"/>

</owl:ObjectProperty>
<owl:Class rdf:ID="Manifestation"/>

<owl:Class rdf:ID="Procedure"/>
<owl:Class rdf:ID="DiagnosisProcedure">

<rdfs:subClassOf rdf:resource="#Procedure"/>
</owl:Class>
<owl:Class rdf:ID="SoftTissueCytoma"/>

<owl:Class rdf:ID="AstroCytoma">
<rdfs:subClassOf rdf:resource="#SoftTissueCytoma"/>

</owl:Class>
<owl:Class rdf:ID="Disease">
<owl:Class rdf:ID="Dysfunction">

<rdfs:subClassOf rdf:resource="#Disease"/>
</owl:Class>

...

...

<owl:ObjectProperty rdf:ID="DiscoveredUsing">
<owl:equivalentProperty rdf:resource="#discovered-by"/>

</owl:ObjectProperty>

<AstroCytoma rdf:ID="cerebellar-astrocytoma"/>
<owl:Class rdf:ID="DiagnosisProcedure">

<owl:equivalentClass rdf:resource="#diagnostic-procedure"/>
</owl:Class>

<owl:Class rdf:ID="immune-dysfunction">
<owl:subClassOf rdf:resource="#Dysfunction"/>

</owl:Class>

<owl:Class rdf:ID="Dysfunction">
<owl:equivalentClass rdf:resource="#dysfunction"/>

</owl:Class>
...

Figure 5: A master ontology sample and the respective mapping

<AstroCytoma rdf:ID="cerebellar-astrocytoma"/> +0.667: CEREBELLAR ASTROCYTOMA is a new instance of ASTROCYTOMA.

<Manifestation rdf:ID="cerebellar-astrocytoma"/> +0.667: CEREBELLAR ASTROCYTOMA is a new instance of MANIFESTATION.

<DiagnosisProcedure rdf:ID="CT"/> +0.389: CT is a new instance of DIAGNOSIS PROCEDURE.

<immune-dysfunction rdf:ID="GVHD"/> +0.333: GVHD is a new instance of IMMUNE DYSFUNCTION.

<owl:Class rdf:ID="scanning">
<rdfs:subClassOf rdf:resource="#DiagnosisProcedure"/> -0.444: A new class SCANNING is a sub-class of DIAGNOSIS PROCEDURE.

</owl:Class>

<owl:Thing rdf:ID="cerebellar-astrocytoma">

<DiscoveredUsing rdf:resource="#CT"/> -0.667: CEREBELLAR ASTROCYTOMA is DISCOVERED USING CT.
</owl:Thing>

<owl:Class rdf:ID="immune-dysfunction">
<rdfs:subClassOf rdf:resource="#Dysfunction"/> -0.833: A new class IMMUNE DYSFUNCTION is a sub-class of DYSFUNCTION.

</owl:Class>

Table 1: Extension triples and the respective NL suggestions

Once again, ontologies developed and/or mediated using
the DINO framework can facilitate the integration problems.
Universal formal OWL representation allows unified query-
ing of different clinical trial data then.

6.5 Genomics and Proteomics Research
Similarly to Section 6.4, this application domain is re-

lated to translational medicine and to bridging the research
and clinical practice. Genomics and proteomics research
studies genes, proteins, their effects, mutual influences and
interactions within human organism. It covers both basic
and applied medical and pharmaceutical research.

6.5.1 Needs
Integration of various knowledge repositories is needed

when pursuing study in a particular sub-domain of genomics
and proteomics. We may need to integrate specific know-
ledge e.g. in GO or UMLS controlled dictionaries12 and
in clinical reports on drug compounds and their effects in
practice. Merits of efficient querying of the knowledge are
obvious even in this case.

