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ABSTRACT
This paper presents a truthful sponsored search auction based
on an incentive-compatible multi-armed bandit mechanism.
The mechanism described combines several desirable traits.
The mechanism gives advertisers the incentive to report
their true bid, learns the click-through rate for advertise-
ments, allows for slots with different quality, and loses the
minimum welfare during the sampling process.

The underlying generalization of the multi-armed bandit
mechanism addresses the interplay between exploration and
exploitation in an online setting that is truthful in high prob-
ability while allowing for slots of different quality. As the
mechanism progresses the algorithm more closely approxi-
mates the hidden variables (click-though rates) in order to
allocate advertising slots to the best advertisements. The
resulting mechanism obtains the optimal welfare apart from
a tightly bounded loss of welfare caused by the bandit sam-
pling process.

Of independent interest, in the field of economics it has
long been recognized that preference elicitation is difficult
to achieve, mainly as people are unaware of how much hap-
piness a particular good will bring to them. In this pa-
per we alleviate this problem somewhat by introducing a
valuation-discovery process to the mechanism which results
in a preference-elicitation mechanism for advertisers and
search engines.

1. INTRODUCTION
The central goal of the field of mechanism design is to

define allocations and payments that maximize the welfare
of the participants. The central paradigm which aids the
mechanism designer in achieving this goal is preference elic-
itation which essentially means finding incentives (via pay-
ment rules) that motivate the participants to honestly report
their valuations for any possible allocation.

In the field of economics e.g., [4, 3] it has long been recog-
nized that preference elicitation is difficult to achieve. This
is not merely (or even largely) due to people’s reluctance
to disclose their valuations but to a large extent stems from
people’s ignorance of their own preferences. Although issues
such as loss aversion [17, 18], contribute to the problem, the
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main difficulty is that people are unaware of how much hap-
piness a particular good will bring them.

Our goal is to alleviate this problem somewhat by using
a process of discovery to allow people to learn their value
for a good while interacting with the mechanism. In this
paper we focus on a particular online game, the one cre-
ated by Overture/Yahoo! and modified by Google to auc-
tion keywords. Keyword auctions are Yahoo! and Google’s
method of allocating advertising slots to potential advertis-
ers. Each advertiser can bid on a set of keywords. In the
current method, for each keyword the advertisers are ranked
by multiplying the valuation that each advertiser declared
for the keyword times the expected click-through rate (CTR)
of that advertiser.

An additional unique challenge of the keyword auction is
the allocation of multiple copies of the good with different
quality at each stage [10]. In a companion paper [15] we fo-
cus on the more general problem of preference elicitation for
general repeated games with different entry and exit times
(although with a single good allocated in each time period)
as well as some results for the single-shot game.

In the keyword auction assuming that an advertiser gains
no advantage if his ad is not clicked on1, it is seen that the
value to the advertiser is the value per click × CTR. The
main problem is that the CTR is unknown to the advertiser
(as well as initially to the search engine) and hence poses
the problem of an allocation with unknown valuations.

In practice, Google and Yahoo! allocate new advertisers a
number of impressions which suffice to determine (within an
error bound) the CTR. Since in many cases such sampling
is costly and can yield a large loss of welfare, Google and
Yahoo! utilize some heuristics to estimate the click-through
rate of a new advertiser. We are unaware of any analysis
bounding the loss of welfare that can result from using these
heuristics. Furthermore, it creates an incentive for users to
repeatedly become ”new” advertisers. Even if this can be
prevented, e.g., by using payment information, the incentive
to bid in a large number of auctions with very low value
remains. In a companion paper [16] we bound the utility an
advertiser can gain by bidding under multiple false identities
for low value keywords.

A further peculiarity of the keyword auction is that in each
round a number of slots are allocated to different advertis-
ers. Since these slots are of different quality [10] the auction

1In practice some advertisers are interested in rasing visibil-
ity which poses a problem to current methods of charging
for advertisements. This problem is beyond the scope of this
paper.



mechanism must take into account which slot is allocated to
which user. To deal with this problem we slightly generalize
the commonly accepted assumption that the quality of slots
is independent of the advertiser assigned to the slot.

In the Google keyword auction, game prices are deter-
mined for the allocated advertisers in an attempt to create
a truthful mechanism via e.g., a second-price auction. In
practice (e.g., [10], and [14])’s attempt to create a truth-
ful mechanism via second-price auction does not result in a
truthful mechanism and the mechanism used for determin-
ing prices is not truthful. So in addition to the challenge
of revealing the advertisers’ valuations while comparing the
quality of different slots, our algorithm faces the challenge
of designing a truthful mechanism while charging differently
for different slots. Our main tool for charging for different
slots is a generalization of the ladder prices due to [2].

Models of imperfect and symmetric information for prices
have been extensively studied recently, e.g., [7, 8]. We choose
to use the classic multi-armed bandit (MAB) as our main
technical tool to learn advertisers’ valuations. The multi-
armed bandit is a well studied problem (e.g., [21, 5]) which
deals with the balancing of exploration and exploitation in
online problems with multiple possible solutions. In the sim-
plest version of the MAB problem a user must choose at each
stage (the number of stages is known in advance) a single
bandit/arm. This bandit will yield a reward which depends
on some hidden distribution. The user must then choose
whether to exploit the currently best known distribution or
to attempt to gather more information on a distribution
that currently appears suboptimal. The MAB is known to
be solvable via the Gittins [13] index and there are solutions
that approximate the optimal expected payoff. We choose
to generalize the MAB solution in [11] due to its simplicity
and optimal sampling complexity. Our solution retains the
sample complexity of [11] and hence is sample complexity
optimal. The MAB has been recently studied in a more
general setting by [9] but using a weaker notion of truthful-
ness.

