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ABSTRACT 
Most common chronic diseases are multifactorial and 

characteristically involve the responses and influences of 

susceptibility and modifier genes that are subject to environmental 

factors. These interactions, mechanisms and phenotypic 

consequences can be richly represented using scale-free networks 

with semantically definable nodes and edges. Genomic studies 

using linkage analyses detect quantitative trait loci that encompass 

a large number of disease candidate genes. Similarly, 

transcriptomic studies using differential gene expression profiling 

generate hundreds of potential disease candidate genes that 

themselves may not include genetically variant genes that are 

responsible for the expression pattern signature. Hypothesizing 

that the majority of disease causal genes are biochemically known 

to play functionally important roles and whose mutations produce 

clinical features similar to the disease under study, we reasoned 

that an integrative genomics-phenomics approach utilizing the 

available annotation and clinical phenotypes derived from human 

and mouse gene orthologs could expedite disease candidate gene 

identification and prioritization. To approach the problem of 

inferring likely causality roles, we generated Semantic Web 

methods-based network data structures, and performed centrality 

analyses to rank genes according to model-driven semantic 

relationships. Our results indicate that Semantic Web approaches 

enable systematic leveraging of implicit relations hitherto 

embedded among large datasets and can greatly facilitate 

identification of centrality elements that can lead to specific 

hypotheses and new insights.   
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1. INTRODUCTION 

The identification of genes responsible for human disease is 

critical to comprehend underlying pathophysiological mechanisms 

and is essential for developing new diagnostics and therapeutics. 

Traditional approaches such as positional cloning and candidate 

gene analyses, as well as modern methodologies such as gene 

expression profiling tend to fail to discover genes underlying 

diseases. Quantitative trait loci intervals identified by positional 

cloning usually embed a few dozens to several hundred genes. 

Similarly, DNA microarray experiments generate hundreds of 

differentially expressed genes. Apparently, both of these strategies 

fail to help researchers in reducing the target genes to a 

manageable number or to prioritize the disease specific causal 

genes for further analysis. This explains the need to develop 

sophisticated techniques and tools to identify key candidates from 

gene lists generated by disease gene discovery methods. 

 Disease gene discovery has been shown to be 

accelerated by applying aggregative computational methodologies 

on integrated data sets generated from genome-scale experiments 

[1]. Integrating diverse functional genomic data has several 

advantages as described by Giallourakis et al  [2]. First, a more 

comprehensive description of functional gene networks can be 

formed by combining complimentary view-points generated from 

interrogation of diverse aspects of gene function from different 

technologies. Second, data integration reduces noise associated 

with each experimental limitation, thus increases sensitivity and 

specificity to detect true functional relationships which results in 

less number of false positives. However, large scale data 

aggregation efforts tend to be manual and lack sufficient semantic 

abstraction to allow for mechanistic generalizations. 

 Several gene prioritization methods have been 

developed [1, 3-10]. Some of them [1, 3, 4] use   training gene 

sets to prioritize candidate test genes based on their similarity with 

the training properties obtained from the reference set. One 

significant drawback in these methods is dependence on training 

set genes, because in many practical situations relevant training 

sets are not available and results may also vary depending on 

differing approaches used to delineate the particular training set 

used. There are few other methods [5, 7, 10]  which do not require 

any training set in prioritizing candidate test genes but their 

potential is limited by accessing only few data sources. Here, for 

the first time we utilized Semantic Web (SW) [11] standards and 

techniques for hunting human disease genes. Resource 

Description Framework (RDF) (www.w3.org/RDF/) and 

Ontology Web Language (OWL) (www.w3.org/2004/OWL/)   are 

used to integrate genomic and phenomic annotations associated 

with candidate gene set. The resulting Bio-RDF is a conventional 

directed acyclic graph (DAG) and centrality analysis is applied to 

score the elements in the network based on their importance 
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within network structure. Scoring of each gene depends on the 

functional importance obtained from the genome data combined 

with clinical features it’s sharing with related diseases obtained 

from phenomic data. Centrality measures are calculated from a 

modified version [12] of  Kleinberg algorithm [13]  extended for 

SW. Central elements of biological networks are found to be 

functionally essential for viability and can lead to new insights  to 

generate new hypothesis [14]. Apart from Kleinberg Authoritative 

Scores , there are several other centrality measurements, such as 

Google PageRank [15], Centrality Indices [16] and C-F closeness 

[17]. At present, SW querying languages do not rank the retrieved 

results from RDF graphs, so we borrowed a technique from M. 

