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ABSTRACT
We study keyword auctions in a model where each ad-
vertiser has a value for every slot, which is not necessar-
ily proportional to the number of clicks the advertiser
expects to receive in that slot. In our model, adver-
tisers need not only derive values from clicks on their
ad, nor do they need to value clicks in all slots equally.
This model encompasses a variety of advertising objec-
tives, including conversions (user completion of some
task such as a purchase) and branding (an increase in
consumer awareness). Our goal is to understand the
cost, in terms of efficiency, of reporting a single value
to current bidding systems (modeled by the generalized
second price auction), while actually having a full spec-
trum of values. Surprisingly, we find that there always
exists an equilibrium with the VCG outcome if bidders
report a single value to a version of the current bidding
system that charges per impression. However, if bidders
report a single value and are charged per click, this is
not the case: an equilibrium need not exist, although ef-
ficient equilibria exist under restrictive assumptions on
the valuations of bidders and clickthrough rates.

1. INTRODUCTION
Internet advertisers spend billions of dollars every year,

and large internet-search companies run keyword auc-
tions millions of times a day. Despite this, our under-
standing of these auctions is built on incredibly sim-
ple assumptions. One of the most striking of these as-
sumptions is that advertisers derive their value from
users clicking on their ads. In reality, many advertis-
ers care about conversions (that is, users actually com-
pleting some desired action such as buying items from
their websites), while others care about branding (that
is, simply familiarizing users with the name of the ad-
vertiser). Not all of these forms of deriving value from
sponsored search advertisements can be mapped to a
value per click. Thus, while the value-per-click model is
a reasonable first step, it leaves open many questions.

In this paper, we embark on the study of keyword
auctions in which the value-per-click assumption is re-
moved. Rather than modeling advertisers as having
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some fixed value per click, we allow them to have a
full spectrum of values for slots, which are not neces-
sarily proportional to the expected number of clicks re-
ceived. This allows modeling, for example, advertisers
who value slots based on some combination of factors
including conversions, branding, and of course clicks.

An obvious approach is simply to use the well-known
VCG mechanism [8, 3, 5]. Although this has the advan-
tage both of being a truthful mechanism and of max-
imizing total efficiency (i.e. social welfare), it requires
every advertiser to report a vector of bids rather than
just one single bid. In addition to placing an extra
burden on the advertisers and the system infrastruc-
ture, reporting a vector of bids is a significant departure
from current bidding systems. And, how much would be
gained? Our main focus here is to better understand the
cost of using a single-bid system when bidders actually
have a full spectrum of values for slots. In particular,
when the bidding system is a generalized second price
auction (essentially the mechanism used in most spon-
sored search auctions), what can we say about efficiency
and equilibria?

1.1 Related Work
If advertisers only derive value from clicks and value

clicks in all slots equally, and if the publicly known click-
through rate of each slot is independent of which adver-
tiser is placed in it, the full spectrum of private values
is simple to compute: it is the vector of clickthrough
rates for the slots multiplied by the advertiser’s value
per click. The authors in [4] show that under these as-
sumptions, the generalized second price auction (GSP)
does indeed have at least one equilibrium, correspond-
ing precisely to the VCG outcome. Further, they show
that this equilibrium is envy-free, meaning that no ad-
vertiser would rather be in a different slot, paying that
slot’s associated price. Although the techniques used to
prove these results can be generalized somewhat, e.g. to
allow separable advertiser-dependent clickabilities, they
cannot handle the more general case when the value-
per-click assumption is removed. Similarly, Varian also
makes the assumption that advertisers value each slot
in proportion to its clickthrough rate [7].

Somewhat more general in terms of modeling bidder
preferences, Aggarwal, Feldman, and Muthukrishnan [1]
consider a thresholded value-per-click assumption: each



advertiser has a threshold t such that she has value-
per-click v for slots 1 through t, and value-per-click 0
for slots below t. In addition to capturing the normal
value-per-click model, this model also allows some no-
tion of branding. The authors propose a new auction
mechanism which has the VCG outcome as an equilib-
rium. However, this work is quite different from ours:
an advertiser is still assumed to derive positive value
from clicks only, while our work allows any ranking of
slots (specifically, an advertiser’s value for an impres-
sion can be higher for a slot with a lower clickthrough
rate). Second, the authors do not address the question
of equilibria in the current GSP model; i.e., the ques-
tion of whether there are single bids corresponding to
value vectors of this form that lead to efficient equilibria
under GSP.