Although the MAB has been extensively studied it has
generally been studied in the context of a single user choos-
ing from non-strategic arms [19] even when studied in the
context of slot auctions [20], however the important question
of a truthful mechanism for strategic arms remains open.
Furthermore, allowing different slots with varying quality
adds several technical difficulties to our solution which do
not exist in previous work. Obviously, in the context of an
online auction for keywords the arms/advertisers will act as
strategic utility-maximizing agents. Our goal is therefore
to design a truthful mechanism for the strategic case. By
defining the keyword problem as an instance of a truthful
mechanism for MAB we can approximate the optimal payoff
for the MAB and hence approximate the optimal welfare for
the auction. As our Multi-Armed truthFul bandIt Auction
(MAFIA) algorithm achieves optimal sampling complexity
we are also able to bound the welfare loss we encounter from
the sampling process. This bound is shown to be tight for
any sampling keywords algorithm.

When looking at randomized algorithms for mechanism
design we must be careful about which notion of truthfulness
we use. Since we are sampling click through by users, for
any finite time horizon T , there is a finite probability that
the sampling is done incorrectly and hence will influence
our truthfulness. We therefore use the notion of truthful-

ness with high probability due to [1] for finite time horizons.
Furthermore, our algorithm is also truthful in expectation.

Organization: The rest of the paper is organized as fol-
lows: In section 2 we present our model, the bandit problem
and define necessary assumptions. We give some intuition
by looking at the case of a single slot in section 3. Section 4
presents the MAFIA algorithm which its properties of truth-
fulness, welfare maximization, sampling complexity and the
bounded welfare lost by sampling are analyzed in section 5.
We conclude and discuss future extensions in section 6.

2. THE MODEL
In our model N risk neutral, utility maximizing adver-

tisers bid for advertising slots based on a keyword. In this
paper we focus on the bidding process for a single keyword,
as multiple keywords are analogous. We therefore suppose
w.l.o.g. that the keywords appears at every time t. When-
ever that keyword appears in the search at, Kt

2 slots of
advertisements appear in the results. Each advertiser i has
a private value for each click through which we denote by
vi. This value is independent of the slot the ad originally
appeared in.

We assume that all of the advertisers are present in the
system throughout the entire running of the algorithm and
that there are no budget constraints. These assumptions are
relaxed in [15]. The algorithm runs in time rounds start-
ing at t = 1 and ending at t = T . By setting t = T
meaning a finite-time horizon we assume a harder setting
than an infinite-time horizon as our algorithm is a sam-
pling algorithm. Consequently any proof that applies for the
finite-time horizon also applies for the infinite-time horizon.
Our model studies a one-shot incomplete information game
meaning that advertisers do not change their valuations in
the different time periods of the algorithm and can not learn
about each other’s valuations.

We also assume that the ”quality” of each slot j (which
is essentially the probability of a click though if an adver-
tisement appears in slot j) is monotonically decreasing and
is independent of the advertisers, i.e., the first slot has the
highest probability to be clicked on regardless of the ad pre-
sented in it. The second slot has the second highest proba-
bility to be clicked on etc.

Since different slots are of different quality if (for example)
advertiser a is presented in the first slot and gets a click and
advertiser b is presented in the second slot and does not gets
a click, we can not just simply update advertiser’s a click
through rate with an extra click and reduce advertiser b’s
click through rate as we don’t know what clicks would have
happened if advertiser b was presented in the first slot. In
order to be able to compare click through rates across slots
we define normalization constants between slots j − 1 and j
for all K ≥ j > 1. Denote by rj a click in slot j and ¬rj no
click in slot j. There are four cases:

• β1
j - the probability that an advertisement would have

been clicked in slot j (if we had shown it in slot j) given
that it was clicked in slot j − 1, i.e., β1

j = Pr[rj |rj−1]

• β2
j - the probability that an advertisement would have

2We assume for the ease of exposition that Kt = Kt+1 = K
for all time period t. We also assume without the loss of
generality that K ≤ N , since superfluous slots can remain
blank.



been clicked in slot j given that it was not clicked in
slot j − 1, i.e., β2

j = Pr[rj |¬rj−1].

• β̃1
j - the probability that an advertisement would have

been clicked in slot j − 1 given that it was clicked in
slot j, i.e., β̃1

j = Pr[rj−1|rj ].

• β̃2
j - the probability that an advertisement would have

been clicked in slot j − 1 given that it was not clicked
in slot j i.e., β̃2

j = Pr[rj−1|¬rj ].

The assumption that click through rate decays monotoni-
cally with lower slots by the same factors for each advertiser
has been widely assumed in practice and in theory.

We generalize the common assumption of monotonicity
and assume that there exists constants that allow us to cal-
culate all of the conditional probabilities both when there is
a click through and when there is not. Given the large data
sets that search engines have we believe that this assumption
is justified in practice.

Each advertiser i has a click through rate αi which is the
probability of a click on the advertisement given that it ap-
peared in the first slot3. This value is unknown to i as well
as to the mechanism. Since αi is unknown to i and the
mechanism we estimate it at each time t and denote the
observed probability by αt

i.
Finally, we denote by v̄i the bid for each click-through

stated by advertiser i to the mechanism (which might not
be the true value). We also denote by pt

i ≤ v̄i the price
which advertiser i is charged at time t by the mechanism.
We assume that advertisers have quasi-linear utility function
and as such advertiser i placed at slot j at time t obtains an
expected utility of β1

2 · ... · β1
j · αt

i · (vi − pt
i) per impression

at time t.

