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ABSTRACT
The rise of Internet advertisement has created a demand for
new auction models. The ad-words auction, used by Google
for this purpose, called the position auction by Varian [15],
assigns advertisement slots to top price bidders in a decreas-
ing order of the attractiveness to the viewers, and charge
each winning agent, for every click generated from its web-
link at the allocated slot, the price of the next lower bid. It
has been known that this protocol is not incentive compati-
ble but a pure Nash equilibrium exists for the game among
the bidders. Moreover, refined solution concepts based on
Nash equilibrium have been proposed for better understand-
ing this game [9, 15]. As the participating agents may not
bid their private values in the game, it is not clear whether
those existential equilibria can be reached.

In this paper, we are interested in the dynamic process
how bidders interact to reach an equilibrium.

We first propose a new solution concept, the forward-
looking Nash Equilibrium, for the position auction by consid-
ering the strategic manipulations of an agent that take into
consideration the effect of the existing strategies of other
agents, as well as their future responses to its own benefit.

We prove that the forward-looking Nash equilibrium has
a unique solution. We note that, in a Nash equilibrium,
bidders with higher private values may be stuck with an
allocation worse than others with a lower private value of the
allocation. The forward-looking Nash equilibrium, on the
other hand, guarantees a concept called output truthful in
that the higher a bidder’s true value is, the better allocation
it will obtain.

Interestingly, we prove that the forward-looking Nash equi-
librium in its pricing and allocation scheme is equivalent to
the VCG auction outcome, which was regarded not suit-
able as too complicated to transfer into it from the cur-
rent Google’s position auction pricing system. In fact, our
results justify the use of Google’s position auction pricing
scheme. In presence of the most sophisticated users, it is
indeed equivalent to the Vickrey auction pricing scheme.

Most importantly, we justify the new solution concept by
deriving its convergence property. We study several dy-
namic adjustment schemes by the bidders, including one
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that converges in a finite number of steps. Moreover, we
show that a randomized adjustment scheme will converge to
the forward-looking Nash equilibrium with probability one.
As the randomized scheme is most reasonable to character-
ize a situation of uncoordinated bidders, it shows robustness
of the forward-looking Nash equilibrium.
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J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics

General Terms
Economics, Theory

Keywords
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1. INTRODUCTION
Internet advertisement market models, where buyers bid

for clicks on sponsored links on the Web display space, have
attracted intensive research activities in this important emerg-
ing market of billions of dollars [1]. The market is usually
centered at a keyword which a user submitted to a search
engine. In addition to information provided by the search
engine, sponsored links are displayed in the hope to tempt
the user to click it to the sponsors’ own web-pages, which
may transfer into sales of their products. The cost of the
advertisers is commonly based on the clicks into their adver-
tisement web-pages from the search engine’s display of the
keyword.

The charging scheme, commonly referred to as “pay-per-
click” is designed in a way such that the advertisers will not
have to pay if their sponsored links are not clicked upon
by the viewer. Google and Yahoo! have adopted a dis-
criminative charging scheme on clicks to displayed links of
the advertisers. It can be best described by the Position
Auction, defined by Varian [15]. Under this model, there
are K positions for sale to the advertisers to display their
web-links. Each position is associated with a frequency a
viewer may click into the web-link placed at that position.
The frequency can be regarded as the expected number of
clicks on web-links placed at those positions. We sort them
in a linear non-increasing order. Intuitively, web-links al-
located at higher ranked position will generate more clicks
and thus more revenues. Therefore, they will be allocated



to those bring in more revenue on the sponsored links and
be asked to pay more than those at lower ranked positions.
The position auction allocates the K total positions to the
K highest price bidders. It charges a click on a higher rank-
ing positioned web-link a price equal to the bidding price of
the advertiser placed at the next lower ranked position. The
lowest positioned web-link owner pays, for each click on its
web-link, the highest bidding price of the losers, i.e., those
bidders not allocated a place.

Advertisers have an estimation of the potential value to
their products of the users who are interested in the key-
word. The estimation is in general different for different
advertisers. The difference may result from various reasons,
such as the differences in their products, or differences in
their marketing strategies. The value is private to the ad-
vertisers. They may or may not want to reveal their private
values of the click on the keyword. The utility of an adver-
tiser is c× (v− p), dependent on its private value v, and the
position assigned to it in two parameter: the frequency c
that the position will be clicked upon, and the price p which
is charged on a click of the position. It has been known
that the protocol is not incentive compatible but pure Nash
equilibrium exists for the game under the protocol [9, 15, 2].

However, a weakness that Nash equilibria as a solution
concept in the position auction model is that the bidders
may not be willing to bid their true values. This is not a
problem when a Nash equilibrium is reached. Each loser
knows it is at its optimum allocation losing the game as
all the winning prices are at least as high as its own private
value. Winners can check, if other agents’ biddings are fixed,
whether they can be better off by changing their own bidding
prices. But how can it be reached? Furthermore, without
consideration of the convergence process, the agents may
stuck with a Nash equilibrium that is not appropriate.

For example, consider three bidders for two positions. The
frequencies for the two positions are 20 and 10. The values
are 5, 4 and 1. The set of bids, b1 = $2, b2 = $4 and b3 = $1,
result in a Nash equilibrium where agent 2 is assigned the
higher position with price 2 and agent 1 the lower position
with price 1! Agent 1’s utility is u1 = (5−1)×10 = 40. But
if she bade a value higher than 4 while other bids are fixed,
her position would be switched to the higher slot and her
utility would be reduced to u1 = (5 − 4) × 20 = 20. For the
same reason, if Agent 2 bade a value lower than 2, her utility
would be at most (4− 1)× 10 = 30, which is lower than her
utility (4−2)×20 = 40 in the current allocations and prices.
Clearly, Agent 3 also has no incentive to change its own bid.
Therefore, this is indeed a pure Nash equilibrium.