1.2 Our contributions
To the best of our knowledge, our work is the first

to consider such a general form of advertiser valuations,
and the cost of using a GSP auction with a single report
from each advertiser.

In §3, we show that oblivious bidding strategies, where
an advertiser computes his single bid as a function of his
spectrum of values alone (independent of other advertis-
ers), is inefficient: for any (reasonable) oblivious bidding
strategy, there is always a set of valuations that leads
to 1/k of the optimal efficiency where k is the number
of slots, even when all advertisers agree on the relative
ranking of the slots.

This leads us to study full information Nash equilibria
in §4. When advertisers report a single bid per impres-
sion, we show the surprising result that there exists a
set of single bids for the GSP auction that leads to the
efficient VCG outcome. The proof of this result relies
on showing that the VCG outcome in any auction where
every bidder wins at most one item is envy free (earlier
proofs of this result for special cases of our model [4, 7]
do not generalize to this setting). (It was pointed out
to us afterwards that this result also appears in [6]; our
proof is different and self-contained.)

In §5, we study this same situation when advertisers
pay per click received (as opposed to per impression),
which turns out to be rather different: there are realistic
examples where GSP has no equilibrium at all. We
show certain conditions under which efficient equilibria
exist. The difference between charging advertisers for
impressions and for clicks has potential implications for
the design of GSP auctions, as discussed in §6.

2. MODEL

2.1 Bidder Valuation Model
Our model is the following. There are n bidders, and

k slots. Each bidder has a vector of private values for
the k slots, ~vi = (v1

i , . . . , vk
i ). Here vj

i is bidder i’s value
for being shown in the jth slot, i.e., it is a value per
impression, not a value per click.

We say the advertisers’ private values are monotone
if they all agree on the order of the slots’ values. That
is, there is an ordering of the slots 1, 2, . . . , k such that

every bidder values slot i at least as much as slot j
for i ≤ j, i.e., vi

ℓ ≥ vj

ℓ for all ℓ = 1, . . . , n, 1 ≤ i ≤
j ≤ k. We say private values are strictly monotone
if in addition to being monotone, for all ℓ and i 6= j,
vi

ℓ 6= vj

ℓ unless vj

ℓ = 0. In other words, each advertiser’s
values for slots 1,2,...,k are strictly decreasing, until the
value becomes 0, at which point the values may remain
0. Throughout this paper we assume private values are
strictly monotone unless we explicitly say otherwise. We
discuss non-monotone values in §6.

The current model subsumes past models in the fol-
lowing sense. The pay-per-click model, where a bidder i

has a value ui per click, is a special case with ~vi = ui
~θ,

where ~θ = (θ1, . . . , θk) is the vector of clickthrough rates
in the k slots. (Again, this assumes that the click-
through rate for each slot is independent of which ad
is placed in it.) When clickthrough rates are not bidder

independent, this can be represented using ~vi = ui
~θi,

where ~θi = (θ1
i , . . . , θk

i ) is the vector of clickthrough
rates for bidder i in each slot. Note that this allows for
separable as well as non-separable clickthrough rates.
The model in [1] is a special case of monotone values,
where all advertisers have a value-per-click vector of the
form (ui, . . . , ui, 0, . . . , 0), i.e., they value equally all po-
sitions up to some position ti, and have a value of 0 for
all slots below this slot.

Our model also allows bidders to have different per-
click values in different slots, i.e., a bidder may value
a click in one slot more than a click in other slots. In
addition, it allows for values not based on the number
of clicks received; for example, advertisers concerned
only with branding may not have a value proportional
to the number of clicks received at all, but rather sim-
ply to the position they are displayed in. Finally, we
note that advertisers’ rankings of slots are allowed to
be completely uncorrelated with the ordering of slots
based on clickthrough rates: an advertiser interested
most in branding, then conversions, then clicks, might
value slots in an order that is different from the ordering
by clickthrough rates.