2.1 The Bandit Problem
The multi-armed bandit problem, originally described by

Robbins [21], is a statistical decision model of an agent try-
ing to optimize his decisions while improving his informa-
tion at the same time. In the multi-arm bandit problem,
the gambler has to decide which arm of K different slot ma-
chines to play in a sequence of trials so as to maximize his
reward.

The bandit problem is best formulated as an infinite hori-
zon Markov decision problem in discrete time with time in-
dex t = 0, 1, ... At each time t the decision maker chooses
amongst N arms and we denote this choice by at ∈ {1, ..., N}.
If at = i, a random payoff xi

t is realized and we denote
the associated random variable by Xi

t . In our slot auction
xi

t = αt
i · vi where the click through rate αt

i is the random
payoff element of the problem while the value vi is a con-
stant, hence the total payoff for arm i is vi × αi

t. The state
variable of the Markovian decision problem is given by st

where in our slot auction a vector of all allocated advertis-
ers click-through-rate at time t, αt

i and 0 if i is not allocated
a slot in time t. The distribution of xi

t is F i(·; st). The state
transition function φ depends on the choice of the arm and
the realized payoff: st+1 = φ(xi

t; st). Let St denote the set
of all possible states in period t. A feasible Markov policy
a = {at}

∞
t=0 selects an available alternative for each conceiv-

able state st, i.e., at : St → {1, ..., N}. Payoffs are evaluated

3The normalization constants enable us to use the first slot
as a baseline

according to the discounted expected payoff criterion where
the discount factor δ satisfies 0 ≤ δ < 1. The motivation for
assuming a discount factor is that the seller of the slot auc-
tion prefers payment sooner rather than later. The payoff
from each i depends only on outcomes of periods with at = i.
In other words, we can decompose the state variable st into
N components (s1

t , ..., s
N
t ) such that for all i: si

t+1 = si
t if

at 6= i, si
t+1 = φ(si

t, xt) if at = i, and F i(·, st) = F i(·; si
t).

3. ILLUSTRATION OF OUR PROTOCOL
FOR THE SINGLE SLOT CASE

We illustrate the main idea behind our protocol for the
simple case when there is a single slot available at any given
time. Our algorithm starts with a set S = N of all adver-
tisers and no knowledge of their click through rate. At each
time period t and for each advertiser i ∈ S we have an es-
timate of i’s click through rate αi

t as well as an estimate of
how accurate our estimation is, i.e., a (probabilistic) bound
on |αi

t −αi| which depends on the time period t that the al-
gorithm sampled. We will denote this bound by γl where l is
the stage number (details below). Advertisers are removed
from the set S and are not considered for sampling once the
algorithm learned that their estimated click through rate is
less than the maximum click through rate (even when ad-
justing for sampling errors).

We divide our protocol into multiple stages. Each stage
consists of a (variable) number of rounds. When a stage
starts we consider all advertisers at the set S. Obviously,
this set has an i s.t. vi ∗ αi

t is maximal. Suppose w.l.o.g.
that the maximal element is the first element we consider
in S. If we would merely choose to do an exploitation
that is we could just allocate the slot to the first adver-
tiser. However, there are other possible advertisers that are
worthy of consideration. These are the advertisers j s.t.
vi(α

i
t − γl) < vj(α

j
t − γl). In this case the inaccuracy of i, j

overlap. Therefore the algorithm allocates to this stage a
sufficient number of rounds to sample all of these possible
advertisers (for simplicity we assume w.l.o.g. that the time
finishes, i.e., t = T , only when starting a new stage. If there
is insufficient time to finish a stage we simply don’t sample
in that stage.).

This algorithm (due to [11]) works (in a PAC sense) if
the players are non-strategic. Of course, if the players are
strategic we have to motivate them to give the correct values
vi. Since all of the advertisers arrive and depart at the same
time and we only allocate a single slot at any given time we
can set the price for any stage to be defined as the critical
value at that stage to be sampled (i.e. given sampled j s.t.
vj ∗αt

j is maximal from among the advertisers not sampled,

the price for player i is
vj∗αt

j

αi
t

.)

Our single slot protocol is in table 1.
We now proceed to formally define our algorithm for the

general case.

4. MULTI-ARMED TRUTHFUL BANDIT AUC-
TION(MAFIA)

When turning to the general case we encounter several
new problems. The first problem is that we now have mul-
tiple slots. In a simplified setting where the slots are of the
same quality, [20] presented a multi armed bandit mecha-
nism where values are known and no assumption of adver-



The single slot illustrative Algorithm

1. All advertisers i report their value v̄i.

2. Set the time to be t = 1 and the set of advertisers
S = N

3. Set initial click though rates for each advertiser -
i : xi

1 = 0

4. Sample every advertiser i ∈ S once.

5. if i was clicked on charge advertiser i pt
i =

αt
j

αt
i
vj

where xj
t is the second highest payoff.

6. If we are at a new stage l define confidence parame-

ters - Let γl =

√

log(cnl2/δ)
l

·, let xmax
t = maxi∈S xi

t.

7. Define the set of advertisers which we no longer
need to sample: for every i ∈ S such that xmax

t −
xi

t ≥ 2γl set S = S\i.