Our study is motivated in the dynamic process where an
agent may reasonably design its own bidding strategies to
improve its utilities. Our approach allows a discovery of a
robustness aspect of pure Nash equilibria with respect to
potential strategic behaviors of bidders. In Nash equilibria,
an agent will choose a strategy that maximizes its own utility
with respect to a given set of strategies of other players. It
is assumed that they will stay with the incumbent if no
other choices will gain it better utility. In arguing for a
more robust solution, the agents are assumed to wise enough
to explore potential improvement without the possibility of
making its payoff reduced.

As in the above example, if Agent 1 became a little smarter,
she would by no means keep still in the above equilibrium.
For example, if Agent 1 increases her bid to $2.8, Agent 2’s

utility will be decreased to (4 − 2.8) × 20 = 24. However,
if Agent 2 abandoned the higher slot and selected the lower
slot, her utility would be (4 − 1) × 10 = 30. Subsequently,
Agent 2 would choose to abandon the higher slot. This so-
lution is also a Nash equilibrium. Further, Agent 1’s utility
will be at least (5 − 2.8) × 20 = 44, which is larger than
that in the above myopic Nash equilibrium. We shall show
later that there is a range above the current bid of an agent,
within which it can change to any other bid with the pos-
sibility that its utility will be increased (and without the
possibility of a reduction on its utility) because of the next
high bidder may change its bid to a lower bid for its own
benefit.

Coincidentally, one unique feature of the online ad-words
auction, much due to the convenience provided by comput-
erized processes, is that the advertisers can change their bids
anytime. Such flexibility may give advertisers, in order to
obtain higher display rank or decrease their charged price or
both, an incentive to adjust their bids dynamically. There-
fore, such strategic manipulation is possible especially for
the application of position auction in online advertisement.
While Nash equilibria characterize individual rationality in
one-shot game well, the dynamic environment of online auc-
tion clearly encourages participating agents to look into the
effect of their strategies on future responses of others.

We formalize such a possibility by introducing a new so-
lution concept, the forward-looking Nash Equilibrium. In
comparison, we shall use the myopic Nash equilibrium in
place for the traditional one-shot Nash equilibrium. In a
forward-looking Nash equilibrium, an agent, in choices of
its own strategies, takes into consideration the effect of the
existing strategies of other agents, as well as their future re-
sponses. In myopic Nash equilibria only the effect of existing
strategies of other agents are taken into account.

As we have seen in the above example, it is possible that
in the myopic Nash equilibrium, bidders with higher private
values may stuck with an allocation worse than others with
a lower private values of the allocation. We demonstrate
the superiority of the new concepts by showing that, the
forward-looking Nash equilibrium, on the other hand, guar-
antees a concept called output truthful [11, 6] in that the
higher a bidder’s true value is, the better allocation it will
obtain (and pays more for each click).

Surprisingly, we show that such a dynamic solution re-
sults in the same allocations and prices for the bidders as
the celebrated VCG mechanism. For the VCG mechanism,
the allocation is one of the optimal among all feasible al-
locations. An agent in the VCG allocation is charged with
the difference of the social utility of the optimal allocation
without its participation minus the total VCG optimal al-
location. The VCG mechanism is incentive compatible but
is not applied to the ad-words auction as it is regarded too
complicated to the users.

We cannot find any official document explaining why the
VCG mechanism is not adopted by the search engine compa-
nies. However, compared with the current position auction,
obviously the pricing principal used by VCG is more compli-
cated to the advertisers. Further, in VCG, each advertiser’s
payment is decided by all the others’ bids, which makes the
advertiser difficult in precisely estimating the payment and
control the budget.

The study of a solution concept for dynamic manipula-
tions of participating agents would not be complete without



a study on convergence of the dynamic process. Indeed, con-
vergence is a nontrivial matter here. We first present two
deterministic ones, obviously fair to all participants, and
show that they do not always converge. Then we develop a
solution which converge in a finite number of re-adjustments.
Finally, we justify the robustness of convergence by proving
that randomly selecting an agent to re-adjust will lead to
convergence with probability one.

1.1 Related Work
[9, 15, 2, 13] analyze the auction model in terms of equilib-

ria solutions. They all find current ad-words auction models
used by Google and Yahoo! are not truthful. In [2], Aggar-
wal et al. design a truthful auction, named laddered auction,
for pricing keywords. This laddered auction is essentially
similar to the VCG mechanisms [16, 7, 10] when the click-
through rates is separable. In [9], Edelman et al. regard the
ad-words auction as a static one-shot complete information
game. Then they study locally envy-free equilibria, where no
player can improve her payoff by exchanging bids with the
player ranked one position above him, which is motivated
by some concepts of revenge. It is not difficult to prove
that LEFE is a subset of Nash equilibria. Varian’s paper
[15] studies the Nash equilibrium of the ad-words auction
and the relevant properties. Particularly, in consideration
of mathematical difficulties, [15] focuses a subset of Nash
equilibria, called Symmetric Nash Equilibria, which can be
formulated nicely and dealt with easily. In [13], Lahaie stud-
ied two slot auction mechanisms: rank by bid and rank by
revenue used currently by Yahoo! and Google respectively.

It has been proved that both the revenues under a locally
envy-free equilibrium and a symmetric Nash equilibrium re-
turn to the auctioneer at least the same revenue as that
under the VCG mechanism ([9] and [15]). Such a property
justifies the use of the position auction, to a theoretician’s
satisfaction that the sacrifice of incentive compatibility in
preferring the position auction to the VCG auction poten-
tially provides the auctioneer with some extra benefit.