2.2 Auction Model
Since bidders are assumed to have private values given

as value-per-impression, we find it most natural to con-
sider a pay-per-impression bidding system. Thus, much
of our paper is devoted to the pay-per-impression GSP
(PPI-GSP). In PPI-GSP, bidder i submits a single bid,
bi, for each i = 1, ..., n. The auctioneer has a ranking of
the slots 1, . . . , k. (We assume this ordering is the same
as those followed by the monotone bids and is known
in advance to the auctioneer.) The bidders are ranked
in decreasing order of bi, and the jth highest bidder is
assigned slot j at a price b[j+1] (where b[j] denotes the
jth largest bi). In the case of ties, we assume that the
auctioneer is allowed to break ties in whatever way he
chooses; generally, this will be at random. If the num-
ber of bidders is not greater than the number of slots,
we will simply insert imaginary bidders, each bidding
0. So we may assume that n > k. Any bidder not as-
signed to one of the first k slots is simply not shown.



For convenience, we allow bidders to be “assigned” to
slots beyond the k-th— this is equivalent to not being
shown. We do not consider reserve prices here.

Most bidding systems in use today are more closely
aligned with the pay-per-click GSP (PPC-GSP). We dis-
cuss this model more fully in Section 5.

We will sometimes refer to the above PPI-GSP auc-
tion as single-bid PPI-GSP, to emphasize that bidders
actually have a full spectrum of values but are repre-
senting it using only a single bid; we will sometimes use
full spectrum VCG to refer to the VCG outcome given
the full vector of valuations vi. For readers unfamiliar
with the VCG mechanism, we briefly sketch the way it
works in our context, in §4.1.

3. BOUNDING LOSS IN EFFICIENCY
In this section, we explore the loss in efficiency when

restricting a bidder to oblivious bidding strategies (i.e.,
her single bid is a function only of her full vector of
values). We find that in terms of efficiency, no matter
how bidders choose to encode their bids, performance
is very poor amongst this class of strategies. This is
in stark contrast with §4, where maximum efficiency is
attainable.

Let g : Rk → R be the function that a bidder uses to
map his value vector into a single bid. We assume that
the GSP auction will be applied to this single bid. So,
it is not effective for a bidder to simply encode their full
vector of values into a single number since the auctioneer
cannot decode the single value into a full spectrum of
bids.

3.1 Non-monotone values
In this section, we show that it is not possible to make

any guarantee on efficiency when values are not mono-
tone.

Theorem 1. For any g, there are value vectors such
that the single-bid efficiency under PPI-GSP is arbitrar-
ily smaller than the maximum possible efficiency.

Proof. Let v1 = (0, x), v2 = (1, 0), v3 = (1, 0) and
1 ≪ x, and consider that there are two slots being auc-
tioned off. The maximum efficiency is 1 + x, obtained
by placing either bidder 2 or 3 in the top slot and bidder
1 in the second slot.

• Case I: g(0, x) > g(1, 0), then PPI-GSP will place
bidder 1 in the first slot and one of bidders 2 and
3 in the second slot, for a total efficiency of 0.

• Case II: g(0, x) < g(1, 0), then PPI-GSP will
place bidders 2 and 3 in the first two slots, for
a total efficiency of 1.

• Case III: g(0, x) = g(1, 0), then if PPI-GSP de-
terministically chooses based on bidder identity,
there is an assignment of identities to vectors with
efficiency 1. Otherwise, if PPI-GSP is random-
ized, add an arbitrarily large number of bidders
with valuation vi = (1, 0), so that the probabil-
ity v1 is assigned to the second slot is arbitrarily
small, and the expected efficiency approaches 1.

3.2 Monotone values
Now we turn our attention to the case of monotone

values and show that, under mild assumptions on the
behavior of g, the worst case loss in efficiency is lower-
bounded by a factor k, even when the seller knows the
ordering of the slots.

For i = 1, . . . , k, define fi(x) = gi(x, . . . , x, 0, . . . , 0),
where x is repeated i times. We will assume in this sec-
tion that PPI-GSP breaks ties deterministically. How-
ever, we could alternatively assume that, for all x, there
exists x′ > x such that fi(x

′) > f(x), i.e., f is even-
tually increasing in x for fixed i (this is a very weak
restriction on a bidding strategy, and simply says that
the reported bid is eventually increasing for a particular
form of the value vector). Under this assumption, the
proof of Theorem 2 can easily be modified so that there
are no ties in reported single-bids, and the lower bound
results will apply.

Theorem 2. For any g such that fi(x), i = 1, . . . , k
is continuous, there are value vectors such that the single-
bid efficiency is as small as 1/k of the maximum effi-
ciency; this bound is tight.

Proof: To show this, suppose we can find x2, . . . , xk−1

such that

f2(x2) = f1(1), f3(x3) = f1(1), . . . , fk−1(xk−1) = f1(1).