8. t=t+1

9. If |S| > 1 (there are still too many possibilities)
then

Go to 4

10. from τ = t to T allocate advertiser i to the slot

11. for every t if i was clicked on charge i pt
i =

αt
j

αt
i
vj

Table 1: The illustrative algorithm simple case with

a single slot

tisers strategic behavior is taken. However, when slots are of
different quality we must take care that during the sampling
procedure we allocate ”better” slots to ”better” advertisers.
Of course, payments need to be taken for such preferential
allocations to work.

Our main protocol is in table 2. The protocol samples
each advertiser i in turn until there is a sufficient gap be-
tween the observed payoffs of the K highest advertisers and
advertiser i such that with sufficient probability the i’th ad-
vertiser is not one of the advertisers we want to retain. The
algorithm removes all of the advertisers with a sufficiently
large gap and continues to sample the remaining advertisers
as long as there is not a large enough gap between the best
advertisers and the rest of the advertisers to remove them
using the procedure in table 4. The main protocol utilizes
several sub procedures. Table 3 is used to normalize the
click-through probabilities of different slots so that they can
be compared to the same baseline slot. Prices are set in
table 6 to motivate the advertisers to honestly report their
bids to the mechanism. The prices are computed following
the truthful ladder scheme of [2].

When the most desired K advertisers remain, each ad-
vertiser needs to be allocated the proper slot; meaning the
most desired advertiser in first slot, the second most desired
in second slot etc. This is done in table 5 simply by ensur-
ing that there is a sufficient gap between two consecutive
advertisers’ observed probabilities.

The Main Algorithm

1. All advertisers i report their value v̄i

2. Set time t = 1, l = 1 and the set of advertisers
S = N

3. Set initial click though rates for each i, xi
1 = 0

4. Randomly sample every advertiser i ∈ S once.

(a) for every time t in stage l:

(b) We normalize click-through rates to allow us
to compare them: normalize-click-through-
rate(input:S,output:αt

i for all i ∈ S).

(c) t=t+1

5. l=l+1

6. Define confidence parameter: γl =
√

log(cnl2/δ)
l

· 1

max{β1
2 ·...·β

1
K

,β̃2
K

·β̃1
K−1

·...·β̃1
2}

· 1
K

and xmaxK
t be the Kth highest payoff xi

t of i ∈ S.

7. Discard obviously suboptimal advertisers: for each
i ∈ S such that xmaxK

t − xi
t ≥ 2γl set S = S\i.

8. If |S| > K (there are still too many possibilities)
then allocate-slots-for-sampling(input:S, for all i ∈
S xt

i). Go to 5

9. Decide which slots are allocated to which advertis-
ers: match-K-slots(input:t,S,output:for all i ∈ S
slot j ∈ K).

10. From τ = t to T and for all i ∈ S allocate advertiser
i to slot j

11. If i got a click charge price of pt
i:

compute-ladder-price(input:i,jx
zj+1
t , ..., xzK

t ,
output:pt

i), where zj the advertiser that was
allocated slot j.

Table 2: The main algorithm used for the MAB

sampling problem



normalize-click-through-rate
(input:S,output:αt

i ∀ i ∈ S)

1. For every i ∈ S that was given slot j:

if i got a click normalize the click by β̃1
j · ... · β̃1

2

else normalize the click by β̃2
j · β̃1

j−1... · β̃
1
2

Update αt
i (and xi

t) accordingly

2. if i got a click charge price of pt
i:

compute-ladder-price(input:i,jx
zj+1
t , ..., xzK

t ,
output:pt

i), where zj the advertiser that was
allocated slot j.

Table 3: Normalizing click-through-rate to a base-

line using constants

allocate-slots-for-sampling
(input:S, ∀ i ∈ S xt

i)

1. Order the payoffs xt
i of i ∈ S and denote the d’th

high payoff by xt
id

2. Sample every advertiser i ∈ S for every time t in
stage l in the following order:

for every slot j ∈ K chose an advertiser at random
without repetition of i(j−1)(|S|/K)+1 to ij|S|/K .

(a) normalize-click-through-
rate(input:S,output:αt

i for all i ∈ S)

(b) t=t+1

Table 4: Choosing which advertisers get which slots

during sampling

5. THE MAFIA ANALYSIS
This section analyzes the properties of the MAFIA algo-

rithm. The properties we focus on are truthfulness, welfare
maximization, welfare lost by sampling and sampling com-
plexity.

5.1 Truthfulness
To show truthfulness we will prove that assuming that the

algorithm correctly finds the best advertisers, every adver-
tiser i gains his maximum expected utility β1

2 · ... · β1
j · αt

i ·
(vi − pt

i) for every time t when reporting his true value, i.e.,
v̄i = vi and getting the according allocation of slot j. If
truthfulness holds for every time t it follows that truthful-
ness holds over the slot auction as whole since no advertiser
can gain by losing on utility in some time periods in order to
gain utility in some other time period4. Since we will show
that the auction has arbitrary high probability of finding the
optimal allocation this will suffice.

4It is important to recall that our model studies a one-shot
incomplete information game. This means that advertisers
do not change their valuations in the different time periods
of the algorithm.

match-K-slots
(input:t,S,output:∀ i ∈ S slot j ∈ K)

For z = 1 to K − 1:

1. Sample all advertisers i ∈ S

(a) For every time t in stage l:

(b) normalize-click-through-
rate(input:S,output:αt

i for all i ∈ S)

(c) If advertiser i′ that is allocated slot K − z + 2
got a click charge pt

i′

compute-ladder-price (input:i′,K − z +
1,x

zK−z+2
t , ..., xzK

t ,output:pt
i).