Actually, this property was not accidentally satisfied by
both solution concepts. They are actually the same con-
cept expressed in different forms. Furthermore, the revenue
under our unique forward-looking Nash equilibrium is the
same as the lower bound under Varian’s symmetric Nash
equilibria [15] and the lower bound under Edelman et al.’s
locally envy-free equilibria.

Comparatively less is regarded this model as a dynamic
system and studies bidders’ strategic behavior and the sta-
bility of the system. Edelman et al. [8] show the instability
of first-price auction by Overture’s bidding data. The “saw-
tooth” pattern presents the oscillation in the system. Both
[12] and [4] study bidders’ behavior of bidding several key-
words with budget constraint. In [12], Kitts et al. design an
intelligent trading agent for ad-words auctions. In [4], Borgs
et al. present an optimal strategy for bidders based on the
heuristic that each bidder should bid an amount such that
his “return-on-investigation” is equal across all keywords.
They also discuss the stability of this heuristic. Asdemir
[3] considers the ad-words auction as alternative-move game
and studied this dynamic model with only two symmetric
bidders based on the strategies which only depend on the
payoff relevant history. Another idea to investigate bidders
behavior is from the interesting concept “antisocial behav-
ior” proposed by Brandt and Weiß [5]. In this concept, the

bidder’s behavior is directed by the tradeoff of increment of
the bidder’s payoff and the decrement of the competitors’
payoff, instead of just maximizing the bidder’s payoff. [12,
14, 17] all consider this issue in the ad-words auction. Spe-
cially, in [17], Zhou et al. study the equilibria under “vindic-
tive bidding” which means one bidder forces his competitor
to pay more without affecting his own payment. In other
words, the bidder’s bid is one cent below his competitor’s
bid.

This paper is organized as follows. Section 2 presents
the position auction model and related notations. In sec-
tion 3, we discuss agent strategic manipulations and study
the best strategic manipulation function of the agents. We
prove that our new solution concept to reflect their strate-
gic manipulations results in the same allocations and the
same pricing scheme as the VCG mechanism. Therefore, it
unites the two important methodologies for market pricing
processes, Nash equilibrium (in a stronger sense) and incen-
tive compatibility. In section 4, we investigate the conver-
gence properties toward forward-looking Nash equilibrium
of participating agents in the position auction. Finally, we
conclude in Section 5 with discussion on future research is-
sues.

2. PRELIMINARIES
The position auction protocol (Varian [15]) models after

keyword advertisement auctions adopted by Google and Ya-
hoo!.

For some keyword, consider a set N = {1, 2, . . . , N} of ad-
vertisers who bid for K = {1, 2, . . . , K} advertisement slots
(K < N) which will be displayed alongside with the search
result page. Usually, a well positioned advertisement would
receive more clicks than poor position ones. We should in-
dex them in a decreasing order of the popularity of those
slots, i.e., c1 > c2 > · · · > cK . Therefore, for any two
slots k1, k2 ∈ K, if k1 < k2, then slot k1’s click-through-rate
(CTR for short) ck1 is larger than ck2 . We reasonably as-
sume cK > 0. Moreover, each bidder i ∈ N has a privately
known information, vi, which represents the expected return
of per-click to bidder i. For simplicity, it is assumed that all
the bidders’ private values are different.

Given a set of bids submitted, bid bi from Advertiser i, 1 ≤
i ≤ N , the auctioneer faces a decision on how to distribute
the advertisement slots among the bidders and how much
each should pay for a click. The position auction assigns
the highest slot to the highest bidder, the second highest
slot would be allocated to the second highest bidder, and
so on. The last N − K bidders would lose and get nothing.
Finally, each winner would be charged for per-click the next
bid to him in the descending bid queue. The losers would
pay nothing. We also assume all the bids would be always
different.

Let bk denote kth highest bid in the descending bid queue
and vk the true value of the kth bidder in the descending
queue. So if Bidder i got slot k, i’s payment would be bk+1 ·
ck. Otherwise, his payment would be zero. Hence, for any
bidder i ∈ N , if i were on slot k ∈ K, his utility (payoff)
could be represented as

ui
k = (vi − bk+1) · ck (1)

Different from one-round sealed-bid auctions where each
agent has only one chance to bid, ad-words auction allows



changes of their bids anytime. Once some bid were changed,
the system would refresh the ranking automatically and in-
stantaneously. Accordingly, all the bidders’ payment and
utility would also be recalculated. That leaves a room for an
agent to make strategic manipulations to force other agents
to change their bids.

We remark that all the bidders are selfish and may not re-
port their private values truthfully. What the bidder would
consider and only considers is how much he should bid to
maximize his utility.

In [9] and [15], two new solution concepts were introduced
to amend Nash Equilibria with additional, but quite differ-
ent, rationality arguments.

Definition 1. [15] A Symmetric Nash Equilibrium (SNE)
is a set of prices such that

(vs − ps)xs ≥ (vs − pt)xt for all t and s.

Definition 2. [9] An equilibrium of the static game in-
duced by GSP is locally envy-free if a player cannot im-
prove his payoff by exchanging bids with the player ranked
one position above him.

Even though the two concepts are motivated quite differ-
ently, they are in fact defining the same set as known by the
research community of this field.

Theorem 1. (Folklore) The set of symmetric Nash equi-
libria (SNE) is equal to the set of locally envy-free equilibria
(LEFE)

3. FORWARD-LOOKING NASH EQUILIB-
RIUM FOR POSITION AUCTION

In this Section, we illustrate a type of strategic manipu-
lations that agent can exercise to explore the possibility of
profiting by forcing other agents to abandon their current
bids to a lower position. Such strategic behavior points to
the vulnerability of Nash equilibrium in position auctions
and calls for a more comprehensive understanding of the
equilibrium under the circumstance of online advertisement
with repeated biddings, where agents have ample oppor-
tunity for exploiting any weakness. While we share the
same motivation as the work of that introduced SNE and
LEFE [15, 9], our approach is different. The previous def-
initions are based on reasoning on fairness. Ours studies
the dynamic outcome of rational strategic manipulations by
participating agents.