We will show that if we can find such xi, then the
efficiency can be as bad as 1/k of the maximum effi-
ciency; if we cannot find such xi, then we can make the
efficiency be a vanishingly small fraction of the optimal
efficiency, so that k is still a lower bound.

First suppose we can find such xi, i = 2, . . . , k − 1.
Let j = arg mini=1,...,k−1xi. Consider the set of value
vectors

v1 = (1, 0 . . . , 0),

v2 = (x2, x2, 0 . . . , 0),

...

vk = (xk, . . . , xk, 0, . . . , 0),

vk+1 = vj ,

where vj = (xj , . . . , xj , 0 . . . , 0) with xj repeated j times.
Since the single bids reported by all bidders are the

same, a possible allocation is one which assigns bidder
k + 1 the first slot (we assumed that vectors are mono-
tone), with efficiency xj (since all other bidders except
bidder k derive no value from their assignments). So
the efficiency from a single bid auction can be as small
as

xj = min
i=1,...,k

xi ≤
1

k

k
X

i=1

xi,

where
Pk

i=1 xi is the maximum efficiency, obtained by
assigning bidder i to slot i.



Next we show that if such values cannot be found,
then the efficiency can be arbitrarily bad. By our as-
sumption that fi(x) is continuous in x, it is sufficient to
consider the following two cases:

• There is an i, 2 ≤ i ≤ k such that fi+1(x) <
fi(xi)∀x: Consider a set of bidders with the fol-
lowing values:

v1 = v2 = . . . = vk−1 = (xi, . . . , xi, 0, . . . , 0),

vk = (x, x, . . . , x, 0, . . . , 0),

where x → ∞ is repeated i + 1 times (and xi is
repeated i times for bidders 1 through k−1). Since
the maximally efficient allocation assigns some slot
between 1 and i+1 to bidder k for total efficiency
at least x → ∞, whereas the single-bid allocation
does not assign any of the top i+1 slots to bidder
k, since there are at k − 1 ≥ i + 1 bidders with a
higher single bid. Thus the single-bid efficiency is
arbitrarily small.

• There is an i, 2 ≤ i ≤ k such that fi+1(x) >
fi(xi)∀x: Consider a set of bidders with the fol-
lowing values:

v1 = . . . = vk−1 = (x, . . . , x, 0, . . . 0),

where x → 0 is repeated i + 1 times, and vk =
(1, 0, . . . , 0).

The most efficient allocation has an efficiency greater
than 1, obtained by assigning bidder k to slot 1,
but the single-bid allocation does not assign the
first slot to bidder k but rather to some bidder
1, . . . , , k−1 for a total efficiency of at most kx → 0
as x → 0. So the single-bid efficiency can be arbi-
trarily bad here as well.

Observe that the max function meets this lower bound,
i.e.,

g(v1
i , v2

i , . . . , vk
i ) = max

j=1,...,k
vj

i

leads to an efficiency which is never smaller than 1/k
times the maximum possible, which is bounded by

max
S⊂{1,...,n},|S|=k

X

i∈S

max vi ≤ k max
i=1,...,n

g(vi).

4. EQUILIBRIUM EXISTENCE UNDER
PPI-GSP

In this section, we investigate equilibria of the single
bid PPI-GSP. We prove the following surprising result:
the full-spectrum VCG outcome is an envy-free equilib-
rium of PPI-GSP.

Our proof is comprised of two main parts. In the
first part, we show that when the values are strictly
monotone, any envy-free outcome (i.e., assignment of
advertisers to slots and prices) is an attainable equilib-
rium of PPI-GSP. The second part gives a direct proof
that the VCG outcome is always envy-free in auctions
that match bidders to at most item each, even when the
spectrum of values are not monotone.

For clarity, we start with stating the outcome of the
VCG mechanism in this setting.

4.1 VCG Mechanism
When bidders are allowed to report their full vector

of valuations, the VCG mechanism can be applied to
truthfully produce an efficient allocation. In this set-
ting, let G be a bipartite graph with advertisers on one
side and slots on the other. The weight of edge (l, i)
between bidder l and slot i has weight vi

l . The VCG
allocation computes the maximum weight matching on
this graph, and assigns advertisers to slots according
to this matching. We will use M to denote the weight
of the maximum matching on G, and number adver-
tisers so that advertiser i is assigned to slot i in this
matching. Let M−i denote the weight of the maxi-
mum weight matching on G when all edges incident to
i are removed. Then pi, the VCG price for bidder i, is
pi = M−i + vi

i − M . We say an outcome is envy-free
if for every bidder i, vi

i − pi ≥ 0, and for every slot j,
vi

i − pi ≥ vj
i − pj, where pj is the (current) price for slot

j. That is, bidder i does not prefer slot j at price pj ,
for all j 6= i.