Sougata et al  [12, 18] to rank the retrieved genes from Bio-RDF 

using SPARQL (http://www.w3.org/TR/rdf-sparql-query/) .  

 Our approach has enabled for the first time to utilize the 

combination of mouse phenotypes and human disease clinical 

features apart from GO and pathways in their prioritization 

approach. Our method doesn’t use any training data set, but 

extends the earlier hypothesis that majority of disease causal 

genes are functionally important and share clinical features with 

related diseases[1, 10]. We reasoned that an integrative genomics-

phenomics approach utilizing the available human gene 

annotations including human and mouse phenotype data will 

expedite disease candidate gene identification and prioritization. 

In the current study we focused on the cardiovascular system 

diseases (CVD). We tested this hypothesis by prioritizing (a) 

genes from the recently reported cardiomyopathy susceptibility 

loci (chromosomes 7p12.1-7q21 [19]  and (b) genes differentially 

expressed in dilated cardiomyopathy [20].  

 

2. METHODS 

2.1 Data Sources 

We used both genomic and phenomic data sources to prioritize 

gene candidates (See Figure 1). 

 

Genomic Data Sources 

1) Gene Ontology (GO) [21] was downloaded from 

GeneOntology  website (geneontology.org/ontology/ 

gene_ontology_edit.obo). Corresponding human GO-gene 

annotations were downloaded from NCBI Entrez Gene ftp site 

(ftp.ncbi.nih.gov/gene/DATA/gene2go.gz). The resultant data 

set contained 15068 human genes annotated with 7124 unique 

GO terms. 

2) Gene-pathway annotations were compiled from KEGG [22], 

BioCarta (http://www.biocarta.com/), BioCyc [23] and 

Reactome [24] . 4772 human genes had at least one pathway 

association (a total of 672 pathways).  

 

 Phenomic Data Sources 

1) Mammalian Phenotype (MP) ontology [25] and mouse gene 

phenotype annotations and the corresponding orthologous 

human genes were downloaded from Mouse Genome 

Informatics (MGI) website (http://www.informatics.jax.org). 

This data set contained 4127 human genes annotated with 

4066 mouse phenotypes. 

2) Online Mendelian Inheritance in Man (OMIM) [26] was 

searched for the ‘cardiovascular’ phrase occurring in Clinical 

Synopsis (CS) section and a total of 936 records were 

downloaded in XML format. OMIM ID and the corresponding 

gene associations were downloaded from NCBI Entrez Gene 

ftp site (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/ mim2gene).   

3) The Multiple Congenital Anomaly/Mental Retardation database 

(Syndrome db) was not available for download and java HTML 

scripts were used to extract the data directly from the website. 

This database was developed by Stanley Jablonski [27] and 

consists of structured descriptions of approximately 700 out of 

the 1600-2000 syndromes of congenital abnormalities known to 

be associated with mental retardation. Each entry has a ‘major 

features (MF) section’ (e.g. mouth and oral structures, 

abdomen and skin) similar to the CS section of OMIM. This 

database is web accessible at National Library of Medicine 

(NLM). A subset of 152 records having corresponding OMIM 

identifier and ‘cardiovascular system’ as one of the major 

clinical features were extracted.  

 

2.2 Mapping Clinical Features to Find UMLS 

Concepts   

OMIM ID’s and the corresponding features from CS section are 

parsed using java XML scripts from the downloaded XML files. 