3.1 Exploitable Vulnerability of Nash Equilib-
ria

Since each bidder’s utility function depends on the bid of
the bidder on the next slot, it turns out that the optimal
decision of each bidder depends on the decisions made by
other bidders. Symmetrically, since each bidder’s decision
would also influence the other bidders’ profit, his decision
would also influence the other bidders’ decisions in future.

However, traditional Nash equilibria assume that each
bidder is myopic. In other words, unless the bidder could
benefit immediately from changing her bid, she would keep
still. The bidder would never consider those promising de-
cisions which not only wouldn’t decrease her profit, but also
would benefit her indirectly by influencing the other bidders’
decisions firstly. Unfortunately, this weakness in assumption

is blown up in the ad-words auction game. This neglected
incentive plays an important role in the game and the tra-
ditional Nash equilibrium may become unstable in practice.

Consider the example in the introduction. There are a
total of two slots, c1 = 20 and c2 = 10, and three bidders
i = 1, 2, 3, whose private true value is v1 = 5, v2 = 4 and
v3 = 1. As we have seen, the collection of bids, b1 = $2,
b2 = $4 and b3 = $1 is a myopic Nash equilibrium. If bidder
1 became a little smarter, she would by no means keep still
in the above equilibrium. Since bidder 2’s utility in the equi-
librium depends on bidder 1’s bid, bidder 1 would increase
her bid so high as to compel bidder 2 to abandon the higher
slot, instead of bidding a value higher than 4 to obtain c1

directly. On the other hand, since bidder 1’s payoff may
depend on bidder 2’s bid in the next step, she would not
infinitely raise her bid. To clarify the idea, we argue that
bidder 1 may adopt the following practical strategy, start-
ing from the above myopic Nash equilibrium. In conformity
with the practical rules, we assume that the difference be-
tween any two bids is at least $0.01.

Strategy 1 The more advisable strategy for bidder 1

1: b1 = $2
2: while bidder 2 wouldn’t like to abandon the higher slot

do
3: b′ = b1 + $0.01
4: //Check whether bidder 1’s utility would decrease, in

case bidder 2 abandoned the higher slot and bade a bid
very close to bidder 1’s bid.

5: if (5 − (b′ − 0.01)) × 20 < (5 − 1) × 10 then
6: Keep still and jump out the loop
7: else
8: Submit a new bid b′ and let b1 = b′

9: end if
10: end while

According to the strategy, bidder 2 wouldn’t abandon the
higher slot until bidder 1 increases his bid to $2.51. Clearly,
bidder 1’s utility will be at least (5 − 2.5) × 20 = 50, which
is one fourth larger than that in the initial myopic stable
status.

This property is not limited to this example at all. Bidder
1 can safely adopt the following strategy without possibility
of lower utility and with the possibility of better utility.

Strategy 2 The general strategy for ad-words auctions

1: For each bidder, determine her bid range which could
maximize her utility in the current situation;

2: In the above optimal range, select a bid so that she
could obtain the slot as high as possible after the other
bidders’ responses for her bid;

3: Be sure that her utility would not be decreased if she
really got the higher slot in the next step.

3.2 Forward-looking best-response function and
its properties

In the previous section, we have shown the vulnerability of
Nash equilibria and have discovered some ideas about a bet-
ter solution concept. In this subsection, we will present the
formal definition of a forward-looking best response func-
tion based on the above farseeing strategy and discuss its



suitability for characterizing ad-words auctions.
Let b represent the bid vector (b1, b2, . . . , bN ). ∀i ∈ N ,

we denote by Oi(b) bidder i’s place in the descending bid
queue. Let b−i = (b1, . . . , bi−1, bi+1, . . . , bN ) denote the bids
of all other bidders except i.

Definition 3. (Myopic Best-response Function) Given
b−i, bidder i’s myopic best-response function Mi(b−i) re-
turns a set defined as

Mi(b−i) = arg max
bi∈[0,vi]

{
ui
Oi(bi,b−i)

}
(2)

Clearly, eventually all the losers would submit their true
values to enhance the possibility of winning the last slot, as
they bid their ways toward a possibility of winning a slot of
price lower than their true values without success.

With the other agents’ bids b−i fixed, consider
Oi(M−i(b−i, bi), bi) as a single-variable function of bi.

Proposition 1. For any agent i, Oi(M−i(b−i, bi), bi) is
monotone non-increasing in terms of bi.

Proof. Suppose bi < b̃i, Oi(b−i, bi) = k. For some bid-
der j ∈ N , j 6= i, if bidder j prefers a slot t lower than k
after i bids bi, obviously j must still prefer the slot t if i bids
b̃i instead of bi initially.

So after bidder i increases her bidder from bi to b̃i, the
bidders who prefer slots lower than k would still prefer these
slots. Hence bidder i will eventually get a slot when she bids
b̃i at least as high as k when she bids bi.

Therefore, if bi < b̃i,

Oi(M−i(b−i, bi), bi) ≥ Oi(M−i(b−i, b̃i), b̃i)

.