4.2 Existence of efficient equilibrium

Theorem 3. Any envy-free outcome on k slots and
n > k bidders in which prices are nonnegative and val-
ues are strictly monotone is an attainable equilibrium in
PPI-GSP.1

Proof. As above, label bidders so that the envy-free
outcome we consider assigns bidder i to slot i, at price
pi. Suppose i > j; since all bidders have monotone
values, vi

i ≤ vj
i . By definition of an envy-free outcome,

vi
i − pi ≥ vj

i − pj ⇒ pj − pi ≥ vj
i − vi

i ≥ 0,

i.e., pj ≥ pi for all j < i (prices are higher for higher-
ranked slots).

Consider the following set of bids: bidder 1 bids any
amount larger than p1, bidder j bids pj−1 for j = 2
through k + 1, and the remaining bidders bid 0. Ac-
cording to PPI-GSP, bidder j is assigned slot j at a
price pj , for j = 1, . . . , k, assuming that the auctioneer
breaks ties in the “right” way. We now appeal to the
fact that values are strictly monotone to remove this
assumption.

Again assume that i > j, and note that either pj > pi,
or pi = pj . In the second case, we see 0 = pj − pi ≥
vj

i − vi
i ≥ 0, hence vj

i = vi
i . Since the values are strictly

monotone, it must be that vj
i = vi

i = 0. Furthermore,
vi

i − pi ≥ 0, hence, pi = 0 = pj . In other words, there
is some t such that the sequence of prices looks like
p1 > p2 > ... > pt = pt+1 = ... = pk = 0.

Now, bidders 1, 2, ..., t all bid distinct positive values,
so the auctioneer never needs to break a tie for these
bidders. If t = k, we are done. If t < k, we argue that

1For technical reasons, we say an envy-free outcome is
an attainable equilibrium so long as there is a set of bids
leading to an equilibrium that agrees with the outcome
for every bidder having nonzero value for her slot. We
allow bidders that have zero value for their slots to be
moved to other slots for which they have zero value (so
long as they continue to pay 0 for the new slot).



any bidder i > t is equally happy to be placed in any
spot j > t, paying price pj = 0 (included being placed
in no slot at all). Consider bidder i > t, bidding pi−1 =
0. In the envy-free outcome, bidder i pays pi = 0, so
vi

i − pi ≥ vt
i − pt ⇒ vi

i ≥ vt
i . Hence, vi

i = vt
i , since

the values are decreasing. But the values are strictly
monotone, so we see vi

i = 0. Hence, vj
i − pj = 0 for all

j > t. That is, bidder i > t is indifferent as to which
spot she is placed, including being placed in no slot at
all, so long as it is beyond the t-th slot.

We finish by showing that this envy-free outcome is
indeed an equilibrium. Suppose bidder i bids lower, so
she gets slot j > i rather than i. She then pays pj ,
and by definition of envy-free, does not increase her
utility. On the other hand, if bidder i bids higher,
getting slot j < i, then she pays pj−1, with utility
vj

i − pj−1 ≤ vj
i − pj ≤ vi

i − pi
i, since prices decrease

with slot rankings. Therefore, this set of bids leads to
an envy-free equilibrium under PPI-GSP.

Next we show that the VCG outcome is envy-free in
auctions that match each bidder to at most one item,
even when the values are not monotone. We first prove
a general property of maximum weight matchings on
bipartite graphs. While this lemma is superficially sim-
ilar to Lemma 2 in [1], we note that the proof is quite
different: the proof in [1] crucially uses the fact that an
advertiser’s value in a slot is the product of a value per
click and a clickthrough rate which decreases with slot
number, and simply does not work in our setting.