(d) t=t+1

2. Use confidence parameter - γl =
√

log(cnl2/δ)
l

· 1

max{β1
2 ·...·β

1
K

,β̃2
K

·β̃1
K−1

·...·β̃1
2}

· 1
K−z

3. for every advertiser i ∈ S such that x
maxK−z
t −xi

t ≥
2γl set S = S\i.

4. allocate the removed i in slot K − z + 1.

Table 5: Matching advertisers with slots after sam-

pling is done

compute-ladder-price
(input:i,j,x

zj+1
t , ..., xzK

t ,output:pt
i)

1. for f = j + 1 to K αt
zf

= x
zf
t /vzf

2. pt
i =

∑K
f=j (

αt
i ·β

1
2 ·...·β

1
f−αt

i ·β
1
2 ·...·β

1
f+1

αt
i
·β1

2 ·...·β
1
j

)
αt

zf+1

αt
i

vzf+1

Table 6: Calculate Prices

Since we show that for finite time , the algorithm can only
hope to succeed with some probability which is less than
1, we can not hope to show that the mechanism is always
truthful. However, following [1] we show that the algorithm
is truthful w.h.p. which depends on the parameters γl. Since
γl has a constant c which we can use to fine-tune the tradeoff
between expected success and expected loss of welfare we
can ensure that the probability of success which we denote
by 1 − λ is arbitrarily high. This will then ensure that the
probability of an advertiser to gain by lying is bound by
some arbitrary low constant which we denote by θ.

To illustrate why the algorithm require truthfulness with
high probability and in expectation consider the following
scenario: given advertiser i with true value vi per click and
a real click-through-rate αt

i at time t and assume that at
time t the first slot should have been allocated to advertiser
i if i’s click-through-rate estimated correctly by the algo-
rithm. Now assume that the algorithm estimated a much
lower click-through-rate for i at time t ᾱt

i < αt
i (which can

happened with probability λ) such that it is placed in slot
K instead of the first slot. If advertiser i lies such that
v̄i · ᾱ

t
i = vi ·α

t
i then i’s lie actually results in a better utility



for i then reporting his true value. We can insure that this
kind of lie is not beneficial for the advertisers (θ is small) if
λ is taken to be small enough. The formal proof follows:

Let αt
i and α̂t

i be the click-through-rate found by the al-
gorithm at time t with probability 1 − λ and probability λ
respectively when advertiser i reports vi and let ᾱt

i and ˆ̄αt
i

be the click-through-rate found by the algorithm at time t
with probability 1 − λ and probability λ respectively when
advertiser i reports v̄i.

Lemma 1. Given advertiser i and time t, for all v̄i 6= vi

reported by advertiser i that results in price p̄t
i it holds that,

(1−λ)(β1
2 · ... ·β

1
j ·α

t
i ·(vi−pt

i))+λ(β1
2 · ... ·β

1
j′ · α̂

t
i ·(vi−pt

i)) ≥

(1−λ)(β1
2 · ... ·β

1
j′′ · ᾱ

t
i ·(vi− p̄t

i))+λ(β1
2 · ... ·β

1
j′′′ · ˆ̄α

t
i ·(vi − p̄t

i))

where j, j′, j′′, j′′′ are the slots allocated to i at time t with
click-through-rates αt

i , α̂
t
i, ᾱ

t
i, ˆ̄αt

i.

Proof. We divide the proof into several claims.

• The algorithm is truthful in high probability, further-
more for finite time T the mechanism is truthful for
sufficiently small c (large γl).

• The mechanism is truthful in expectation.

• The first sampling of each advertiser is truthful since
it does not depend on the declaration.

• The sampling until converging on the final set of ad-
vertisers is truthful.

• The allocation of different advertisers to different slots
during the running of the algorithm is truthful.

• The final matching between the K slots and the K
highest estimated advertisers is truthful.

Let u1
i = (β1

2 · ... · β1
j · αt

i · (vi − pt
i)), u2

i = (β1
2 · ... · β1

j′′ ·

ᾱt
i · (vi − p̄t

i)), u3
i = (β1

2 · ... · β1
j′′′ ·

ˆ̄t
iα · (vi − p̄t

i)), and u4
1 =

(β1
2 · ... · β1

j′ · α̂
t
i · (vi − pt

i))

Claim 1. If λ ≤ min
i∈N

{

u1
i −u2

i

u1
i −u2

i +max
i∈N

{u3
i −u4

i}

}

then for all

advertisers their optimal strategy assumes that the optimal
allocation is found,

Proof. If we set λ to be small enough meaning

λ ≤ min
i∈N

{

u1
i −u2

i

u1
i −u2

i +max
i∈N

{u3
i −u4

i}

}

then the probability of the

algorithm not finding the optimal welfare at some time pe-
riod τ will result in an arbitrarily low probability of an ad-
vertiser being able to gain by lying and hence w.h.p. the
advertiser will tell the truth. Formally, since θ ≤ λ then as
λc→∞ → 0 then θ → 0

It is now shown that the mechanism is truthful in expec-
tation.

Lemma 2. The mechanism is truthful in expectation.

The proof is omitted and appears in the full paper.
Following claim 1 we assume in the next claims that the

algorithm finds the optimal welfare. So fixing the advertiser
i and time t = τ , there are two possible lies that i can make.

i can either increase or decrease his value. We will show
that both of these possible lies yield a negative change in i’s
utility,

The initial stage is not impacted by advertiser i changing
his value in any direction as advertisers are placed randomly
and all start with an initial payoff per click of xi

t = 0.