Given b−i, bi ∈ Mi(b−i). Suppose Oi(bi,b−i) = k, the
bidder on slot k+1 bids bk+1, and Oi(M−i(b−i, bi), bi) = t,
then we have

Proposition 2. If ui
k ≤ ui

t for all t : t < k, then

bi ≤ vi − ck

ck−1
(vi − bk+1)

Proof. When bidder i gets slot k, her utility is ui
k =

(vi − bk+1)ck. When bidder i gets slot t, her utility is

ui
t =(vi − bt)ct

≥(vi − bi)ct

From ∀t < k, ui
k ≤ ui

t, we have

(vi − bk+1)ck ≤ (vi − bi)ct

⇒bict ≤ vi(ct − ck) + bk+1ck

⇒bi ≤ vi − ck

ct
(vi − bk+1)

Since vi > bk+1 and ∀t < k, ct ≥ ck−1

⇒bi ≤ vi − ck

ck−1
(vi − bk+1)

From proposition 1, we learn that for any given b−i, the
higher bidder i bids, the higher a slot she can get in the next

step. Therefore, it implies that any bidder i should bid as
high as possible in the set Mi(b−i) in order to get a higher
slot in the next step. However, according to proposition
2, subject to no risks of the decrease of its own payoff by
the affected bidders’ next optimal move if she gets the higher
slot in the next step, bidder i preferring slot k would not bid
higher than vi − ck

ck−1
(vi − bk+1). To see it differently, if this

bidder gradually increases its bid by a minimum increment,
it would stop bidding higher at this point.

If one preferred the highest slot, clearly, she would bid as
high as possible so that she could still obtain the highest
slot after the other bidders’ responses. So she would bid
her true value. Similarly, as for the losers, she would her
true value in order to get some slot after the other bidders’
responses for her bid. So she would also bid her true value.
So strategy 2 is exactly the forward-looking best response
function defined as follows.

Definition 4. (Forward-Looking Best Response Func-
tion) Given b−i, suppose Oi(Mi(b−i),b−i) = k, then bid-
der i’s forward-looking response function F i(b−i) is defined
as

F i(b−i) =

{
vi − ck

ck−1
(vi − bk+1) 2 ≤ k ≤ K

vi k = 1 or k > K
(3)

Then,

Definition 5. (Forwarding-Looking Equilibria) A forward-
looking best response function based equilibrium is a strat-
egy profile b̂ such that

∀i ∈ N , b̂i ∈ F i(b̂−i)

The following results show the above forward-looking best
response function is well defined and has many good prop-
erties.

Definition 6. (Output Truthful) [11, 6] For any instance
of ad-words auction and the corresponding equilibrium set
E , if ∀e ∈ E and ∀i ∈ N , Oi(e) = Oi(v1, . . . , vN ), then we
say ad-words auction is output truthful on E .

Theorem 2. Ad-words auction is output truthful on
Eforward−looking.

Proof. Suppose there exists an instance of ad-words auc-
tion which is not output truthful in terms of some equilib-
rium e, then in the equilibrium e, there must exist a pair of
adjacent slots k, k + 1 and the bidder i on slot k and the
bidder j on slot k + 1 such that vi < vj , which may only
occurs when k < K.

Since (vj − bk+2) > 0 and (ck − ck+1) > 0, (vj − bk+2) ·
(ck − ck+1) > 0, then

(
vj − ck+1

ck
(vj − bk+2)

)
> bk+2.

According to equation (3), bidder i’s utility on slot k is

ui
k =(vi − bk+1) · ck

=

(
vi −

(
vj − ck+1

ck
(vj − bk+2)

))
· ck

=(vi − bk+2) · ck+1 + (ck − ck+1) · (vi − vj)

<(vi − bk+2) · ck+1

=ui
k+1

So bidder i should prefer slot k + 1 than slot k, which
contradicts the definition of forward-looking Nash equilib-
ria.



Corollary 1. Ad-words auction has an unique forward-
looking Nash equilibrium.

Proof. According to theorem 2, since ad-words auction
is output truthful on forward-looking Nash equilibrium, the
bid on any slot is fixed. Then combined with equation
(3), clearly, there is a unique forward-looking Nash equi-
librium.

Corollary 2. The ad-words auction is social efficient
under the forward-looking Nash equilibrium.

Furthermore, without loss of generality, we assume that
v1 > v2 > · · · > vN .

Corollary 3. Any bidder’s payment under the forward-
looking Nash equilibrium is equal to her payment under VCG
mechanism for the auction.

Proof. First, under the VCG mechanism [16, 7, 10], all
the bidders would submit their bids truthfully. So VCG
mechanism is also output truthful. Clearly, the output un-
der VCG mechanism is the same as the output under ad-
words auctions.

Second, according to the definition of VCG mechanism,
for any winner i ≤ K, winner i’s payment is

pi
V CG =

(
k=1∑
i−1

vk · ck +

k=i+1∑
K+1

vk · ck−1

)

−

(
k=1∑
i−1

vk · ck +

k=i+1∑
K

vk · ck

)

=

k=i+1∑
K+1

vk · (ck−1 − ck)

=vi+1 · (ci − ci+1) + pi+1

(4)

In order to describe the above equation more clear, we il-
lustrate its geometric explanation in Figure 1. As in Figure
1, bidder K’s VCG payment is exactly the area of rectangle
A, bidder (K−1)’s VCG payment is both the area of rectan-
gle A and B, bidder (K − 2)’s VCG payment is all the area
of rectangle A, B and C, bidder (K − 3)’s VCG payment is
...

Now return to check the bidders’ payment under the forward-
looking Nash equilibrium. For any winner i ≤ K, winner i’s
payment is

pi
forward−looking =bi+1 · ci

=

(
vi+1 − ci+1

ci
(vi+1 − bi+2)

)
· ci

=vi+1 · ci − vi+1 · ci+1 + bi+2 · ci+1

=vi+1 · (ci − ci+1) + pi+1

(5)

Furthermore, pK
forward−looking = pK

V CG = vK+1·cK . There-
fore, both equation (4) and (5) are exactly equivalent. So
any bidder’s payment under the forward-looking Nash equi-
librium is equal to her payment under VCG mechanism for
the auction.