Lemma 1. Let G, M, M−i, and M−j be as above.
Then if advertiser j is assigned to slot j in a maximum
matching,

M−j ≥ M−i + vj
i − vj

j

Proof. Fix a maximum matching on G, say M, and
without loss of generality, relabel the advertisers so that
advertiser i is assigned to slot i for each i = 1, ..., k in M.
The proof of the lemma proceeds by taking a maximum
matching of G with i removed, and using it to produce
a matching of G with j removed. This new matching
will have weight at least M−i + vj

i − vj
j , thus showing

that M−j must also be at least this large.
Fix a maximum matching of G with i removed, call it

M−i. If there is more than one such maximum match-
ing, we will take M−i to be one in which advertiser j is
matched to slot j, if such a maximum matching exists.
Either advertiser j is matched to slot j in M−i or not.
We consider each case in turn.

• Case I. Bidder j is assigned to slot j in M−i.
In this case, simply remove the edge from adver-
tiser j to slot j in M−i, and add the edge from
advertiser i to slot j. This is now a matching on
G without j, and its total weight is M−i +vj

i −vj
j .

Hence,

M−j ≥ M−j + vj
i − vj

j .

• Case II. Bidder j is not assigned to slot j in M−i.
Again, we will construct a matching for G without

j, in a somewhat more complicated way. We first
observe that removing advertiser i from a maxi-
mum matching on G creates a “chain of replace-
ments.” More precisely, let i1 be the advertiser
that is matched to slot i in M−i. Notice that
i1 6= i. If i1 ≤ k, then let i2 be the advertiser
matched to slot i1 in M−i. And in general, if
iℓ ≤ k, let iℓ+1 be the advertiser matched to slot
iℓ in M−i. Let t be the smallest index such that
it > k. We first claim that for some s < t that
j = is. To see this, let A be the set of adver-
tisers {i, i1, ..., it−1}, and let S be the set of slots
{i, i−1, ..., it−1}. Let M′ be the maximum match-
ing M restricted to advertisers not in A and to
slots not in S, and and let M′

−i be matching M−i

restricted to advertisers not in A and slots not in
S. Clearly, the weight of M′ and M′

−i must be
the same. But if j is not in A, then M′ matches
advertiser j to slot j. By our choice of M−i, this
means that M−i matches advertiser j to slot j,
and we are back to case 1.

So, j = is for some s < t. For convenience, let i0 =
i. Change M−i as follows: for each ℓ = 1, 2, ..., s,
remove the edge from advertiser iℓ to slot iℓ−1, and
replace it with the edge from iℓ−1 to iℓ−1. Notice
that in this new matching, advertiser is = j is
matched to no one. Furthermore, it is easy to see
that its weight is

M−i +
s

X

ℓ=1

v
iℓ−1

iℓ−1
−

s
X

ℓ=1

v
iℓ−1

iℓ

Since M is a maximum matching, we see

s
X

ℓ=1

v
iℓ−1

iℓ−1
+ vis

is
≥

s
X

ℓ=1

v
iℓ−1

iℓ
+ vis

i0

⇒

s
X

ℓ=1

v
iℓ−1

iℓ−1
−

s
X

ℓ=1

v
iℓ−1

iℓ
≥ vj

i − vj
j

Substituting, we have that

M−j ≥ M−i + vj
i − vj

j .

Theorem 4. The VCG outcome is envy-free, even
when the bidders’ values are not monotone.

Proof. As always, we assume without loss of gen-
erality that bidder i is assigned to slot i in the VCG
outcome, for i = 1, . . . , k. Recall that the price set in
the VCG outcome for bidder j is

pj = M−j − M + vj
j

Hence, from our lemma above, we have that for all i, j

vj
i − pj = vj

i − M−j + M − vj
j

≤ vj
i − (M−i + vj

i − vj
j ) + M − vj

j

= M − M−i = vi
i − pi

Furthermore,

vi
i − pi = M − M−i ≥ 0.



That is, the VCG outcome is envy-free.

Combining our two main theorems yields the follow-
ing.

Theorem 5. When bidder values are strictly mono-
tone, there exists an equilibrium of PPI-GSP which cor-
responds to the welfare-maximizing outcome, i.e., the
VCG outcome.

We note that this result subsumes a number of cases,
including nonseparable clickthrough rates: even when
clickthrough rates are non-separable (although known
to bidders), there is an efficient equilibrium under PPI-
GSP.

It should not be surprising that this efficient equilib-
rium is not necessarily unique. Consider the following
example.