Claim 2. While sampling until discovering the final K
advertisers (lines 6-7 in the main algorithm) advertiser i
can not improve his utility by lying.

Proof. There are two possibilities to consider. The first
case is when i decreases his value. By decreasing his value
x̄i

t, t < τ maybe such that x̄i
t ≤ xmaxK

t − 2γl and advertiser
i will be discarded before time τ . It follows that in this
case advertiser i’s utility is 0 for lying but may be better
when telling the truth as xi

t for t ≤ τ maybe greater than
xmaxK

t − 2γl and advertiser i would not be removed out of
the auction in such an early stage.

The second case is when i increases his value. In this
case by increasing his value x̄i

t, for t ≤ τ maybe such that
x̄i

t > xmaxK
t −2γl and advertiser i will not be removed out of

the auction before time τ . If at any time t ≤ τ xi
t ≤ xmaxK

t −
2γl then advertiser i should have been removed out of the
auction but was left in the auction because of his increased
value report. To prove our truthfulness claim we need to
show that in this case his utility at time τ is negative as his
true report would have given 0 at that time. Assume that
advertiser i’s payoff when reporting v̄i, x̄t

i is ranked between
the (j − 1)(|S|/K)+1 and j(|S|/k) payoffs in allocate-slots-
for-sampling procedure. Advertiser i is sampled at slot j
and i’s utility then is

ατ
i ·β

1
2 ·...·β

1
j (vi−

∑K
f=j

ατ
i ·β1

2 ·...β
1
f−ατ

i ·β1
2 ...·β1

f+1

ατ
i ·β1

2 ...·β1
j

·
ατ

f+1

ατ
i

vf+1) =

β1
2 · ... · β1

j ατ
i vi − β1

2 · ... · β1
j ατ

ij+1
vij+1(1 + β1

j+1) − (1)

β1
2 · ... · β1

j ατ
ij+2

vij+2 (β1
j+1 + β1

j+1β
1
j+2)... < 0

Inequality (1) is less than 0 as advertiser i’s true payoff αt
ivi

is less than any other payoffs of advertisers that got alloca-
tions in the allocate-slots-for-sampling procedure. Therefore
i is better off reporting his true value in this case. Note that
even if the algorithm found a different click-through-rate for
i when lying than when reporting the truth (as i might be
discarded after a single sampling) i’s utility is still less than
0. That is not surprising given that the algorithm leaves
only the advertisers with bounded distance to the real click-
through-rate.

We now show that the next procedure also affords no op-
portunity for i to gain by lying.

Claim 3. For any advertiser i the optimal utility which
can be achieved in the allocate-slot-for-sampling procedure is
achieved by a truthful declaration.

Proof. Once again there are two conditions to consider.
The first case is if i decreases his value. In this case, if ad-
vertiser i “survived” the removal stages his decreased value
can still impact his rank of payoff in the procedure allocate-
slot-for-sampling. As advertiser i has decreased his value
he can only be ranked lower in the payoff list and therefore
be sampled in lower slots. Assume without loss of general-
ity that advertiser i was sampled at slot j when telling the



truth and sampled at slot j + 1 when lowering his value.
Due to our probability constants the bandit algorithm can
normalize the click-through-rates such that it will find the
same click-through-rate for i when telling the truth and sam-
pled at slot j and when lying and sampled at slot j + 1.
So as long as advertiser i is allocated a slot when lying he
can not impact the algorithm finding of his click-through-
rate but he can be charged a different price when allocated
slot j + 1 instead of slot j. All that is left to show is
that the difference between i’s utility when allocated slot
j and i’s utility when allocated slot j + 1 is positive, i.e.,
β1

2 · ... ·β
1
j ·ατ

i (vi − pτ
i )−β1

2 · ... ·β
1
j+1 ·α

τ
i (vi − p̄τ

i ) ≥ 0 where
p̄τ

i is the price i is charged at slot j + 1.
β1

2 · ... · β1
j · ατ

i (vi − pτ
i ) − β1

2 · ... · β1
j+1 · ατ

i (vi − p̄τ
i ) =

(β1
2 ·...·β

1
j ·α

τ
i −β1

2 ·...·β
1
j+1 ·α

τ
i )(vi−

ατ
i(j+1)|S|/K

)

ατ
i

·vi(j+1)|S|/K
).

The first term of the equation is positive as β1
2 · ... · β1

j ·

ατ
i − β1

2 · ... · β1
j+1 ·α

τ
i = β1

2 · ... · β1
j ·ατ

i · (1− β1
j+1) and β1

j+1

is a probability constant and therefore less than 1.
The second term of the equation is positive as i’s payoff

xτ
i = vi · α

τ
i is ranked higher then the (j + 1)|S|/K adver-

tiser’s payoff otherwise i would have been matched to the
jst slot when reporting vi.

The reverse case of i increasing his value follows. We con-
sider advertiser i who was sampled at slot j when reporting
the true value vi and assume with out loss of generality that
i was sampled at slot j − 1 when increasing his reported
value v̄i.

Due to our probability constants the bandit algorithm can
normalize the click-through-rates such that it will find the
same click-through-rate for i when telling the truth and sam-
pled at slot j and when lying and sampled at slot j − 1.
So as long as advertiser i is allocated a slot when lying he
can not impact the algorithm finding of his click-through-
rate but he can be charged a different price when allo-
cated slot j − 1 instead of slot j. All is left to show is
that the difference between i’s utility when allocated slot
j and i’s utility when allocated slot j − 1 is positive, i.e.,
β1

2 · ... ·β
1
j ·ατ

i (vi − pτ
i )−β1

2 · ... ·β
1
j−1 ·α

τ
i (vi − p̄τ

i ) ≥ 0 where
p̄τ

i is the price i is charged at slot j − 1.
β1

2 · ... · β1
j · ατ

i (vi − pτ
i ) − β1

2 · ... · β1
j−1 · ατ

i (vi − p̄τ
i ) =

(β1
2 ·...·β

1
j ·α

τ
i −β1

2 ·...·β
1
j−1 ·α

τ
i )(vi−

ατ
i(j−1)|S|/K

)

ατ
i

·vi(j−1)|S|/K
).