Corollary 4. For ad-words auction, the auctioneer’s rev-
enue in the forward-looking Nash equilibrium is equal to her
revenue under the VCG auction protocol.
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Figure 1: The illustration of how to compute the
VCG payment.

4. CONVERGENCE OF AD-WORDS AUC-
TIONS

At the forward-looking Nash equilibrium, no bidder would
gain by deviating from it. In addition, no bidder could suffer
an immediate lose by another bidder’s move affected by the
forward-looking best response. This implies that once the
forward-looking Nash equilibrium is reached, the system will
remain in that equilibrium.

However, starting from an arbitrary initial state, how and
whether selfish players can actually arrive at such an equi-
librium is still a problem. In the following parts, we will
study several reasonable dynamic models of bidders’ behav-
ior for the possibility of convergence to the equilibrium case
by case. We show that two apparently fair scheme may not
always guarantee convergence to the forward-looking Nash
equilibrium. On the other hand, we show that, the conver-
gence toward the forward-looking Nash equilibrium is highly
possible in a system of spontaneous bidders.

4.1 Simultaneous Readjustment Scheme
We first consider a practical case where the bidders update

their bids simultaneously. I.e, all bidder participating in
the auction will use forward-looking best-response function
F to update their current bids simultaneously, which turns
the current stage into a new stage. Then based on the new
stage, all bidders may update their bids again. Bidders keep
updating simultaneously until the reaching of the forward-
looking Nash equilibrium.

For each bidder i ∈ N , denote bi(t) as the bid value of
bidder i at the tth stage, where t ≥ 0 and bi(0) is the initial
bid value of bidder i. Then ∀t, ∀i, we have the iteration
function:

bi(t + 1) = F i(b−i(t)) (6)

A crucial question now is the dynamics of reaching that
equilibrium, namely find a finite t such that bi(t+1) = bi(t)
for ∀i ∈ N . The following counter example shows that the
equilibrium may never be reached.

Counter example:
Several bidders compete for 3 slots. The click through

rate of each slot is given in table 1(a). Since all bidders use



(a) The click-through rate

slot 1 2 3

CTR 16 11 10

(b) The evolution of bids

true value b(t) b(t + 1) b(t + 2)

5 1.36 5 1.36
4.8 1.35 4.8 1.35
4.5 1.32 4.5 1.32
1 1 1 1

Table 1: The counter example for the simultaneous
readjustment scheme

the forward-looking best-response function to readjust their
bids. It’s easy to find that after finite steps, the bidders who
don’t get any slot will bid their true values and from then
on their bids will never be changed. Thus, for simplicity, we
only consider the updates of the four bidders with highest
true values.

Assume the four bidders are i = 1, 2, 3, 4, whose private
true value is v1 = 5, v2 = 4.8, v3 = 4.5, v4 = 1. At stage t,
they bid b1(t) = 1.36, b2(t) = 1.35, b3(t) = 1.32, b4(t) = 1,
and b(t) = (1.36 1.35 1.32 1)T . Since bidder 4 is a loser, she
always bids her true value.

Based on the stage t, each bidder updates their bids si-
multaneously.

From equation 3 and equation 6,

b1(t + 1) = F1(b2(t), b3(t), b4(t)) = 5

b2(t + 1) = F2(b1(t), b3(t), b4(t)) = 4.8

b3(t + 1) = F3(b1(t), b2(t), b4(t)) = 4.5

b4(t + 1) = F4(b1(t), b2(t), b3(t)) = 1

b1(t + 2) = F1(b2(t + 1), b3(t + 1), b4(t + 1)) = 1.36

b2(t + 2) = F2(b1(t + 1), b3(t + 1), b4(t + 1)) = 1.35

b3(t + 2) = F3(b1(t + 1), b2(t + 1), b4(t + 1)) = 1.32

b4(t + 2) = F4(b1(t + 1), b2(t + 1), b3(t + 1)) = 1

So b(t + 2) = (1.36 1.35 1.32 1)T .
Since b(t) = b(t + 2), which implies that bidders will

keep jumping between this two stages time and again, and
never reach the equilibrium. Therefore, we have the follow-
ing proposition:

Proposition 3. Ad-words auction may not always con-
verge to forward-looking Nash equilibrium under the simul-
taneous readjustment scheme even when the number of slots
is 3.

We comment that 3 is the minimum number of slots when
this strategy fails as it is not hard to prove that the protocol
always converges when the number of slots is 2.

The main steps of this example are shown in table 1(b).

4.2 Round-Robin Readjustment Scheme
In this subsection, we consider another scheme called the

round-robin readjustment scheme, which is popular because
of its fairness and operability. Under this scheme, bidders
take turns to update one after another, i.e, there doesn’t ex-
ist two bidders who update simultaneously. Here we divide

(a) The click-through rate

slot 1 2 3 4

CTR 74 68 41 25

(b) The evolution of bids

No. true value b(t) b(t + 1) b(t + 2)

1 305.14 174.75 155.87 174.75
2 209.41 142.69 160.21 142.69
3 197.67 138.12 163.24 138.12
4 797.51 797.51 797.51 797.51
5 100.00 100.00 100.00 100.00

Table 2: The counter example for the readjustment
according to bidder number

this scheme into two types according to the two elements in
the auction: bidder and slot.

4.2.1 Readjustment according to bidders
Consider bidders update their bids sequentially, in the

order 1, 2, . . . , N, 1, 2, . . . , N , etc, where 1, 2, . . . , N is bidder
number randomly allocated to each bidder. Now for ∀i, ∀t,
the iteration function is:

bi(t + 1) = F i(b1(t + 1), . . . , bi−1(t + 1), bi+1(t), . . . , bN (t))
(7)

In order to show the convergence, we need to prove that
for any given bid set b, there exists a t, such that for ∀i,
bi(t + 1) = bi(t). However, this time we still find a counter
example which shows that the equilibrium may never be
reached.