The CS section of OMIM and MF section of Syndrome db are 

presented as loosely defined free textual descriptions. There is 

inconsistency in the use of clinical feature terms both semantically 

(e.g. increased sweating and diaphoresis) and syntactically (e.g. 

neonatal hypotonia and hypotonia, neonatal). In order to 

overcome these limitations, we have chosen to directly map these 

terms to Unified Medical Language System (UMLS) 

(http://umlsks.nlm.nih.gov) concepts using MetaMap [26]. It’s a 

NLP (Natural Language Processing) tool which takes free text 

from biomedical domain and maps noun phrases to a potential list 

of matching concepts from UMLS metathesaurus. We used an 

online version of metamap programme, available as part of 

Semantic Knowledge Representation project (SKR) 

(http://skr.nlm.nih.gov/), which aims to provide a framework for 

exploiting UMLS knowledge resources for NLP. 

 The extracted clinical features were uploaded into the 

metamap batch mode module and a java script was written to 

parse the results. The parser extracts score for each match, 

original textual phrase, mapped Concept Unique Identifiers 

(CUI’s) and the semantic type it belongs to from the list of final 

candidate mappings. To avoid erroneous mappings, UMLS 

Semantic Network is used to restrict the mappings belonging only 

to semantic types under ‘Disorders’ semantic group. These sets 

are further refined between scores ranging from 570 to 1000 and 

after careful manual curation, incorrectly assigned concepts were 

eliminated (Table 1). Clinical Features not having a corresponding 

CUI were given a custom unique id.  
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Figure 1: Schema diagram. A) Test gene set is obtained from a locus identified by linkage analysis, or a differentially expressed 

gene set from a microarray experiment. B) Genome and Phenome databases considered to create Bio-RDF includes GO: Molecular 

Function, GO: Biological Process, pathway, Mammalian Phenotype, OMIM and Syndrome DB C) Each resource in the Bio-RDF 

graph is scored for its importance in the network D) By issuing a SPARQL query relevant to a disease gene set, prioritized genes 

are obtained after computing the score for each result. 

 

Table 1. Statistics of clinical features from CS (OMIM) and 

MF (Syndrome db) mapped to UMLS concepts.  

 

2.3 Mapping Clinical Features to Genes  

Phenome network is constructed from gene to clinical features 

associations. As described in the previous step we normalized the 

clinical features to UMLS concepts, where each clinical feature 

has associated OMIM id. Further association of genes to features 

is done through OMIM id from ‘mim2gene’ dataset. 

 

2.4 Generating RDF 

The Resource Description Framework (RDF), an official W3C 

recommendation, provides a generic framework based on directed 

acyclic graph (DAG) to describe web resources. It is a semi-

structured data model in which complex relations can be readily 

modeled [28]. RDF statements describe a resource, the resource’s 

properties and the values of those properties. Each statement is 

referred to as a “triple” that consists of a subject, predicate 

(property), and object (property value). Statements in RDF can be 

represented as graph of nodes (resources) connected by edges 

(properties) to values. For example the triplet, < ‘ATM’ ‘is a’ 

‘Gene’>, expressing ‘ATM’ as subject, ‘is a’ the property and 

‘Gene’ as object of the statement. Disease Card Ontology (DCO), 

an ontology currently under internal development to model and 

help relate mechanisms of actions (pathways) to biological 

entities, influence of genotypes and clinical findings that are 

operative in a diseased state is used to provide the required 

semantic framework in generating RDF. DCO is being developed 

using Protégé [26] in OWL, a language layered on top of RDF to 

offer support for axioms and inference. Jena 

(www.jena.sourceforge.net), a java frame work for building 

Semantic Web applications is used to generate the required triples 

for RDF. 