6.5.2 Solutions Provided by DINO
The ontology development and integration services, toge-

ther with OWL-based formalised support for efficient rea-
soning, cover the needs even in this application domain to

12See http://www.ebi.ac.uk/ego and http://umlsinfo.
nlm.nih.gov, respectively.

some extent. Unfortunately, there are practical limitations
mainly in the lack of formal structure of genomics and pro-
teomics knowledge bases. Their transformation into a formal
ontology is thus not trivial. However, after development/a-
daptation and implementation of a certain methodology and
rules of this translation, the semi-automatic relevance-guided
integration proposed in DINO can help in this task even if
the translation itself would not perform very well.

7. CONCLUSIONS AND FUTURE WORK
We have presented the basic principles of DINO – a novel

framework for ontology development in dynamic and data-
intensive domains like medicine. As a core contribution of
the paper, we have described the mechanism of integration
of learned and collaboratively developed medical knowledge.
It covers all the requirements specified in Section 1.1. The
proposed combination of automatic and collaborative tools
in knowledge acquisition, integration and inconsistency re-
solution ensures production of reliable, broad and precise
ontologies when using DINO in dynamics settings. The a-
nalysis of factual needs in the medicine application domains
presented in Section 6 has shown that the proposed scena-
rio we are implementing is relevant for the medicine research
and clinical practice.

Our present and future work concentrates mainly on full
implementation of the DINO framework by the respective
extensions of the MarcOnt Portal architecture (as outlined
in this paper). We also plan to continuously evaluate and
improve the framework in line with demands of interested



partners in the medicine industry (possibly, but not only
within the presented application domains) and also in other
applicable fields.

Acknowledgements
This work has been supported by the EU IST 6th frame-
work’s Network of Excellence ‘Knowledge Web’ (FP6-507482)
and partially by Academy of Sciences of the Czech Republic,
‘Information Society’ national research program, the grant
AV 1ET100300419.

8. REFERENCES
[1] S. Bechhofer, F. van Harmelen, J. Hendler,

I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider,
and L. A. Stein. OWL Web Ontology Language
Reference, 2004. Available at (February 2006):
http://www.w3.org/TR/owl-ref/.

[2] F. C. C. Brewster and Y. Wilks. User-centred onlology
learning for knowledge management. In In Proceedings
7th International Workshop on Applications of Natural
Language to Information Systems, Stockholm., 2002.

[3] P. Cimiano and J. Völker. Text2Onto - a framework
for ontology learning and data-driven change
discovery. In Proceedings of the NLDB 2005
Conference, pages 227–238. Springer-Verlag, 2005.

[4] O. Corcho, A. Lopez-Cima, and A. Gomez-Perez. The
ODESeW 2.0 semantic web application framework. In
Proceedings of WWW 2006, pages 1049–1050, New
York, 2006. ACM Press.

[5] K. Dellschaft and S. Staab. On how to perform a gold
standard based evaluation of ontology learning. In
Proceedings of the International Semantic Web
Conference. Athens, GA, USA., 2006.

[6] R. Dieng-Kuntz, D. Minier, M. Ruzicka, F. Corby,
O. Corby, and L. Alamarguy. Building and using a
medical ontology for knowledge management and
cooperative work in a health care network. Computers
in Biology and Medicine, 36:871–892, 2006.

[7] M. E. (edited by). Requirements analysis for the ride
roadmap. Deliverable D2.1.1, RIDE, 2006.

[8] J. Euzenat. An API for ontology alignment. In ISWC
2004: Third International Semantic Web Conference.
Proceedings, pages 698–712. Springer-Verlag, 2004.

[9] J. Euzenat, D. Loup, M. Touzani, and P. Valtchev.
Ontology alignment with ola. In Proceedings of the 3rd
International Workshop on Evaluation of Ontology
based Tools (EON), Hiroshima, Japan, 2004.
CEUR-WS.

[10] M. Fernandez-Lopez, A. Gomez-Perez, and N. Juristo.
Methontology: from ontological art towards
ontological engineering. In Proceedings of the AAAI97
Spring Symposium Series on Ontological Engineering,
pages 33–40, Stanford, USA, March 1997.