Counter example:
5 bidders competes for 4 slots. Randomly sort these five

bidders and give each one a bidder number according to the
order. The click through rate of each slot is given in table
2(a) and the first two columns of table 2(b) give the bid-
der number and the corresponding private true values. The
remaining columns of table shows the iteration processes.
Here we only demonstrate the iteration process of bidder
2 in details and the other bidders’ processes are similar to
bidder 2’s.

From equation 7,

b2(t + 1) =F2(b1(t + 1), b3(t), b4(t), b5(t)

=F(155.87, 138.12, 797.51, 100.00)

=160.21

b2(t + 2) =F2(b1(t + 2), b3(t + 1), b4(t + 1), b5(t + 1)

=F(174.75, 163.24, 797.51, 100.00)

=142.69

Since bi(t) = bi(t + 2) for all i and bi(t) 6= bi(t + 1) for
some i, readjustment according to bidder number may not
convergent to forward-looking Nash equilibrium.

4.2.2 Readjustment according to slots
We create N − K virtual slots with click through rate

cK+1 = cK+2 = · · · = cN = 0, thus the bidders and slots
have one-to-one relationship.The order of slots is equivalent
to the order of bids. Then we consider that bidders update
their strategies sequentially according to the order of slots.



(a) The click-through rate

slot 1 2 3 4 5

CTR 74 68 41 25 0

(b) The evolution of bids

true value b(t) b(t + 1) b(t + 2) b(t + 3)

797.51 797.51 797.51 797.51 797.51
305.14 178.18 155.86 178.18 178.18
209.41 142.69 160.20 166.98 142.69
197.67 138.12 163.24 163.24 138.12
100.00 100.00 100.00 100.00 100.00

Table 3: The counter example for the readjustment
according to slot (top down)

Next, we consider the two cases of this adjustment: as-
cending case and descending case.

Case I: descending case (top down)
Bidders with higher slot update their bids first. Now the

iteration function is:

bi(t+1) = F(b1(t+1), ..., bi−1(t+1), bi+1(t), ..., bN (t)) (8)

Unfortunately, we still find a non-convergence example
under this situation.

Counter example (top down):
5 bidders compete for 5 slots. The click through rate of

each slot is given in table 3(a). Table 3(b) gives the bid-
ders’ private true values and the main steps of the dynamics
process.

Here we only give the iteration process of the bidder with
true value of 209.41.

From equation 8,
At stage t, she gets slot 3. At stage t+1, she updates her

bid to

b3(t + 1) =F(b1(t + 1), b2(t + 1), b4(t), b5(t))

=F(797.51, 155.86, 138.12, 100.00)

=160.20

After the remaining bidders update, she still obtains slot
3 at stage t + 1. Then at stage t + 2, she updates her bid to

b3(t + 2) =F(797.51, 163.24, 155.86, 100.00)

=166.98

This time she gets slot 3 and at stage t + 3, she updates
her bid to

b3(t + 3) =F(797.51, 178.18, 163.24, 100.00)

=142.69

Since bi(t) = bi(t + 3) for ∀i and bi(t) 6= bi(t + 1), bi(t) 6=
bi(t + 2) for some i, we have the conclusion that forward-
looking equilibrium is not convergent under this readjust-
ment scheme.

Case II: ascending case (bottom up)
Bidders with lower slot update their bids first. Then the

iteration function is:

bi(t+1) = F(b1(t), ..., bi−1(t), bi+1(t+1), ..., bN (t+1)) (9)

Still we find a non-convergence example under this situa-
tion.

(a) The click-through rate

slot 1 2 3 4 5

CTR 96 75 41 15 0

(b) The evolution of bids

true value b(t) b(t + 1) b(t + 2)

100.00 100.00 100.00 100.00
827.18 561.14 686.00 561.14
828.6 562.04 562.04 562.04
948.01 646.47 743.31 646.47
1055.10 1055.10 1055.10 1055.10

Table 4: The counter example for the readjustment
according to slot (bottom up)

Counter example (bottom up):
5 bidders compete for 5 slot. Table 4(a) gives the click

through rate of each slot. Bidders’ private true values and
the dynamics process. The second and the fourth column
of table 4(b) have the same values, which implies that bid-
ders can not dynamically reach the forward-looking Nash
equilibrium.

Now we can get the following proposition:

Proposition 4. Ad-words auction may not always con-
verge to forward-looking Nash equilibrium under the round-
robin readjustment scheme even when the number of slots is
4.

We comment that 4 is the minimum number of slots when
this strategy fails as it is not hard to prove that the protocol
converges when the number of slots is 3.

4.3 Randomized Readjustment Scheme
In reality, there is no centralized controller who decides

the priority based on some adjustment scheme in on-line
ad-words auctions. The decisions are made spontaneously
by individual bidders. They are no longer deterministic in
advance, but are at random.

It is therefore important to study the case where the bid-
ders update their bids in a randomized manner. We for-
mally model such a behavior pattern by randomly pick a
bidder to change its decision. We still assume that all bid-
der participating in the auction will use the forward-looking
best-response function F to update their current bids.

First, by constructing a special deterministic adjustment
rule, we prove that the ad-words auction will reach the
forward-looking equilibrium in finite steps under the con-
dition that there are no two bidders update simultaneously.
Then we prove the convergence property in the randomized
adjustment scheme.

We construct a special updating rule for a K slot ad-
words auction with N bidders (K < N) called Lowest-First
as Strategy 3 as below. We recall that the current bids are
ordered (and assumed distinct) in b1 > b2 > · · · > bj >
· · · > bN . We use index j be the bid for which we will
update according to our best-response function.