  In the current version the data is retrieved directly from 

local relational databases to create RDF dynamically on the fly for 

the specific disease and gene set under study. However, the future 

versions will access a native RDF triple store to extract large 

subsets of graphs for a particular disease and gene set. The 
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OMIM 6838 4336 2660 

Syndrome db 3887 2047 1332 
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<?xml version="1.0"?>
<rdf:RDF

xmlns="http://www.cchmc.com/sample.owl#"

xmlns:DCO="http://www.cchmc.com/DCO.owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xml:base="http://www.cchmc.com/GeneInstance.owl#">
<owl:Ontology rdf:about="DiseaseCard.owl">

<owl:imports rdf:resource=""/>
</owl:Ontology>
<DCO:Gene rdf:ID="DMD">

<DCO:hasClinicalFeature rdf:resource="#Congestive_heart_failure"/>
<DCO:hasMousePhenotype rdf:resource="#weight_loss"/>
<DCO:inCellularComponent rdf:resource="#cytoskeleton"/>
<DCO:inMolecularFunction rdf:resource="#Actin_Binding"/>
<DCO:inBiologicalProcess rdf:resource="#muscle_contraction"/>     
<DCO:inPathway rdf:resource="#Agrin_in_Postsynaptic_Differentiation"/>      

</DCO:Gene>
</rdf:RDF>
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Figure 2: Portion of Bio-RDF for gene DMD based on the DCO ontology. The upper network is the ontology providing the 

required semantics for the lower RDF network consisting instance data 

 

data includes genomic information (pathways and gene ontology 

annotations) and phenomic information (OMIM, Syndrome DB 

clinical features and Mouse Phenotypes) associated with the test 

genes under study (Figure-1). Figure-2 provides a portion of 

DCO and associated RDF. As here we are focusing on CVD, the 

mouse phenotypes are restricted under ‘cardiovascular system 

phenotype’ parent term from the Mouse Phenotype Ontology.   

 

2.5 Ranking on Semantic Web (SW)  

 Discovering relevant knowledge and developing effective 

information retrieval techniques are crucial towards realizing the 

vision of Semantic Web. Our ranking approach is based on an 

earlier work which was successfully implemented in 

BioPatentMiner System [18]. The same logic can be applied in 

finding the disease genes from an integrative functional Bio-

RDF network. In the next few sections, a brief overview is 

provided in considering the metrics for ranking resources. For a 

more complete in-depth analysis and formulae for the algorithm, 

refer to the original paper [12, 18]. 

 

Resource Ranking Importance  

Resource importance, scoring network elements according to 

their importance within the network structure, can be calculated 

by relationships it has with other resources on the SW. It 

explains that the meaning of many other resources have to be 

defined with respect to this resource. In the context of SW, two 

important metrics have been defined to estimate the importance 

of each resource, subjectivity (SS) and objectivity scores (OS) 

parallel to Kleinberg’s [13] hub and authority scores for the 

WWW graph (Figure-3). Kleinberg not only considers in-degree 

and out-degree for each node but also the importance of linked 

nodes. Accordingly, if a node is pointed to by a node with high 

SS, its OS increases. Similarly, if a node points a node with high 

OS, its SS is increased. Nodes with high subjectivity /objectivity 

scores are subject/object of many RDF triples.  

Significance of Subjectivity (SW) and Objectivity 

Weights (OW) 

In the present WWW, all links are of equal weight and 

considered equally important while calculating hub and 

authoritative scores. But the SW space is more complex, where 

each property might not be equally important and depends on 

the subject and object it is associated with. For example, 

consider the property in_pathway where it links a gene to a 

pathway it has role in. A gene associated with multiple pathways 

is more important compared to a pathway having many genes. 

Figure-4 illustrates the significance of semantic weights on gene 

- pathway association. On the other hand, property 

associated_process links mouse phenotype to biological 

process. 
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Figure 3: Kleinberg’s Authoritative and Hub Nodes 

 

Like previous example, a biological process associated with 

multiple phenotypes is more important compared to a mouse 

phenotype having multiple processes. Therefore each property in 

SW space has pre-defined subjectivity and objectivity weights, 

which control the subject/object scores (resource importance) of 

the property. From the above examples, properties like 

in_pathway have higher subjectivity weight and properties like 

associated_process have higher objectivity weight. In our case 

gene is the subject for all the triples and each property is 

assigned a subjectivity weight (SW) of 0.9 and objectivity 

weight (OW) of 0.1. The assumption is that sum of SW and OW 

must be equal to 1.  For a more comprehensive description of 

the algorithm, refer to the original paper[12]. 