Slot 1 Slot 2 Slot 3 Equilibrium Bid

Bidder A 102 100 0 102

Bidder B 99 51 0 51

Bidder C 51 50 0 50

The efficient solution is to assign Bidder B to the first
slot and Bidder A to the second slot. Yet, given their
current bids, Bidder B is assigned to the second slot and
Bidder A to the first slot, and no bidder has an incentive
to change their bid. In general, there can be equilibria
where the solution is not efficient, and equilibria where
the solution is efficient and has strictly larger revenue
than the equilibrium based on VCG prices.

5. EQUILIBRIA UNDER PAY-PER-CLICK
GSP

The results of the previous sections show that there is
an equilibrium corresponding to the full spectrum VCG
outcome when the PPI-GSP auction is used. However,
most current systems implement PPC-GSP. This sec-
tion considers bidder behavior when using PPC-GSP.
Not surprisingly, we show that in general, there are sit-
uations in which no equilibrium solution exists. Con-
versely, under certain additional assumptions, the full-
spectrum VCG outcome is an attainable equilibrium.
Before presenting these results, we first summarize the
PPC-GSP model from [4] for completeness.

The PPC-GSP auction follows essentially the same
rules as PPI-GSP; each bidder submits a bid, which
the auctioneer puts in order. The ith-place bidder then
pays a price equal to b[i+1] (i.e., the i + 1-st place bid-
der’s bid) every time a user clicks on her ad. In line
with previous work, we assume for this section that each
slot has a fixed clickthrough rate, say with slot j hav-
ing clickthrough rate θj . We say the clickthrough rates
are independent if any advertiser placed in slot j will
receive, in expectation, precisely θj clicks. (When cal-
culating total value, this expected value is treated as a

fixed constant.) Thus, if advertiser i is the j-th place
bidder, she will be placed in slot j and pay a total of
θjb[j+1], netting a utility of vj

i − θjb[j+1].
Slightly more generally, clickthrough rates are said to

be separable if for each i = 1, 2, .., n, advertiser i has an
associated clickability αi, and the expected number of
clicks advertiser i receives for being placed in slot j is
αiθ

j . Several major auction systems are built on this
separability assumption, and often bids and prices are
adjusted based on clickability. We simply note that our
results easily extend to PPC-GSP modified in this way.

5.1 Pay-Per-Click GSP Instability
Unfortunately, there are situations in which pay-per-

impression values are monotone, but the PPC-GSP does
not have an equilibrium solution. The intuition behind
our counterexample is that when the value for a click
is higher in slots with lower clickthrough rate, then the
most desirable slot is not the slot for which the most
money is charged. Therefore, everyone will vie for this
slot, and we cannot reach an equilibrium because the
auction mechanism does not allow us to charge more
for the more desirable item.

Theorem 6. If bidders’ values are per-impression,
pay-per-click GSP does not always have an equilibrium
solution.

Proof. We prove the theorem by giving an exam-
ple for which no equilibrium solution exists using PPC-
GSP. The bidder valuations are given in the table below.
We assume clickthrough rates of θ1 = 1 and θ2 = 0.1,
which are bidder independent.

Slot 1 Slot 2

Clickthrough rate 1 0.1

Bidder A 5 1

Bidder B 5 1

Bidder C 5 1

Consider two possible cases:

• Case I. Assume b[1] > b[2]. Then, in order for
the excluded bidder to have no incentive to bid
some value in between b[1] and b[2], we must have
1 − (0.1)b[2] ≥ 0 ⇒ 10 ≤ b[2]. But then the utility
for the bidder with the highest bid is 5−10 = −5.
Since a bidder cannot have negative utility in an
equilibrium, we have reached a contradiction.

• Case II. Assume b[1] = b[2]. Whether the tie is
broken by a random coin flip, or by some other
process, we must ensure that the highest-ranked
bidder has no incentive to undercut the second
highest bidder. Hence, we must have that 5−b[2] ≥
1 − (0.1)b[3] ≥ 0, where the last inequality follows
because the utility of the second highest bidder
must be nonnegative. To ensure the excluded bid-
der does not vie for the top slot, we must have



5 − b[1] ≤ 0 ⇒ b[1] ≥ 5. Combining the previous
inequalities, b[2] = b[1] = 5 and 1− (0.1)b[3] = 0 ⇒
b[3] = 10. Thus, we have reached a contradiction
since b[1] ≥ b[2] ≥ b[3].

Observe that in this example, the pay-per-click value for
slot 1 is 5, while the pay-per-click value for slot 2 is 10.
Therefore, the ordering of pay-per-click values is not the
same as the ordering of the slot clickabilities. We will
see in that this violates the additional assumptions we
make in the next section.