[11] M. Fernandez-Lopez, A. Gomez-Perez, and M. D.
Rojas. Ontologies’ crossed life cycles. In Proceedings of
International Conference in Knowledge Engineering
and Management, pages 65–79. Springer–Verlag, 2000.

[12] J. H. Gennari, M. A. Musen, R. W. Fergerson, W. E.
Grosso, M. Crubezy, H. Eriksson, N. F. Noy, and
S. W. Tu. The evolution of Protégé: an environment
for knowledge-based systems development.

International Journal of Human–Computer Studies,
58(1):89–123, 2003.

[13] A. Gomez-Perez, M. Fernandez-Lopez, and O. Corcho.
Ontological Engineering. Advanced Information and
Knowledge Processing. Springer-Verlag, 2004.

[14] P. Haase and J. Völker. Ontology learning and
reasoning - dealing with uncertainty and
inconsistency. In P. C. G. da Costa, K. B. Laskey,
K. J. Laskey, and M. Pool, editors, Proceedings of the
Workshop on Uncertainty Reasoning for the Semantic
Web (URSW), pages 45–55, NOV 2005.

[15] S. Kruk, J. Breslin, and S. Decker. MarcOnt initiative.
Ĺıon Deliverable 3.01, DERI, Galway, 2005.

[16] L. Laera, I. Blacoe, V. Tamma, T. Payne, J. Euzenat,
and T. Bench-Capon. Argumentation over ontology
correspondences in mas. In In Proceedings of the Sixth
International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS 2007), Honolulu,
Hawaii, USA. To Appear, 2007.

[17] L. Laera, V. Tamma, J. Euzenat, T. Bench-Capon,
and T. R. Payne. Reaching agreement over ontology
alignments. In Proceedings of 5th International
Semantic Web Conference (ISWC 2006).
Springer-Verlag, 2006.

[18] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions and reversals. Cybernetics Control
Theory, 10:707–710, 1966.

[19] A. Maedche and S. Staab. Ontology learning.
Handbook on Ontologies, 2004.

[20] V. Nováček, M. Dabrowski, S. R. Kruk, and
S. Handschuh. Extending community ontology using
automatically generated suggestions. In Proceedings of
FLAIRS 2007. AAAI Press, 2007. In press.

[21] V. Nováček, S. Handschuh, L. Laera, D. Maynard,
M. Völkel, T. Groza, V. Tamma, and S. R. Kruk.
Report and prototype of dynamics in the ontology
lifecycle (D2.3.8v1). Deliverable 238v1, Knowledge
Web, 2006.

[22] N. Noy and M. Musen. The prompt suite: Interactive
tools for ontology merging and mapping, 2002.

[23] S. Staab and R. Studer, editors. Handbook on
Ontologies. International Handbooks on Information
Systems. Springer-Verlag, 2004.

[24] Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer,
and D. Wenke. OntoEdit: Collaborative Ontology
Development for the Semantic Web. In 1st
International Semantic Web Conference (ISWC2002),
Sardinia, 2002. Springer.

[25] V. Tablan, T. Polajnar, H. Cunningham, and
K. Bontcheva. User–friendly ontology authoring using
a controlled language. In Proceedings of LREC 2006 -
5th International Conference on Language Resources
and Evaluation. ELRA/ELDA Paris, 2006.

[26] B. L. S. V. Tamma, I. Blacoe and M. Wooldridge.
Introducing autonomic behaviour in semantic web
agents. In In Proceedings of the Fourth International
Semantic Web Conference (ISWC 2005), Galway,
Ireland, November., 2005.

[27] M. Völkel and T. Groza. SemVersion: RDF-based
ontology versioning system. In Proceedings of the
IADIS International Conference WWW/Internet 2006
(ICWI 2006), 2006.