 

Ranking the Retrieved Results  

Search result ranking is an important research area in 

Information Retrieval. The results are not determined by specific 

query but by the importance of the results on the overall 

information space. We used ARQ 

(http://jena.sourceforge.net/ARQ/), a query engine for Jena that 

supports SPARQL RDF query language. A sample query to 

prioritize genes associated with cardiomyopathy is shown in 

Fig-1. However, SPARQL doesn’t prioritize the results, we 

borrowed a technique from M. Sougata et al [12] which adds an 

extra computational layer to rank the results. For each query the 

SPARQL returns a set of variable bindings matching to the 

query parameters and each unique result produces a graph 

formed from the triples matching the criteria. We extract the 

associated graph and compute a score for every result.  

3 RESULTS 

3.1 Benchmark of the method 

To explore the feasibility of our approach in candidate gene 

prioritization, we randomly selected 40 diseases from a total of 

423 CVD from OMIM database having known gene relations 

and associated clinical synopsis. The algorithm was not 

provided with any obvious link between target gene and the 

disease as we want to make sure that our method detects the true 

functional relationship between the disease and the gene. For 

each disease, we pulled out the genes located in the locus 

specified in the OMIM. On average each region contains around 

150 genes. The benchmark results were promising, as for 32 out 

of 40 cases (80%) the related gene is ranked in the top 10 and in 

26 cases (65%) ranked in top 5.  

 

3.2 Application  

Prioritization of Genes at a Locus for Hypertrophic 

Cardiomyopathy on Chromosome 7p12.1-7q21 

 We ranked the 110 genes occurring in the chromosome locus 

7p12.1-7q21, a recently reported inherited cardiomyopathy 

susceptibility region on human chromosome 7 [19]. Mutations 

in the top ranked genes, namely, ELN,GTF2I, GTF2IRD1, 

BAZ1B and LIMK1 (in mouse or human or both) have been 

associated with Williams-Beuren Syndrome, a syndromic 

disease characterized by infantile hypercalcemia, supravalvar 

aortic stenosis (OMIM ID: 194050) and less frequently 

hypertrophic cardiomyopathy [29].  

 

Gene Prioritization of Differentially Expressed 

Genes in Human Idiopathic Dilated 

Cardiomyopathy (DCM) 

 We used our prioritization approach to rank 216 differentially 

expressed genes from the expression profiles of myocardiac 

biopsies from 10 DCM patients[20]. The top gene is DMD, 

which is well known in cardiac function and malformation. 

Specific DMD gene mutations may protect against or inhibit 

development of DCM [30]. K336E mutation in ACTA1(Ranked 

2) is associated with fatal hypertrophic cardiomyopathy [30]. A 

missense mutation of CRYAB (Ranked 5), Arg157His, was  
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Figure 4: a) Illustrating the significance of a gene associated with multiple pathways is considered more important compared to a pathway 

having multiple genes b) Assigning subjectivity and objectivity weights to the property ‘associatedPathway’ for the triple ‘gene – 

associatedPathway – Pathway’ 
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Figure 5: Sequential addition of Genome – Phenome datasets improves SDBH gene ranking implicated in PARAGANGLIOMAS 4 



 

found in a familial DCM patient and the mutation affected the 

evolutionary conserved amino acid residue among alpha-

crystallins [31]. RYR2, ranked 10th in our list, encodes 

ryanodine receptor found in cardiac muscle sarcoplasmic 

reticulum. Mice with the R176Q cardiac RYR2 mutation exhibit 

catecholamine-induced ventricular tachycardia and 

cardiomyopathy [32]. RYR2 mutations are also known to cause 

cardiomyopathies and sudden cardiac death [33].  