Both terms are negative which together proves a positive
difference in utility for i in reporting the truth. The first
term of the equation is negative as β1

2 · ... · β1
j · ατ

i − β1
2 · ... ·

β1
j−1 ·α

τ
i = β1

2 ·...·β
1
j−1 ·α

τ
i ·(β

1
j −1) and β1

j−1 is a probability
constant meaning less than 1.

The second term of the equation is negative as i’s payoff
xτ

i = vi ·α
τ
i is ranked lower then the (j−1)|S|/K advertiser’s

payoff otherwise i would have been matched to the j − 1st
slot when reporting vi.

The final case to consider is when matching the advertisers
to their final slots.

Claim 4. In the match the K slots stage, advertiser i can
not improve his utility by lying.

Proof. Once again we must look at the two possibilities.
If advertiser i decreases his value meaning v̄i < vi then
advertiser i will be removed in an earlier stage in match-K-
slots procedure and be allocated a lower slot than he would

have if he reported his true value. Similarly to the case of
”Allocate slots for sampling” part of the algorithm he can
not change the click-through-rate found by the algorithm
but he can be charged a different price when allocated in
a lower slot. Just like in the ”Allocate slots for sampling”
stage i’s utility difference between allocation in slot j when
telling the truth and allocating in slot j+1 in lying is positive
meaning that i is worse off reporting v̄i < vi.

The second possibility is of increasing his value in this case
i will remain in a later stage in match-K-slots procedure and
be allocated a higher slot than he would have if he reported
his true value. Similarly to the case of ”Allocate slots for
sampling stage” he can not change the click-through-rate
found by the algorithm but he can be charged a different
price when allocated in a higher slot. Just like in the ”Allo-
cate slots for sampling” stage i’s utility difference between
allocation in slot j when telling the truth and allocating in
slot j − 1 in lying is positive meaning that i is worse off
reporting v̄i > vi.

So assuming that our MAFIA algorithm finds the optimal
welfare 5 with probability (1 − λ) bounded as above, then
the MAFIA algorithm is truthful with probability (1 − θ).

5.2 Welfare Maximization
In this section we will prove that our algorithm approxi-

mates the optimal welfare. Our proof will closely follow the
proof of [11]. However, before we can utilize their proof we
have to deal with the truthfulness properties. If advertisers
incorrectly report their values then it is obviously impossible
to maximize welfare. The main problem, is that our proof
of truthfulness assumes approximation of the welfare. Since
the proof of approximation requires truthfulness we are in
somewhat of a bind.

In order to resolve this problem we show that we can in
fact decouple the two proofs. This will follow from the fact
that the θ − truthfulness property and the λ − welfare
property are positively correlated. The more truthful we
are the better welfare we can achieve and vice-versa. In
other words we can set λ to be small such that truthfulness
is reached with probability 1 − θ → 1 , then using lemma
3 and assuming truthfulness with probability 1, we show
that there exist time period where the algorithm maximizes
welfare with probability 1 − λ.

Lemma 3. Given a MAFIA algorithm which is truthful
with probability (1− θ) that maximizes welfare at some time
period τ with probability 1 − λ then if θ increases then λ
increases and if θ decreases then λ decreases.

Proof. We will show that if θ decreases then λ decreases.
The other case is similar. If θ decreases it follows that the
algorithm is truthful with higher probability. In this case
the advertisers will report their true value with higher prob-
ability. As every advertiser i’s observed payoff xt

i = v̄i ·α
t
i, if

v̄i = vi with high probability then xmaxK
t −xi

t = x̄maxK
t − x̄i

t

with higher probability and therefore xmaxK
t − xi

t ≥ 2γl ⇒
x̄maxK

t − x̄i
t ≥ 2γl with higher probability. Thus the rejec-

tion/acceptance of the desired/undesired advertiser is with
lower probability λ

5from some time period τ



Lemma 4. ∃τ such that the MAFIA algorithm finds the
optimal welfare

∑

i∈N

∑T
t=τ αt

i · vi with probability 1 − λ.

Proof. The main argument of the proof is that the ob-
served payoff xt

i of advertiser i at time t that was not re-
moved is within γl of the true payoff xi. As γl goes to zero
as l increases (which is to say as t increases) then after long
enough time we are left with the advertiser with the best
payoff, i.e. maximized social welfare. As our MAFIA al-
gorithm allocates K slots and not just one we also need to
verify that we get the best payoff in every slot of the K slots
and therefore maximize social welfare for all slots.