Lemma 1. Ad-words auction converge to forward-looking
Nash equilibrium in finite steps with the strategy Lowest-
First.

Proof. We prove it by induction. First of all, N = 1
is trivial as K = 0. Consider the case N = 2 and K = 1.



Strategy 3 Lowest-First(K, j, b1, b2, · · · , bN )

1: if (j = 0) then
2: exit
3: end if
4: Let i be the ID of the bidder whose current bid is bj

(and equivalently, bi).
5: Let h = Oi(Mi(b−i),b−i).
6: Let F i(b−i) be the best response function value for Bid-

der i.
7: Re-sort the bid sequence. (So h is the slot of the new

bid F i(b−i) of Bidder i.)
8: if (h < j) then
9: call Lowest-First(K, j, b1, b2, · · · , bN ),

10: else
11: call Lowest-First(K, h − 1, b1, b2, · · · , bN )
12: end if

When the procedure is called at Lowest-First(1, 2, b1, b2) as
K = 1 and N = 2, the bidder j = 2 with bid b2 would
choose its best response with respect to b1.

If its best response is less than b1, then the new bid will be
its own private value according to the best response function
as its is a loser after the bid. The recursive call will be
Lowest-First(1, 1, b1, b2) and the bidder j = 1 will also bid its
own private value according to the best response function.

Otherwise, if the bidder j = 2’s best response is large
than b1, then the bid will again be its own private value
since it is the highest bid. Then the recursive call will be
again Lowest-First(1, 2, b1, b2) but it is further constrained
that b1 is the true private value of the bidder j = 1 (note
that the index is updated here). Then, when bidder j = 2
bids in the recursive call, it is always its true value as in
the above analysis. Then, both bids will be the true private
values of the bidders and the procedure will terminate as we
go through the procedures.

In general, Lowest-First(K, j, b1, b2, · · · , bN ) is first called
with j = N . It needs a proof that Lowest-First(K, j, b1, b2, · · ·
· · · , bN ) with j = 0 will be eventually called and the pro-
cedure stops within a finite number of steps. We outline
the proof structure as follows: First, we prove that Lowest-
First(K, j, b1, b2, · · · , bN ) will be call with j = N − 1 after a
finite number of steps of calls to Lowest-First(K, j, b1, b2, · · ·
· · · , bN ) with j = N . Second, we prove, a recursive call
to Lowest-First(K, N, b1, b2, · · · , bN ) within a call to Lowest-
First(K, j, b1, b2, · · · , bN ) can occur at most once for the bid-
der with bid bj and the bidder with bid bN . Finally we
comment that the same property (by inductive proof) holds
for each pair of ordered indices in the recursive calls. It fol-
lows that Lowest-First(K, j, b1, b2, · · · , bN ) with j = 0 will be
called. The procedure ends within a finite number of steps.

For the correctness proof, we note when Lowest-First(K, j,
b1, b2, · · · , bN ) is called, bids (bj+1, bj+2, . . . , bN ) all obey
the best response function. When j = 0 is called, all in-
dices obey the best response function and the result is the
forward-looking Nash equilibrium.

To finalize the proof, we note that for a consecutive num-
ber of recursive calls to Lowest-First(K, j, b1, b2, · · · , bN ) with
j = N , at each call the bidding vector (b1, b2, · · · , bN ) will
increase in at least one coordinate. Let the bidder changing
its bid has a private value v, the new bid will move closer to v
within a ratio α, where α = min{ ci+1

ci
: i = 1, 2, . . . , N − 1}.

Let δ = min{|va − vb| : a 6= b}, the total number of consec-

utive calls to Lowest-First(K, j, b1, b2, · · · , bN ) with j = N
will terminate after N · g steps for g : ∀v : v · αg < δ.

Since all bidders obey forward-looking best-response func-
tion, which means after finite steps, the bidders who don’t
get any slot will bid their true values and from then on their
bids will never be changed. Thus, for simplicity, we only
consider the updates of the K bidders with highest true val-
ues.

A recursive call to Lowest-First(K, N, b1, b2, · · · , bN ) within
a call to Lowest-First(K, j, b1, b2, · · · , bN ) can occur only if
the bidder with bid bj has a private value smaller than that
of the bidder with bid bN . Therefore, the private values at
bN is non-increasing. The claim follows.

Theorem 3. Ad-words auctions converge to forward-looking
Nash equilibrium with probability one under randomized read-
justment scheme.

Proof. Denote by l = l(c1, c2, · · · , cK , v1, v2, · · · , vN ) be
the number of adjustment that guarantees convergence in
the Lowest-First strategy.

Under randomized readjustment scheme, each round we
randomly choose one bidder who wants to change his bid
updating. There is a fixed non-zero probability that the
necessary convergence sequence is chosen for a run of l ad-
justments. The probability will be boosted as the number
of runs multiplies, and it follows that the forward-looking
Nash equilibrium will be reached in finite number of steps
with probability one.

5. CONCLUSIONS
In this paper, we regard the ad-words auction as a dy-

namic incomplete information noncooperative game where
every player will take into account both his current behavior
and his effect on the other player’s future behaviors. This
approach surprisingly integrates the concept of Nash equi-
librium and the concept of incentive compatibility in proving
that they achieve the same outcome.

We also investigate the convergence of the new equilibrium
concept under the simultaneous, round-robin and random-
ized adjustment schemes respectively.

It should be noted that, from section 4.3, the convergence
property still exists in the randomized adjustment scheme
even if there are several bidders update their strategies con-
currently. Actually, this is exactly the reality in on-line ad-
words auctions - all the decisions are made locally and dis-
tributively by the bidders themselves. So we could say that
in reality, on-line ad-words auctions would always converge
to a stable state. In this sense, the new concept is very
robust.
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