 

4. ADVANTAGES OF USING SEMANTIC 

WEB TECHNOLOGIES 

 

4.1 Flexible Integration of Genome to 

Phenome Networks and Querying 

The following example explains how RDF based integrative 

approaches helped us to home in on the gene SDHB underlying 

Paragangliomas 4 (OMIM ID: 115310). This disorder has 

several cardiovascular system symptoms (palpitations, 

tachycardia, hypertension) allowing us to include it in the list of 

CVD. SDHB is one of the 245 genes located at the genomic 

region 1p36.1-p35. Figure-5 explains how flexible integration 

provided by RDF improves the rank of implicated gene. Using 

RDF, being a DAG, these layers of information can easily be 

integrated and mined by graph theoretical algorithms. As a 

general conclusion, the more relevant data sources we 

integrated, the better was the overall performance. Moreover, 

the algorithm requires constant traversals of graph to score each 

node in the network and SPARQL provides the required graph 

querying capabilities.   

 

4.2 Adding Context through Semantic 

Weights 

As discussed in the methods section and from Figure-4, by 

incorporating context specific subjectivity (SW) and objectivity 

weights (OW), we were able to improve ranking of certain 

genes. For example, the ACADVL gene implicated in 

mitochondrial very-long-chain acyl-CoA dehydrogenase 

deficiency (OMIM ID: 201475) ranked 53 without any 

Subjectivity and Objectivity weights, but improved its ranking 

to 9 after adding weight functions.  

 

4.3 Ability to Investigate Other Resources 

(apart from genes) in Bio-RDF 

 As all resources in the integrated Bio-RDF information space 

are ranked, we can issue further SPARQL queries to retrieve any 

ranked list of resources. Using the Human Idiopathic DCM 

example, we investigated further by querying for relative 

pathway ranking.  This provides further evidence of other 

important entities shared in the network to corroborate our initial 

findings. Figure-6 illustrates each SPARQL query and pathways 

returned from multiple sources. This feature is particularly 

useful for expression studies as the differentially expressed 

genes are already related in a particular disease context.  

 

5.  DISCUSSION 

Our approach to enrich lists of gene or candidate gene 

prioritization differs from other methods in multiple ways, right 

from coverage of data sources, data integration methods and 

applied mining algorithms. To the best of our knowledge, apart 

from G2D [10] and PROSPECTR [5] and POCUS [7], most of 

the current tools to enrich lists of genes or candidate gene 

prioritization use training gene set. But in many cases, training 

gene sets are not available and results are highly dependent on 

the quality of training set used. G2D uses MeSh 

(www.nlm.nih.gov/mesh) disease terms, from publications 

associated with each OMIM disease, as disease clinical features. 

These features are not comprehensive and granular compared to 

the clinical synopsis section we used, limiting the potential of 

G2D. In addition, none of the current approaches integrate 

human and mouse clinical features although the mouse is the 

key model organism for the analysis of mammalian 

developmental, physiological, and disease processes [34].Our 

methodology has two phases, first to find the biologically 

functional important genes from the test set by integrating 

multiple genomic data sets. The importance is scored based on 

their participation in multiple pathways, biological processes 

and molecular functions independent of any particular disease. 

Next, we include specific disease context to the genomic 

network by adding phenotypic or clinical features relevant to the 

disease under study (Ex: All Cardiovascular symptoms 

associated with the test genes from OMIM). This step increases 

the ranking of those specific genes, considered important from 

earlier case and also associated with clinical features related to 

the disease under study. In general, we are applying network 

centrality analysis to rank resources according to their 

importance within the Bio-RDF network structure. Moreover, in 

this case, the importance of a resource is calculated by diverse 

data sets (from genome to phenome) integrated into the 

information space. Additionally, resource ranking is performed 

semantically by including contextual semantic weights on the 

properties connecting the resources. Our approach however has 

some limitations. First, the prioritization can only be accurate as 

the underlying online sources from which the annotations are 

retrieved. Second, prioritization can be applied only on diseases 

where clinical features are available. 

 

6. CONCLUSION 

We have used for the first time in human disease gene 

prioritization combination of mouse phenotype and human 

disease clinical features from OMIM clinical synopsis. Apart 

from coverage of data sets used, we have shown how we can 

leverage on Semantic Web standards and techniques to apply on 

specific biological problem, right from RDF and OWL for 

integration, application of customized network centrality 

analysis algorithms for mining Bio-RDF and also retrieving 

ranked results using graph query languages such as SPARQL. 