We will start by showing the former:
Let St be the set of advertisers left in the auction at time t.
For any time t and advertiser i ∈ St we have that,

Pr[|xt
i − xi| ≥ (2)

γl · max{β1
2 · ... · β1

K , β̃2
K · β̃1

K−1 · ... · β̃1
2}] ≤

e−(γl·max{β1
2 ·...·β

1
K ,β̃2

K ·β̃1
K−1·...·β̃

1
2})

2t ≤
δ

cnt2K

The first inequality follows from the Chernoff bound and the
second by substituting γl in the bound6. By union bound
over the K slots and by union bound over all times from
t = 1 to T it follows that with probability at least 1−δ/n for
any time t and any advertiser i ∈ St, |x

t
i−xi| ≤ γl ·max{β1

2 ·

... ·β1
K , β̃2

K · β̃1
K−1 · ... · β̃

1
2}. Therefore with probability 1− δ,

the K’th best advertisers are never eliminated.
Now we need to show that we get the best j’th advertiser

for each slot j of the K slots. That will be showed in K
iterations. First we want to show that for the first time
period t where |St| = K the lowest payoff in St is greater
by at least 2γl of the highest payoff in N\St. Similarly to
inequality (2) with probability 1−δ, the best K’th advertiser
is never eliminated.

Second we want to show that for the first time period t
where |St| = K − 1 the lowest payoff in St is greater by
at least 2γl of the highest payoff in N\St. Similarly to
inequality (2)

Pr[|xt
i − xi| ≥ γl · max{β1

2 · ... · β1
K , β̃2

K · β̃1
K−1 · ... · β̃1

2}] ≤

e−(γl·max{β1
2 ·...·β

1
K ,β̃2

K ·β̃1
K−1·...·β̃

1
2})

2t ≤
δ

cnt2(K − 1)

By union bound over all times from t = 1 to T it follows
that with probability at least 1− δ/n for any time t and any

advertiser i ∈ St, |x
t
i −xi| ≤ γl ·max{β1

2 · ... ·β
1
K , β̃2

K · β̃1
K−1 ·

... · β̃1
2}. Therefore with probability 1−δ, the best (K−1)’th

advertiser is never eliminated.
It is easy to see that all remaining j ∈ |St| = K − 2

best j’th advertisers are never eliminated. As the algo-
rithm’s sample complexity is bounded (see lemma 5) and
since the best K’th advertisers are ordered in the optimal
order with probability 1 − δ, as shown above, there exist
time period τ where the algorithm finds the optimal welfare
∑

i∈N

∑T
t=τ αt

i · vi with probability 1 − δ

6c is a constant

5.3 Sampling Complexity
Let β = max{β1

2 · ... · β1
K , β̃2

K · β̃1
K−1 · ... · β̃1

2} and denote

by
⌢
xi the real payoff of advertiser i and by xi

t the observed

payoff of advertiser i at time t. Let
⌢
xmaxK be the advertiser

with the K’th highest real payoff and let ∆i =
⌢
xmaxK −

⌢
xi.

Lemma 5. The MAFIA algorithm sample complexity is

bounded by O

(

∑n
i=K+1

log( n
δ·∆i

)

∆2
i ·β·K

+
∑K

i=2

log( n
δ·∆i

)

∆2
i ·β·(K+1−i)

)

Proof. To prove the algorithm’s sample complexity we
need to bound the number of time rounds it will take to
remove an advertiser.

Consider advertiser i which should be removed then xmaxK
t −

xi
t ≥ 2γl.
The assumption that advertiser’s real payoff and the ob-

served one are different by at most γl for every time t, i.e.,

|xi
t −

⌢
xi| ≤ γl yields that ∆i − 2γl = (

⌢
xmaxK − γl) − (

⌢
x i +

γl) ≥ xmaxK
t −xi

t ≥ 2γl. The last inequality follows from the
fact that i is considered for removal. Since ∆i is a constant
and γl → 0 there exists a t s.t. ∆i ≥ 4 · γl. By substituting

t = O

(

log( n
δ·∆i

)

∆2
i ·β·K

)

it hold that ∆i > 4 ·
√

log(cnt2/δ)
t

· 1
β
· 1

K
.

As the algorithm removes all but K advertisers in the first
stage and then places every advertiser in its slot j by remov-
ing it from the above slot j − 1, the sample complexity of
the algorithm is then (approximately)

∑n
i=2 t.

5.4 Bounding the welfare lost by sampling

Lemma 6. The total lost in welfare resulting of the sam-
pling process is tightly bound by O(

∑n
i=2 ∆i).

Proof. The welfare loss per advertiser i which is removed
at some time period must be at least ∆i since each advertiser
is sampled at least once.

With arbitrary high probability the advertiser is sam-

pled at most until stage l′ s.t. ∆i ≤ 2γl′ . Therefore,

∆i < O(
√

log l′2

l
). Or ∆2

i = O( log l′

l′
). It can be seen (by

substitution) that the solution for l′ is l′ = O( 1
∆2

i
log 1

∆2
i
).

Since the welfare lost is ∆i∗l′ the loss is O(∆i∗
1

∆2
i

log 1
∆2

i
) =

O( 1
∆i

log 1
∆2

i
) = O( log ∆i

∆i
) →∆i→∞ 0 so the loss is bounded

by the loss for small ∆i and hence the welfare loss is optimal
(up to constants).

6. CONCLUSIONS AND FUTURE WORK
In this paper we presented a truthful multi-armed-bandit

mechanism for discovering the valuations of advertisers in a
slot-auction game. Our mechanism allows for slots with dif-
ferent quality while learning the click-through-rates of the
advertisers and motivates them to report their true valua-
tions per click. The mechanism presented obtains an op-
timal welfare, apart from a tightly bounded loss of welfare
on the bandit sampling process, and achieves a decreased
sampling cost.

Our results assumed that there are no budget constraints
as well as concurrent and simultaneous start and stop times
for all the advertisers. These assumptions can be relaxed



and are explored in our current work [15] which however
assumes that all slots are of equal quality.
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