5.2 Equilibrium Conditions for PPC-GSP
In this section, we show that if clickthrough rates

are independent and distinct, the VCG outcome is at-
tainable in the pay-per-click GSP auction, so long as
the values-per-click are monotone and are ranked in the
same order as the clickthrough rates for slots. Note that
in the Section 4, we used the result that any envy-free
outcome was attainable in PPI-GSP. This same result
does not hold here, as we saw in the previous subsec-
tion. Our proof relies on particular properties of the
VCG mechanism.

Theorem 7. Suppose that θ1 > θ2 > ... > θk, and
that for every bidder ℓ, we have vi

ℓ/θi ≥ vj

ℓ/θj for all
i < j. (i.e., bidder values-per-click and slot clickthrough
rates follow the same ordering). Then there exists a
set of single bids which leads to the welfare maximizing
solution using PPC-GSP, assuming clickthrough rates
are independent.

Proof. By Lemma 1, we see that (swapping the i
and j) M−i ≥ M−j + vi

j − vi
i . Thus, we have for any

i < j,

pi

θi
=

M−i − M + vi
i

θi
≥

M−j − M

θi
+

vi
j

θi
by Lemma 1

>
M−j − M

θj
+

vi
j

θi
since M−j − M ≤ 0 and θi > θj .

=
M−j − M + vj

j

θj
−

vj
j

θj
+

vi
j

θi

=
pj

θj
+

vj
j

θj
−

vi
j

θi
≥

pj

θj

So consider the auction in which bidder 1 bids any
value greater than p1/θ1, and for i > 1, bidder i bids
pi+1/θi+1. Since pi/θi > pi+1/θi+1, this produces the
correct order with no tie-breaking necessary. Further-
more, bidder i pays precisely pi, as we wanted.

Notice that this generalizes the result of [4]. The tech-
niques we use are quite different; although the proof
of [4] can be extended to cover a slightly more general
case, it relies on an assumption that is not true in our
more general setting. Also, notice that our result im-
mediately implies that under the thresholded value-per-
click assumption of [1], the VCG outcome is attainable
by PPC-GSP.

6. DISCUSSION
In this paper, we began a study of equilibria and ef-

ficiency in generalized second price auctions when bid-
ders do not have a single value per click for all slots.
We have shown that PPI-GSP has several important
properties, including existence of equilibria under mild
assumptions. Additionally, PPI-GSP is robust in the
sense that, regardless of whether a bidder values impres-
sions, clicks, or conversions, then a pay-per-impression
system has an equilibrium solution (corresponding to
VCG). But the converse is not true: if the GSP auction
charges by click or conversion, then there is not nec-
essarily an equilibrium if bidders value slots according
to impression. This potentially implies a trade-off. On
one hand, accurately assessing value for a slot may be a
large burden to place on advertisers as there are many
complicated factors involved, such as estimating click-
through (conversion) rates, risk aversion, and season-
ality effects, to name a few (although advertisers must
already contend with assessing their values per click).
On the other hand, the robustness of the system is an
important factor to consider. Charging per impression
appears to maintain desirable stability properties under
more variable valuation functions.

There are many interesting future directions to ex-
plore, which we have not touched on in this paper. The
first is a better understanding of other equilibria in the
PPI-GSP model when bidders have a full spectrum of
values, and their revenue and efficiency properties. An-
other related direction is that of bidding strategies for
bidders: when a bidder has a full spectrum of values,
what bidding strategy should he use? A natural bid-
ding strategy which converges to an efficient outcome
would be interesting. In [2] a bidding strategy is pro-
posed and it is shown that the strategy converges to
a VCG Nash equilibrium. Unfortunately, this bidding
strategy does not converge to an equilibrium point in
our setting.

So far, we have restricted ourselves to analyzing the
existing mechanism (GSP) for a full spectrum of bid-
der valuations. We have not investigated the design of
mechanisms accepting multiple reports, or the efficiency
of oblivious strategies as a function of the number of re-
ports allowed. This is a promising area for future work,
and has been considered for a very specific form of full
spectra in [1].

Finally, it will be interesting to investigate a partic-
ular class of non-monotone valuations, where bidders
rankings belong to one of two orderings on the slots,
one coming from, for example, from valuing clicks, and
the other coming from valuing conversions.
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