Although, in the current study we focused on the cardiovascular 

system, our approach can be applied to any group of genes or 

disease sets. One immediate application could be in applying to 

OMIM diseases (around 1554) having known loci but unknown 

molecular basis. As the functional annotations of human and 

mouse genes improve we envisage a proportional increase in the  

  



 

PREFIX CCHMC:<http://www.cchmc.com/Bio_RDF.owl#> 

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
SELECT DISTINCT ?pathway 

where { 

?pathway rdf:type CCHMC:KEGG_Pathway .
} 

Rank Pathway Score

1 Agrin in Postsynaptic Differentiation 0.35737

2 Actions of Nitric Oxide in the Heart 0.27969

3 Stress Induction of HSP Regulation 0.18511

4 Integrin Signaling Pathway 0.185

5 uCalpain and friends in Cell spread 0.185

6 How Progesterone Initiates the Oocyte Maturation 0.1844

7 Signaling of Hepatocyte Growth Factor Receptor 0.15668

8 Y branching of actin filaments 0.15668

9 How does salmonella hijack a cell 0.15668

10 NFAT and Hypertrophy of the heart 0.15668

Rank Pathway Score

1 Oxidative phosphorylation 3.1938

2 Citrate cycle (TCA cycle) 0.4962

3 Calcium signaling pathway 0.4762

4 Cell Communication 0.3419

5 Tight junction 0.317

6 Focal adhesion 0.3162

7 Leukocyte transendothelial migration 0.2799

8 Regulation of actin cytoskeleton 0.2533

9 Adherens junction 0.2527

10 ATP synthesis 0.2315

Rank Pathway Score

1 Electron Transport Chain 1.82998

2 Oxidative decarboxylation of pyruvate and TCA cycle0.45765

3 Gene Expression 0.11796

4 Translation 0.11069

5 Nucleotide metabolism 0.09278

6 Lipid metabolism 0.04762

7 Apoptosis 0.02358

8 Metabolism of sugars 0.01287

9 Xenobiotic metabolism 0.01241

10 Hemostasis 0.01223

PREFIX CCHMC:<http://www.cchmc.com/Bio_RDF.owl#> 

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
SELECT DISTINCT ?pathway 

where { 

?pathway rdf:type CCHMC:BIOCARTA_Pathway .
} 

(a) (b)

Rank Pathway Score

1 aerobic respiration -- electron donors reaction list 0.71909

2 TCA cycle -- aerobic respiration 0.43913

3 glyoxylate cycle II 0.42936

4 superpathway of glycolysis and TCA variant VIII 0.06201

5 TCA cycle variation VIII 0.03

6 gluconeogenesis 0.02748

7 serine-isocitrate lyase pathway 0.01846

8 phenylalanine degradation I 0.01846

9 aspartate degradation II 0.01846

10 glyoxylate cycle 0.01846

PREFIX CCHMC:<http://www.cchmc.com/Bio_RDF.owl#> 
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

SELECT DISTINCT ?pathway 

where { 
?pathway rdf:type CCHMC:REACTOME_Pathway .

} 

PREFIX CCHMC:<http://www.cchmc.com/Bio_RDF.owl#> 

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

SELECT DISTINCT ?pathway 
where { 

?pathway rdf:type CCHMC:BIOCYC_Pathway .

} 

(c) (d)
 

Figure 6: Ranked pathways from various sources from the Bio-RDF associated with differentially expressed genes in human 

idiopathic dilated cardiomyopathy (DCM) [16] 

 

performance of this approach. Finally, we strongly believe that 

our methods will accelerate the disease gene discovery process by 

gathering and sifting through all knowledge of each candidate 

gene including its homologs and their phenotype. This in turn will 

enable targeted research on how mutations in the gene contribute 

to disease and provide specific leads towards novel diagnostic and 

therapeutic approaches. 
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